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Bacterial microcosms obey Taylor’s law: effects of
abiotic and biotic stress and genetics on mean
and variance of population density
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Abstract

Introduction: According to the empirical regularity called Taylor’s law, the variance of population density in
samples of populations is a power of the mean population density. The exponent is often between 1 and 2. Our
experiments investigated how genetics, evolution, and environment shape Taylor’s law.

Methods: Genetically different strains (wild type and hypermutator) of the bacterium Pseudomonas fluorescens
evolved and were assayed under different environmental conditions (with and without antibiotic rifampicin and
bacteriophage SBW25�2, separately and in combination).

Results: Experimental treatments altered the exponent b, but not the power law form, of the relation between
variance and mean population density. Bacterial populations treated only with rifampicin had a narrow range of
mean population densities and exponent b = 5.43. Populations exposed to rifampicin plus phage had b = 1.51. In
ancestral, control, and phage-exposed populations, mean abundance varied widely and b was not significantly
different from 2. Evolutionary factors (mutation rate, selection) and ecological factors (abiotic, biotic) jointly
influenced b.

Conclusions: Taylor’s power law relationship accurately and robustly described variance as a function of mean
population density, with overall exponent b = 1.89. These and other experiments with different factors acting on
bacterial population size support the relevance of models that predict ‘universal’ patterns of fluctuation scaling.
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Introduction
In 1961, L. R. Taylor brought to wide attention an
approximate empirical power law relationship, variance
= a(mean)b, where a > 0 and b > 0, between the var-
iance and mean of the size of insect populations (Taylor
1961). Taylor’s law describes variation in hundreds of
species and has been the subject of approximately a
thousand papers (Eisler et al. 2008). Taylor’s law has
practical importance for designing efficient sampling of
agricultural pests and insect vectors of human diseases
(Young and Young 1994; Binns et al. 2000; Park and
Cho 2004).

Long before Taylor publicized this empirical pattern,
Luria and Delbrück (1943) investigated, theoretically
and experimentally, mutations of bacteria from virus
sensitivity to virus resistance. If virus resistance arose
from heritable mutations, then, their theory showed, the
distribution of the number of resistant bacteria under
given conditions would not be described by the Poisson
distribution, which has variance equal to mean, but
would be described by an over-dispersed distribution,
with variance significantly larger than the mean. They
counted the numbers of resistant bacteria and reported
the raw counts, means, and variances in series of eight
similar cultures in their Table 2. They remarked (Luria
and Delbrück 1943, page 504): ‘... in every experiment
the fluctuation of the numbers of resistant bacteria is
tremendously higher than could be accounted for by the
sampling errors, ... in conflict with the expectations
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from the hypothesis of acquired immunity’ and in sup-
port of the alternative hypothesis of heritable mutations.
They did not remark that the relation between the

variance and the mean in their data is well approxi-
mated by a power law. Showing that a power law applies
to relationships between the mean and variance of
population size suggests orderly underlying processes
(Taylor et al. 1983, but see, e.g., Hanski 1982; Anderson
et al. 1982). We performed a linear regression of the
log10 variance as a function of the log10 mean in the
data of Table 2 of Luria and Delbrück (1943) and found
that b = 1.47 ± 0.57 (standard error) with R2 = 0.53.
This estimate of b differed from 0 significantly (95%
level) but did not differ significantly from either 1 or 2.
The present paper uses Taylor’s law to extend the

research of Luria and Delbrück (1943) beyond genetics
into ecology and evolution. We ask here how genetic, eco-
logical, and evolutionary processes interact to affect var-
iance-mean relationships. Are specific conditions necessary
to generate Taylor’s law, or is Taylor’s law robust with
respect to other ecological and evolutionary processes?
Models developed in other areas of population biology

suggest that Taylor’s law may be quite robust. For exam-
ple, in models of stem cell clones, stochastic ‘voter’ or ‘ran-
dom walk’ models of neutral drift converge to ‘universal’
patterns which obey Taylor’s law with b = 2 for ‘any
mechanism of stem cell self-renewal, however complex’
(Klein and Simons 2011, page 3107). If these patterns are
universal, then they should apply to bacterial populations.
In a Lotka-Volterra model of interspecific competition,
under a range of conditions, Taylor’s law holds with 1 ≤ b
≤ 2 (Kilpatrick and Ives 2003). These theoretical sugges-
tions need to be tested experimentally.
We used microbial microcosms under controlled

initial conditions and in a controlled environment to
investigate the impacts of genetic differences in muta-
tion rate, exposures to an abiotic stressor (antibiotic),
and exposures to a biotic stressor (parasitism by a lytic
bacteriophage) on a single bacterial species’ adherence
to Taylor’s law over an evolutionary time scale (approxi-
mately 50 generations). Ramsayer et al. (2011) used the
same species of bacterium to investigate the impacts of
competition from another bacterial species and of nutri-
ent concentrations on the adherence to Taylor’s law of
each competitor, and measured impacts on an ecological
time scale (24 h) of, at most, a few generations. The
shared purpose of both studies is to identify the ecologi-
cal and evolutionary factors that contribute to the suc-
cess or failure of Taylor’s law and that influence the
values of its parameters.

Methods
The gram-negative bacterium Pseudomonas fluorescens
SBW25 has been employed to study adaptation in

heterogeneous environments (Venail et al. 2008; Buck-
ling et al. 2009) and coevolution with a lytic bacterioph-
age SBW25�2 (Brockhurst et al. 2007; Poullain et al.
2008). We analyzed in a new way the data of Escobar-
Páramo et al. (2012) on the population dynamics and
evolution of four strains of P. fluorescens SBW25
exposed to a biotic and an abiotic stress. The four
strains, derived from the wild-type (WT) (Rainey and
Bailey 1996), included an isogenic hypermutator (MutS)
knock-out mutant with a per base mutation rate of
approximately 10-5 per generation (Pal et al. 2007)
(compared to approximately 5 × 10-7 per base pair per
generation in WT), and lines resistant to the antibiotic
rifampicin (Rif+), one derived from the WT and the
other from the MutS strain. Thus, the experimental
replicate populations of P. fluorescens were seeded from
four different strains of bacterial cells: wild type WT/Rif-
(Rainey and Bailey 1996), hypermutator MutS/Rif- (Pal
et al. 2007), rifampicin-resistant wild type WT/Rif+, and
rifampicin-resistant hypermutator MutS/Rif+. Over
approximately 50 generations, 12 replicate populations
of each strain were submitted (or not submitted, in the
control) to antibiotic rifampicin (rif), an abiotic stressor,
and to the lytic bacteriophage SBW25�2, a biotic stres-
sor, separately and in combination, for a total of four
treatments. At the end of the experiment, densities
(number of colony-forming units per milliliter) of
evolved populations were assayed on King’s B (KB) agar
plates in the presence (KB + rif) or absence (KB) of rif
to distinguish total count from the antibiotic-resistant
subpopulation. Escobar-Páramo et al. (2012) give further
details of experimental methods.
We calculated means and variances of final bacterial

density across the replicate populations of each combi-
nation of bacterial mutation rate, experimental treat-
ment, and assay plate environment. The table in
Additional file 1 gives the resulting 40 pairs of means
and variances. As means and variances were calculated
over distinct replicate populations at a given time, and
not for individual replicates observed over time, we
examined whether these final means and variances and
those of the ancestral lines obeyed the ensemble (or
equivalently, spatial) form of Taylor’s law, and if so,
whether b of Taylor’s law depended on the ancestral
lines, experimental treatments, or assay plate environ-
ment (SAS 2009; Mathworks 2011).

Results
Mean bacterial densities covered nearly 8 orders of mag-
nitude (Figure 1a). On assay plates with rif, mean popu-
lation density varied from nearly 102 to nearly 1010. The
high densities arose from Rif+ (rif-resistant) clones. In
the assay plates without rif, mean population density
was always > 108 [see table in Additional file 1].
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For all 40 data points combined, log variance was
highly significantly positively related to log mean of bac-
terial density (F1, 38 = 692, p < 0.0001). We refer to the
power b in Taylor’s law as the slope when b is estimated
from log variance = log a + b log mean by linear regres-
sion. The point estimate b = 1.89 fell statistically signifi-
cantly below 2 (Table 1). There was no significant
evidence of quadratic nonlinearity (the quadratic term
in polynomial regression: F1, 37 = 3.58, p = 0.0663).
In the minimal adequate analysis of covariance

(ANCOVA) model (Table 2), the only statistically signif-
icant effects on log variance were due to log mean, to
treatment, and to treatment × log mean interaction,
indicating differences in slope among treatments. Bac-
terial populations treated only with rif showed a very
high slope (5.43), whereas populations exposed to rif
plus phage showed a relatively low slope (1.51). Both
slopes differed significantly from 2 (Table 1).

In contrast, ancestral and control populations and
phage-exposed populations had slopes not significantly
different from 2, whether assayed in the KB agar plates
with or without rif. Any slope within the intersection of
the confidence intervals of these three treatments,
namely (1.84, 2.01), was compatible with the data from
all three treatments. The confidence interval of the
pooled data from all treatments, namely (1.83, 1.96), fell
almost entirely within the intersection of the confidence
intervals of these three treatments (Table 1). The exclu-
sion of slope 2 by the confidence interval of the pooled
data evidently derives from the two treatments with rif,
with or without phage. Bootstrap analyses [see Addi-
tional file 2] confirmed these conclusions.
The rif (without phage) treatment had the slope most

different from 2 and was the only one where the confi-
dence interval lay above 2. In this treatment, log10 mean
ranged from 9.6 to 9.7. This very limited range gives
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Figure 1 Relationship between log10 mean and log10 variance of bacterial density. Shown for all 40 data points (a) and for the
experimental treatments (b-e). Each panel shows the regression line fitted for the respective treatment. The dotted line describes a relationship
with a slope of 2. (a) The overall slope 1.89 ± 0.03 (± standard error) is only slightly, though statistically significantly, less than 2. (b) Ancestors (+
in square, dotted regression line) and controls (+ in circle, solid regression line). (c) Phage treatment (solid triangle). (d) Rif treatment (solid
circles). (e) Rif plus phage treatment (solid diamonds). The low slope (1.51) of the rif plus phage treatment was not driven by the leftmost filled
diamond in (e) because the slope was 1.49 instead of 1.51 when that point was omitted.
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little information about how log variance would vary
over multiple orders of magnitude of changes in log
mean.
Rif plus phage was the other treatment with slope sig-

nificantly different from 2. In this treatment, b < 2 and
log mean ranged from 6.4 to 9.6. This range of log
mean is more informative than the very narrow range of
the log mean in the rif treatment, but is notably less
than that of the other three treatments (ancestor, con-
trol, phage only) where log mean varied over at least 6
orders of magnitude (from < 3 to > 9). The range of
mean population densities and the slope of the rif plus
phage treatment resembled those of the phage (alone)
treatment far more than those of the rif (alone)

treatment. Further, in the rif plus phage treatment, initi-
ally rif-resistant lines had the lowest means, whereas in
the rif (alone) treatment, initially rif-resistant lines
tended to have the highest means. The difference is evi-
dently due, in part at least, to the action of the phage
on the bacteria.

Discussion
A linear relation between log variance and log mean
(Taylor’s law) described accurately and robustly how
variability in population size changed with mean popula-
tion size in P. fluorescens bacteria. Though strains with
different mutator genotypes and antibiotic-resistant phe-
notypes evolved and were assayed under different envir-
onmental conditions, no factors in our experiments
significantly altered the linearity of the relationship.
In a combined analysis of covariance when all cofac-

tors were considered simultaneously, the experimental
treatments were the only factors that affected the slope
b of Taylor’s law (Table 2). In this integrated analysis,
neither the bacterial strain nor the assay plate signifi-
cantly affected b. Among the treatments, the slope was
indistinguishable for ancestors, controls, and populations
treated with phage only.
The exceptionally high slope of the rif treatment and

the exceptionally low slope of the treatment with rif
plus phage require further confirmation by experiments
that are designed to produce a wider range of variation

Table 1 Estimates of intercept and slope (± standard error) from linear regressions of log-variance on log-mean

Intercept Slope 95% C.I.
[lower; upper]

Adjusted
R2

n

Overall 0.38 ± 0.29 1.89 ± 0.03 [1.83; 1.96] 0.99 40

Plate

KB 5.62 ± 1.23 1.33 ± 0.13 [1.06; 1.61] 0.85 20

KB+rif 0.28 ± 0.36 1.91 ± 0.04 [1.81; 2.00] 0.99 20

Strain

MutS/Rif- -0.36 ± 0.83 1.97 ± 0.10 [1.75; 2.19] 0.98 10

MutS/Rif+ 3.47 ± 1.78 1.57 ± 0.19 [1.14; 2.00] 0.89 10

WT/Rif- 0.44 ± 0.25 1.87 ± 0.03 [1.80; 1.94] 0.99 10

WT/Rif+ 2.94 ± 0.98 1.62 ± 0.11 [1.37; 1.87] 0.96 10

Rif- (pooled) 0.22 ± 0.34 1.90 ± 0.04 [1.82; 1.99] 0.99 20

Rif + (pooled) 2.98 ± 0.75 1.62 ± 0.08 [1.45; 1.79] 0.96 20

WT (pooled) 0.62 ± 0.31 1.87 ± 0.04 [1.79; 1.94] 0.99 20

MutS (pooled) -0.25 ± 0.61 1.96 ± 0.07 [1.82; 2.11] 0.98 20

Treatment

Ancestor -0.30 ± 0.31 1.92 ± 0.04 [1.84; 2.01] 0.99 8

Control -0.21 ± 0.52 1.95 ± 0.06 [1.81; 2.10] 0.99 8

Rifampicin -33.71 ± 7.12 5.43 ± 0.74 [3.68; 7.18] 0.90 8

Phage 0.97 ± 0.56 1.86 ± 0.07 [1.69; 2.03] 0.99 8

Rifampicin and phage 3.95 ± 0.81 1.51 ± 0.09 [1.29; 1.73] 0.97 8

Least-squares regressions of log10 variance of bacterial density on log10 mean density (in colony-forming units per milliliter) were fitted across all data (overall) or
fitted separately for the different assay environments (plate), bacterial strains, and long-term treatments. For each regression, the 95% confidence interval (C.I.) for
the slope is given. Bold type indicates slopes significantly different from +2 (upper and lower boundaries calculated as mean slope ± tn-1, 95% × standard error).
False discovery rate method was used to correct for multiple testing (García 2004). Also given are the adjusted R2 and the number of data points (n).

Table 2 Analysis of covariance after sequential removal
of nonsignificant (p > 0.1) factors from the full model

Source df Mean squares F P

Log mean 1 1.555 14.30 0.0008

Treatment 4 0.707 6.49 0.0008

(Rif+, Rif-) strain 1 0.148 1.36 0.2533

Treatment × log mean 4 1.390 3.19 0.0280

(Rif+, Rif-) strain × log mean 1 0.408 3.75 0.0630

Residual 28 0.109

Analysis of covariance of the log10 variance of bacterial density, as a function
of the log10 mean density, treatment (rifampicin, phage, rifampicin plus
phage, control, ancestor), and bacterial resistance strain (Rif+, Rif-), in a
minimal model.
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in log mean. Such variation in log mean density might
be achieved by varying the concentrations of rif, phage,
and KB nutrients. Ramsayer et al. (2011) showed that
variation in KB concentration produced wide variation
in mean bacterial densities and that Taylor’s law applied.
Our study extends and generalizes these findings on
Taylor’s law to the effects of abiotic and biotic environ-
ments, and evolutionary potential in the form of muta-
tion rates.
Mean population sizes ranged much more widely for

some genetic strains and experimental treatments than
for others, but whether these differences in mean
affected the variance within sets of replicates, that is, the
mean-variance relationship, was not clear without
further investigation.
When different strains and treatments were analyzed

separately (Table 1), rather than as parts of a single
experiment, estimates of slope differed by strain and
treatment, though no strain or treatments rejected the
power law form of Taylor’s law. In particular (strain sec-
tion in Table 1), WT strains had slopes significantly less
than 2, while MutS strains had slopes not significantly
different from 2. Hence, for a given increase in mean
population size, the variances of WT populations
increased by a smaller amount than the variances of
MutS populations. In this instance, the lower genetic
diversity of WT compared to MutS is associated with a
lower rate of increase in the variance of population size.
This possible association of genetic strain with slope
suggested that the mutation rate of the strain (as a
source of genetic variation) played a role in determining
the slope of the mean-variance relationship.
The speculative inferences of the previous paragraph

should be viewed as hypotheses for verification in future
experiments rather than as statistically well-grounded
conclusions, for two reasons. First, the confidence inter-
vals of the slopes of WT strains overlapped greatly with
the confidence intervals of the slopes of the correspond-
ing MutS strains (Table 1). Second, the difference
between strains attained statistical significance here
because this analysis pooled all the different treatments
which WT strains experienced and pooled all the differ-
ent treatments which MutS strains experienced, thereby
increasing the sample size of each to attain apparent sta-
tistical significance. The earlier analysis of the experi-
ment as a whole took account of the factorial design of
the experiment and distinguished the populations of
each strain that received each treatment; that analysis
revealed no significant effect of strain on slope.
In addition to the possible genetic association with

slope, MutS/Rif- populations had higher slope than
MutS/Rif+ populations and, likewise, WT/Rif- popula-
tions had higher slope than WT/Rif+ populations
(again, with overlapping confidence intervals in each

comparison). Together, these results suggested
(weakly) that a combination of mutation and selection
determined the values of b: hypothetically, MutS may
have increased b over the course of the experiment by
increasing the variance in growth rates as a result of
increased rates of mutation, whereas the lower slope
of the Rif+ populations reflects the action of selection
in the past. This suggestion merits further experimen-
tal and field testing. Do some natural populations
have low slope because of the action of selection on
them?
If the rif treatment affects the slope in future experi-

ments where log mean density varies more widely, then
we could interpret the effect as follows: Culturing bac-
teria with rif selected for genes that conferred rif resis-
tance, driving a divergence in population growth rates
among populations in which different resistant alleles
(demonstrated at the molecular level by Escobar-Páramo
et al. 2012, their Table 2) arose by different mutations.
Populations cultured with rif always gave rise to one or
more resistant alleles and did not go extinct. The
growth rate of populations derived from different
mutants that arose among the bacteria cultured with rif
was significantly different, according to a one-way analy-
sis of variance (not shown here). This putative variance-
increasing effect of rif-driven selection did not seem to
operate in the simultaneous presence of phage, because
in the rif plus phage treatment, the slope was lower,
rather than higher, than 2. The molecular sequence data
of Escobar-Páramo et al. (2012, their Table 2) may
explain why the slope was significantly below 2 in the
rif plus phage treatment: in this treatment, all MutS
strains converged to a single allele, while in WT, the
phage went extinct in half of the populations and the
others reverted to the rif-resistant phenotype and the
resulting strains were all biofilm producers. These
observations suggest an interaction between abiotic (rif)
and biotic (phage) selective pressures on the bacterial
populations (see further discussion in Escobar-Páramo
et al. 2012). Indeed, coevolving phage has been shown
to affect adaptive radiation of P. fluorescens under vari-
able environmental conditions (Benmayor et al. 2008).
An alternative explanation (suggested by a reviewer) of

why all slopes were significantly greater than 1 (which is
the slope given by Poisson distributions) could be that
sampling error increased with mean abundance. For
example, if some cells clumped at high density, variance
among high-density cultures could increase spuriously.
Unfortunately, we cannot test this idea in our data,
because we had no replicate counts per plate for a given
population on a given plate type. However, a clear
advantage of using microcosms to study Taylor’s law is
that sampling error can be rejected empirically in future
experiments, for example, by plotting variance as a
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function of sampling effort for different values of mean
abundance.

Conclusions
The near approximation to b = 2 (Figure 1a) and the
simplicity of the ANCOVA results (Table 2), plus the
excellent fit to Taylor’s law with b = 2 in the experi-
ments of Ramsayer et al. (2011), despite completely dif-
ferent sets of factors acting on population size in those
experiments and these, support the relevance to these
experiments of the ‘universal’ patterns of scaling in
models and data of stem cell populations (Klein and
Simons 2011). Examining microbial microcosms in the
light of Taylor’s law is a potentially powerful tool for
investigating mechanisms and consequences of ecologi-
cal and evolutionary interactions. Future theoretical and
experimental studies should test the generality of our
findings for the same and other taxa amenable to
experimental evolution.

Additional material

Additional file 1: Table of means and variances. This table gives log10
mean and log10 variance by assay plate, bacterial origin, resistance status,
treatment, and number of replicates.

Additional file 2: Data analysis, including bootstrapping and results.
This Additional file gives details of data analysis, including bootstrapping,
and the results of the bootstrap analyses.
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