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Abstract 

Background  The aim of this study is to examine the effects of four different bioclimatic predictors (current, 2050, 
2070, and 2090 under Shared Socioeconomic Pathways SSP2-4.5) and non-bioclimatic variables (soil, habitat hetero-
geneity index, land use, slope, and aspect) on the habitat suitability and niche dimensions of the critically endangered 
plant species Commiphora wightii in India. We also evaluate how niche modelling affects its extent of occurrence 
(EOO) and area of occupancy (AOO).

Results  The area under the receiver operating curve (AUC) values produced by the maximum entropy (Max-
ent) under various bioclimatic time frames were more than 0.94, indicating excellent model accuracy. Non-bioclimatic 
characteristics, with the exception of terrain slope and aspect, decreased the accuracy of our model. Additionally, 
Maxent accuracy was the lowest across all combinations of bioclimatic and non-bioclimatic variables (AUC = 0.75 to 
0.78). With current, 2050, and 2070 bioclimatic projections, our modelling revealed the significance of water avail-
ability parameters (BC-12 to BC-19, i.e. annual and seasonal precipitation as well as precipitation of wettest, driest, and 
coldest months and quarters) on habitat suitability for this species. However, with 2090 projection, energy variables 
such as mean temperature of wettest quarter (BC-8) and isothermality (BC-3) were identified as governing factors. 
Excessive salt, rooting conditions, land use type (grassland), characteristics of the plant community, and slope were 
also noticed to have an impact on this species. Through distribution modelling of this species in both its native (west-
ern India) and exotic (North-east, Central Part of India, as well as northern and eastern Ghat) habitats, we were also 
able to simulate both its fundamental niche and its realized niche. Our EOO and AOO analysis reflects the possibility 
of many new areas in India where this species can be planted and grown.

Conclusion  According to the calculated area under the various suitability classes, we can conclude that C. wight-
ii’s potentially suitable bioclimatic distribution under the optimum and moderate classes would increase under all 
future bioclimatic scenarios (2090 > 2050 ≈ current), with the exception of 2070, demonstrating that there are more 
suitable habitats available for C. wightii artificial cultivation and will be available for future bioclimatic projections of 
2050 and 2090. Predictive sites indicated that this species also favours various types of landforms outside rocky envi-
ronments, such as sand dunes, sandy plains, young alluvial plains, saline areas, and so on. Our research also revealed 
crucial information regarding the community dispersion variable, notably the coefficient of variation that, when bio-
climatic + non-bioclimatic variables were coupled, disguised the effects of bioclimatic factors across all time frames.
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Introduction
Evidence from the literature suggests that climate change 
is happening now and has a direct effect on biodiversity, 
forcing species to adapt either through migrating, chang-
ing phenological cycles, or developing new physiologi-
cal traits (Behera and Roy 2019). As per the Millennium 
Ecosystem Assessment (2005), climate change is likely 
to become one of the most substantial drivers of biodi-
versity loss by the end of the present century. Climate 
change is imposing severe threats to, and having dra-
matic effects on, a wide range of India’s plants and ani-
mals (Ray et al. 2014). India is both a major greenhouse 
gas emitter and one of the most vulnerable countries in 
the world to projected climate change. The country is 
already experiencing changes in climate and the impacts 
of climate change, including water stress, heat waves and 
drought, severe storms and flooding, and associated neg-
ative consequences on health and livelihoods. With a 1.2 
billion populations and dependence on agriculture, India 
probably will be severely impacted by continuing climate 
change. Global climate projections, given inherent uncer-
tainties, indicate several changes in India’s future climate. 
Even with a conservative temperature increase of 1 to 
2  °C, most ecosystems and landscapes will be impacted 
through changes in species composition, productivity 
and biodiversity. Impacts to the country as a whole are 
also projected by way of economically important forest 
types, such as Tectona grandis, Shorea robusta, bamboo, 
upland hardwoods and pine (Behera et al. 2019).

Human-caused accelerated climate change has now 
been added to the natural variability, threatening to 
exacerbate the loss of biodiversity already underway as a 
result of other human stressors. As a result, there is an 
urgent need to collect and disseminate information in 
order to contribute to the development of a strategic plan 
for climate change mitigation and adaptation. Modelling 
a species’ ecological niche and potential distribution of 
economically valuable and Rare Endangered and Threat-
ened (RET) plant species under projected climate change 
impacts may help us understand their behaviour under 
altered climatic conditions.

The ecological niche model (ENM) is a statistical 
approximation regarding distribution of a species as 
well as it links their location data to environment varia-
bles by using statistical techniques in order to describe, 
understand, and/or predict the distribution of species 
(Sillero et  al. 2021). ENM’s mathematical outputs can 
be either an equation that relates a species’ predicted 

distribution to a set of environmental predictors, or a 
response curve that explains how the predictors con-
trol species distribution. Further, mathematical model 
can be specialized into a cartographic model, i.e. a 
map showing habitat suitability, probability of species 
occurrence, or the favorability for species occurrence. 
Therefore, ENMs are forecast in the environmental 
space and projected into the geographical space. Vari-
ous disciplines, such as global change biology, bioge-
ography, and conservation management, have adopted 
ENM (Mathur and Mathur 2023).

With presence–absence data, there are two sub-
groups for ENM: regression-based and machine learn-
ing. Generalized linear models (GLM), generalized 
additive models (GAM), and multivariate adaptive 
regression splines (MARS) are examples of regression-
based techniques. Artificial neural network (ANN), 
classification trees (CART), maximum entropy (Max-
ent), genetic algorithm (GARP), and random forest (RF) 
are examples of machine learning algorithms. Pecchi 
et al. (2019) describe these techniques in detail. In sum-
mary, these methods differ in terms of species records 
(absence/presence or presence-only) and the param-
eters used to make predictions (mechanistic-physiolog-
ical constraint or empirical-climatic approach).

Maxent, for example, has grown in popularity since 
its debut (Renner and Warton 2013). Maxent estimates 
a target probability distribution by calculating the prob-
ability distribution of maximum entropy (Phillips et al. 
2006), making it highly applicable to species distribu-
tion modelling (Wang et  al. 2015). Maxent can also 
project shifts in species distributions under different 
climate change scenarios, with topography, soil char-
acteristics, land use, and biological interactions identi-
fied as the main determinants of species distributions 
at different geographical scales (Abolmaali et al. 2017). 
Meanwhile, as a presence-only model, Maxent com-
pares the distribution of presences along environmen-
tal gradients to the distribution of background points 
drawn at random from the study area using a back-
ground sample (Vitor et  al. 2018). In general, Maxent 
(Phillips et  al. 2006) is a promising method for mod-
elling rare species for several reasons: (1) the results 
are robust at sample sizes as small as 10; (2) it consist-
ently outperforms other predictive modelling methods 
in discrimination success (Wisz et  al. 2008); (3) it can 
incorporate categorical environmental data, such as 
soils and geology; and (4) it is a presence-only method 
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that does not require the identification of absence loca-
tions. Maxent generates a continuous output of habitat 
suitability values ranging from 0 to 1, with 0 being the 
least suitable and 1 being the most suitable. This soft-
ware generates robust models if more than 30 occur-
rence points for each species are available (Elith et  al. 
2011). Globally, researchers have looked into the effi-
cient use of the maxent tool for ecological niche mod-
elling of Rare Endangered and Threatened (RET) plant 
species (Buechling and Tobalske 2010; Gogol-Prokurat 
2011; De Queiroz et  al. 2012; Wang et  al. 2015; Cihal 
and Kalab 2017; Salam et al. 2018; McCune et al. 2020 
and Rahaman et al. 2022). These inquests concentrated 
on plant species belonging to the gymnosperm, angio-
sperm, pteridophytes, bryophytes, orchids, fungi, and 
bacteria groups.

The genus Commiphora Jacq. (Burseraceae) contains 
approximately 185 species that are found in tropical 
areas ranging from Africa to Madagascar, Asia, Australia, 
and the Pacific Islands (Barve and Mehta 1993; Kumar 
and Shanker 1982; Lal and Kasera 2010 and Reddy et al. 
2012). C. wightii, C. agallocha, and C. berryi are native to 
India (Lal and Kasera 2010 and Ramawat et al. 2008).

For Commiphora wightii, reproductive isolation, com-
bined with the dominance of apomictic behaviour (asex-
ual mode of reproduction), may have a negative impact 
on genetic variation. Because of the high level of popula-
tion differentiation, the population continuum has been 
disrupted, possibly as a result of overexploitation, unsus-
tainable exploitation, and other anthropogenic activities 
(Reddy et  al. 2012). Furthermore, climatic conditions, 
soil erosion, low rainfall, termite infestation, domestic 
animal overgrazing, and mining activities have all had 
an impact on existing natural populations of this spe-
cies (Haque et al. 2009). These prevalent abiotic factors, 
combined with mass destruction, poor regeneration, and 
non-survival due to poor tapping methods, have resulted 
in a significant setback for plant stands in natural habitats 
(Kulloli et al. 2016). C. wightii was classified as vulnerable 
in 1998 and critically endangered (CR) on The IUCN Red 
List of Threatened Species  under criteria  A2cd  in 2014, 
based on the cumulative effects of these factors and the 
current rate of decline in populations in their native habi-
tats (Ved et al. 2015).

Apart from acknowledging its economic value and 
extinction risks, empirical evidence is required to predict 
the effects of current and future bioclimatic phenomena, 
as well as other geomorphological attributes, on its habi-
tat suitability as well as for its current and projected area 
of occupancy on a larger geographical scale. As a result, 
the current study was designed to answer the following 
questions: (a) What is the relationship between this spe-
cies’ geographical distribution and current bioclimatic 

variables, as well as other factors like soil, slope, land use, 
and habitat heterogeneity (i.e. plant community attrib-
utes)? (b) How will this species react to future bioclimate 
scenarios? (c) How will the interaction of all of these bio-
climatic and non-bioclimatic variables affect its habitat 
suitability? (d) How do the species’ extent of occurrence 
(EOO) and area of occupancy (AOO) relate to its current 
and projected geographical distribution?

Materials and methods
Study species
Commiphora wightii (Arn.) Bhandari is a deciduous 
species also known as "guggal" and "Indian Bdellium" 
that  can grow either erect (Fig.  1A) or spread (Fig.  1B) 
and such branching patterns are valuable morphological 
differentiation among female and male plants along with 
other morphological traits like bark types, leaf and spine 
morphology and petiole architecture (Holscher 2011; 
Kulhari et  al. 2014; Gaur et  al. 2017). Because female 
plants tend to outnumber male plants in nature (Gupta 
et al. 1996), there is less pollen accessible for fertilization. 
Seed germination is stymied by the seed’s stiff endocarp, 
which blocks the entry of water, impairs gas exchange, 
and stunts embryo development. The poor germination 
rate of 1.4% can be attributed to the challenging natural 
conditions (Yadav et al. 1999).

Rajasthan has largest area covering guggal population 
but density is still very poor. Highest density of guggal is 
reported in Sawai Madhopur (≈74 plants ha−1 Fig.  1C) 
and Jhunjhunu (≈69 plants ha−1) districts of Rajasthan 
(Tomar 2021). It has been designated as a priority species 
for research and development by the National Medicinal 
Plant Board, Ministry of Ayush, New Delhi (Kala et  al 
2006). Oleo-gum resin is extracted from the bark of this 
plant and has powerful medicinal properties, particu-
larly in the treatment of arthritis, bronchitis, cholesterol 
reduction, hyperlipidaemia, atherosclerosis, and coro-
nary artery disease (Wu et al. 2002).

Rural residents are aware of its market value and thus 
collect the gum resin by making unscientific cuts in the 
stem (Fig. 1D). In recent years, they have begun to apply 
copper sulphate to the cuts in order to increase yield, 
which may be harmful to the plant (Fig.  1E; Singh and 
Singh 2006). Due to destructive harvesting practices 
and population reduction, the trend of guggul gum col-
lection has declined rapidly in recent years. In Gujarat, 
a key production area, gum resin collection was 30 tons 
in 1963, but it was reduced to 2.42 tons in 1999 (Dixit 
and Rao 2000). The actual demand for guggul gum in 
India is around 1000 tons per year, but production is only 
100 tons. The deficit is filled through imports from the 
Pakistan and Afghanistan, for which India pays approxi-
mately 45 crore rupees per year (Maheshwari 2010). 
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Observations revealed that this species is threatened 
throughout its entire range in Rajasthan and Gujarat 
(Bishoni et al. 2018). It is estimated that within a decade 
or so, the population as a whole has shrunk to less than 
50%, with scattered and dissected subpopulations of few 
mature individuals in each (Parmar 2003; Jain and Nad-
gauda 2013). According to Reddy et al. (2012), C. wightii 
is facing severe conservation threats and extinction risk 
due to overexploitation, narrow range of occurrence, 
small area of occupancy, severe fragmentation of popula-
tions, very low regeneration, and invasion of alien species 
into its habitat.

Species distribution
Distributional records for this species were obtained from 
data repositories such as the Global Biodiversity Infor-
mation Facility (www.​gbif.​org/), Indian Biodiversity Por-
tal (https://​india​biodi​versi​ty.​org/​speci​es/​show/​33318), 
and published literature (Dixit and Rao 2000; Reddy et al. 
2012; Harish et al. 2014; Kulhari et al. 2014; Bishoni et al. 
2018; Saini et  al. 2018; Mathur and Sundaramoorthy 
2019; Choudhary et al. 2021; Verma et al. 2022) as well as 
from our field survey at Sirohi district of Rajasthan (Jin-
dal et al. 2009, 2010). Using high-resolution Google Earth 
satellite image data and GIS ArcMap (Coban et al. 2020) 
software, the coordinates of these points were marked 
on a WGS84 coordinate system. Furthermore, where 
occurrence records were lacking, precise geo-coordinates 
were obtained by using Google Earth (http://​ditu.​google.​
cn/) to determine latitude and longitude values (Xu et al. 

2021). The distributional localities were compiled into a 
CSV database (.csv) using the sources mentioned above.

Bioclimatic (BC) and non‑bioclimatic variables (NBC)
Climate change’s impact on endangered plant species in 
terrestrial ecosystems is complex, and more information 
about potential distribution areas is needed to identify 
and rehabilitate them. Machine learning methods can be 
used to determine the current potential and future distri-
bution of species based on records of point areas where 
species are currently present, as well as digital bioclimatic 
data for these areas (Sarikaya et al. 2018; Wei et al. 2018).

The sixth IPCC assessment report includes four cli-
mate change scenarios known as Shared Socioeconomic 
Pathways (SSPs): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 (Meinshausen et al. 2020). We selected the SSP2-4.5 
scenario, in which greenhouse gas emissions are roughly 
the same as they are now (1970–2000) and global average 
temperature tends to decrease with human intervention. 
The bioclimatic variables used to predict current and 
future distributions, with a spatial resolution of 30 s (~ 1 
km2) were derived from observational data in WorldClim 
ver. 1.4, which is available online at https://​www.​world​
clim.​org/​data/​index.​html (accessed on 21st March 2022).

19 bioclimatic variables (Hijmans et  al. 2005) for cur-
rent as well as three future climatic scenarios (2050 time 
frame that represents the mean values from 2041 to 2060, 
2070 represents the mean values from 2061 to 2080, and 
2090 represents mean values from 2081 to 2100; Coban 
et al. 2020; Ye et al. 2020) were downloaded and clipped 

Fig. 1  C. wightii species. Erect habit (A); spread/bushy habit deciduous in nature (B); plantation for germplasm conservation (C); non-woody stem: 
source of oleo-gum resin (D) and non-scientific tapping for gum extraction lead plant death (E)

http://www.gbif.org/
https://indiabiodiversity.org/species/show/33318
http://ditu.google.cn/
http://ditu.google.cn/
https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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from world data for India at a spatial resolution of 30 arc 
sec (~ 1 × 1  km resolution) and converted to ASCII (or 
ESRI ASCII) in DIVA-GIS version 7.5 (Zhang et al. 2021). 
Table 1 contains information on each bioclimatic param-
eter, including units and mathematical expressions.

Habitat heterogeneity index (HHI)
Because a more heterogeneous area may provide more 
niche space and allow more species to co-exist through 
niche partitioning, niche theory predicts a positive het-
erogeneity-diversity relationship. Tuanmu and Jetz (2015) 
developed 14 metrics to characterize global habitat het-
erogeneity at 1-km resolution based on the textural fea-
tures of enhanced vegetation index (EVI) imagery from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS).

Six first-order and 8 second-order texture measures are 
accessible (http://​www.​earth​env.​org/​textu​re) at 30 arc-
second (~ 1 km at the equator), 2.5 arc-minute (~ 5 km) 
and 12.5 arc-minute (~ 25 km) resolutions. In this study, 
we used 30 arc second data set related to first-order tex-
ture measures (coefficient of variation = normalized dis-
persion of EVI; evenness = evenness of EVI; range = range 
of EVI; Shannon and Simpson Indices = diversity of EVI; 
standard deviation = dispersion of EVI) and to second-
order texture measures (uniformity = orderliness of EVI; 

maximum = dominance of EVI combinations.

Land use
Land use parameters like forest land, GRS (i.e. percent 
share of grass/scrub/woodland) and NVG (i.e. barren/
very sparsely vegetated land) were downloaded from 
https://​www.​fao.​org/​soils-​portal/​soil-​survey/​soil-​maps-​
and-​datab​ases/​harmo​nized-​world-​soil-​datab​ase-​v12/​en/ 
as recommended by Fischer et al. (2008).

Terrain slope and aspect
The global terrain slope and aspect database has been 
compiled using elevation data from the Shuttle Radar 
Topography Mission (SRTM). The SRTM data are publicly 
available as 3 arc second (approximately 90 m resolution at 
the equator) http://​webar​chive.​iiasa.​ac.​at/​Resea​rch/​LUC/​
Exter​nal-​World-​soil-​datab​ase/​HTML/​global-​terra​in-​slope.​
html?​sb=6 (Fischer et al. (2008). In this study we utilized 
following parameters: (Aspect = East: 45° < aspect ≤ 135°; 
North: 0° < aspect ≤ 45° or 315° < aspect ≤ 360; West: 
225° < aspect ≤ 315 and South: 135° < aspect ≤ 225°) 
and Slopes (Slope C1 = 0% ≤ slope ≤ 0.5%; Slope 
C2 = 0.5% ≤ slope ≤ 2%; Slope C3 = 2% ≤ slope ≤ 5%; Slope 
C4 = 5% ≤ slope ≤ 10%; Slope C5 = 10% ≤ slope ≤ 15%; Slope 
C6 = 15% ≤ slope ≤ 30%;  Slope C7 = 30% ≤ slope ≤ 45%; 
Slope C8 = Slope ≥ 45%).

Table 1  Description of predictive bioclimatic variables used in this study (downloaded from WorldClim related to four time frames: 
current, 2050, 2070 and 2090 of Shared Socioeconomic Pathways (SSP2-4.5 scenario)

Code Environmental variables and their abbreviations Scaling factor Unit

BC-1 Annual mean temperature (AMT) 10 °C

BC-2 Mean diurnal range (MeDR) 10 °C

BC-3 Isothermality (BC-2/BC-7) (×100) (Iso) 100 –

BC-4 Temperature seasonality (standard deviation × 100) (TempS) 100 –

BC-5 Max temperature of warmest month (MaTWaM) 10 °C

BC-6 Min temperature of coldest month (MiTCM) 10 °C

BC-7 Temperature annual range (BC-5 – BC-6) (TAR) 10 °C

BC-8 Mean temperature of wettest quarter (MeTWeQ) 10 °C

BC-9 Mean temperature of driest quarter (MeTDQ) 10 °C

BC-10 Mean temperature of warmest quarter (MeTWaQ) 10 °C

BC-11 Mean temperature of coldest quarter (MeTCQ) 10 °C

BC-12 Annual precipitation (AnPr) 1 mm

BC-13 Precipitation of wettest month (PrWeM) 1 mm

BC-14 Precipitation of driest month (PrDM) 100 mm

BC-15 Precipitation seasonality (coefficient of variation) (PrS) 1 Fraction

BC-16 Precipitation of wettest quarter (PrWeQ) 1 mm

BC-17 Precipitation of driest quarter (PrDQ) 1 mm

BC-18 Precipitation of warmest quarter (PrWaQ) 1 mm

BC-19 Precipitation of coldest quarter (PrCQ) 1 mm

http://www.earthenv.org/texture
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/global-terrain-slope.html?sb=6
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/global-terrain-slope.html?sb=6
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/global-terrain-slope.html?sb=6
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Soil qualities
Nutrient availability, rooting conditions, nutrient reten-
tion capacity, oxygen availability to roots, excess salts, 
and toxicity were downloaded and used. Nutrient avail-
ability (as it relates to soil texture, organic carbon, pH, 
and total exchangeable bases), rooting conditions (soil 
textures, bulk density, coarse fragments, vertic soil prop-
erties and soil phases affecting root penetration and soil 
depth and soil volume). Furthermore, rooting condi-
tions include effective soil depth (cm) and effective soil 
volume (vol. percent) in relation to the presence of gravel 
and stoniness. Nutrient retention capacity (soil organic 
carbon, soil texture, bases saturation, cation exchange 
capacity, and clay fraction), oxygen availability to roots 
(soil drainage and soil phases influencing soil drainage), 
excess salts (explains soil salinity, soil sodicity, and soil 
phases influencing salt conditions), and toxicity (calcium 
carbonate and gypsum) were downloaded (Fischer et al. 
2008; https://​www.​fao.​org/​soils-​portal/​data-​hub/​soil-​
mapsd​ataba​ses/​harmo​nized-​world-​soil-​datab​ase-​v12/​
en/).

In this study, we followed the advice of Zhao et  al. 
(2021), who stated that land use, soil, and HHI-related 
parameters are unlikely to change significantly in the 
near future; therefore, we used these NBC in conjunction 
with different bioclimatic time-frame datasets to examine 
the cumulative impacts of both such predictors on the 
habitat suitability of this species.

Data processing
Issue of multicollinearity
The multicollinearity test was used in this study to reduce 
the risk of over-fitting by examining the cross-correlation 
with Pearson Correlation Coefficient (r). Furthermore, 
variables with cross-correlation coefficient values greater 
than 0.85 were excluded stepwise (Pradhan 2016). Niche 
Tool Box (Osorio-Olvera et al. 2020 https://​github.​com/​
luism​urao/​ntbox) was used for this analysis.

One of two highly cross-correlated variables was cho-
sen because it is biologically related to the species and 
provides comfort in model interpretation (Kumar et  al. 
2006; Kumar and Stohlgren 2009; Padalia et al. 2014). In 
this manner, only one variable from each set of highly 
cross-correlated variables (r2 > 0.85) was kept (Ma and 
Sun 2018). In this study, 70% and 30% of the data were 
assigned to model training and validation, respectively 
(Mousazade et al. 2019).

Projection assignment and their transformations
Because the bioclimatic (BC) and non-BC variables 
were obtained from different sources and at different 
resolutions, their projections should be corrected before 
extracting data and predicting the ensemble model. This 

was accomplished in this study through the use of a series 
of steps in ArcMap using ArcToolbox. First, we defined 
the projection in Data Management Tools’ "projection 
and transformation" sub-window. We used the WGS 
1984 EASE Geographic Coordinate System (GCS) for 
this. However, to quantify area under each habitat suit-
ability class (as explained below), the "calculate geom-
etry" window of ArcMap requires a Projected Coordinate 
System (PCS), hence, we converted the projections of 
habitat class raster file to WGS 1984 web Mercator (aux-
iliary sphere-3857). This step allows us  to calculate area 
under specific class with a user-specified unit (we utilized 
square kilometre).

Species distribution modelling
Maxent 3.4.1 software (available at http://​www.​cs.​princ​
eton.​edu/​schap​ire/​Maxent/) was used in this study to 
simulate and predict the potential geographical distri-
bution probability of C. wightii under the current (Rong 
et al. 2019; Mishra et al. 2021) and three future scenarios 
(Coban et al. 2020; Ye et al. 2020). In this paper, we pre-
sented our Maxent output at three different levels: (a) 
non-colinear BC variables (with Current, 2050, 2070, and 
2090 time frames), (b) non-colinear non-bioclimatic vari-
ables, and (c) combination of significant variables related 
to BC and NBC.

During the modelling process, 70% of the distribution 
data samples of C. wightii were randomly selected as 
training data, and 30% of the samples were used as test-
ing data. The number of randomly generated background 
points was set to 10,000 (Zhang et al. 2021). We set the 
regularization multiplier to 0.1 to avoid over-fitting of 
the test data (Phillips and Dudik 2008). Linear, quadratic, 
and hinge properties were employed. For model building, 
a total of 100 runs were planned (Flory et al. 2012). We 
used the Jackknife method in the environment param-
eter settings, and the other parameter settings were set 
to the software default values. Threshold-independent 
receiver operating characteristic (ROC) analyses were 
used to calibrate and validate the robustness of Maxent 
model evaluation, and an area under the receiver operat-
ing curve (AUC) was used to estimate the accuracy of the 
model predictions (Elith et al. 2006). The model’s perfor-
mance was graded as failing (0.5–0.6), poor (0.6–0.7), fair 
(0.7–0.8), good (0.8–0.9), or excellent (0.9–1). AUC val-
ues near one indicate that the model is performing well.

Species’ niche hypervolumes
ENM analysis was performed to better understand the 
behaviour of this species’ hypervolumes in relation to 
various factors. Maxent modelling provides significant 
variable importance for distribution of this species with 
different BC and NBC parameters. For ecological niche 

https://www.fao.org/soils-portal/data-hub/soil-mapsdatabases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-mapsdatabases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-mapsdatabases/harmonized-world-soil-database-v12/en/
https://github.com/luismurao/ntbox
https://github.com/luismurao/ntbox
http://www.cs.princeton.edu/schapire/Maxent/
http://www.cs.princeton.edu/schapire/Maxent/
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analysis, we used the first three most important vari-
ables/contributors from each Maxent analysis. Only NBC 
variables with AUCs greater than 0.80 were taken into 
account. NicheToolBox was used for the ENM (Ntbox 
Osorio-Olvera et  al. 2020). Ntbox is a Graphical User 
Interface (GUI) tool based on the R programming lan-
guage that requires raster output of BC or NBC vari-
ables. Ellipsoidal models were built using the centroid 
and covariance matrix of this species’ environmental val-
ues. From the centroid to each environmental combina-
tion in the study area, Mahalanobis distances (MD) were 
calculated. Suitability values (S) were calculated by con-
structing a multivariate normal distribution from MD; 
S ~ exp(− 0.5 × MD) and assuming that the highest suita-
bility values were closer to the centroid (Nunez-Penichet 
et al. 2021). The application of various regression curves 
was used to assess the relationships between MDs and 
the suitability and projected geographical abundance of 
this species.

Habitat suitability classes
The habitat of C. wightii was divided into four catego-
ries based on values (0 to 1): optimal (0.80 to 1), moder-
ate (0.60 to 0.80), marginal (0.40 to 0.60), and low (0.20 
to 0.40). Area (× 104 km2) under these classes, as well 
as area gain and loss between two time frames (for BC 
variables) were calculated in ArcMap using the raster 
calculator tab (spatial Analyst Tool/Map Algebra/Raster 
Calculator). We also calculated percent changes in mean 
habitat suitability using the formula (Mathur and Sunda-
rmoorthy 2013; Mathur 2014a, b; Kaky and Gilber 2019):

Changes in core distribution centres
The SDM toolbox was used to assess centroid shifting 
between different bioclimatic time frames (Brown and 
Anderson 2014). This tool computes the distributional 
changes between two binary SDMs (current vs. future 
SDMs), producing a table output depicting the predicted 
contraction, expansion, and areas of no change in the dis-
tribution of a given species (Brown et al. 2017).

Niche overlap
In the present day, niche overlap compared the inferred 
and true distributions of suitability scores across geo-
graphic space. The Maxent output in ASCII format 
of each analysis was used to quantify niche overlap 
between two studied parameters (related to BC, NBC, 
and BC + NBC). ENMTools was used to accomplish this 
(Warren et  al. 2010). The purpose of this analysis was 
to visualize the amount of area retained by this species 

(Future−Current)

Current
× 100 .

under various predictions. To represent the ecological 
niche overlap, Schoener’s D (which measures the con-
sistency of niche overlap per pair) and Hellinger’s-based 
I (which measures the degree of overlap of the geo-
graphical distribution) values were used. D and I values 
ranged from 0 to 1. With the increase in the value, the 
ecological niche overlap would be improved (Ahmad 
et  al. 2019). The following classes were used to facili-
tate interpretation of niche overlap based on D values: 
0–0.2 = no or very limited overlap, 0.2–0.4 = low overlap, 
0.4–0.6 = moderate overlap, 0.6–0.8 = high overlap, 0.8–
1.0 = very high overlap (Wan et al. 2017).

Automated conservation assessments
Using our spatially thinned geographical locations, we 
first investigated the current status of C. wightii. We cal-
culated the extent of occurrence (EOO, km2), the area of 
occupancy (AOO, km2), the number of unique occur-
rences, the number of subpopulations, the number of 
locations, the IUCN (2014) threat category according to 
Criterion B, and the IUCN annotation (Category Code) 
using the R programme "ConR" (Dauby et al. 2017; Kass 
et al. 2021). In addition, we performed a similar exercise 
to assess the impact of niche modelling on EOO and 
AOO using the Maxent output for each variable and their 
combinations. Using ArcMap, we convert the ASCII for-
mat into a "XYZ" file. This file was then converted to a 
text file and opened in Microsoft Excel. Because these 
maps are the projected output of an ENM analysis, 
hence to reduce issue of over-fitting we chose only coor-
dinates with up to moderate habitat suitable categories 
for estimation of EOO and AOO using ConR software. 
Such approaches were advocated by Marcer et al. (2013), 
Adhikari et al. (2018) and Marco et al. (2018). Number of 
sub-populations and locations were estimated by stand-
ard methodology as provided by Mathur and Mathur 
(2023).

Results
Data processing and multicollinearity
We were able to extract 268 geographical locations of this 
species from various sources, which were primarily con-
centrated in the Indian states of Rajasthan and Gujarat. 
Using the Spatial Thin window of the R-based Graphical 
User Interface Wallace Software, duplicate records were 
filtered spatially and deleted to keep only one occurrence 
(Kass et al. 2018). Finally, 144 C. wightii presence records 
were obtained in order to construct the ENM.

We use the procedures described by Kumar et  al. 
(2006) and Pradhan (2016) to address the issue of multi-
collinearity in species distribution modelling. Significant 
correlation values (r2) between different variables are pre-
sented in Additional file  1: Fig. S1a (Current), 1b (2050 
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BC), 1c (2070 BC) and 1d (2090 BC). Similarly, correla-
tion analysis for non-bioclimatic parameters, soil, slope 
and aspect, land use and habitat heterogeneity indices are 
presented in Additional file 1: Tables S1–S4, respectively. 
Table 2 shows the variable importance values for biocli-
matic variables related to different climatic time frames 
used for ENM analysis. Furthermore, variables excluded 
due to their significant correlations with other variables 
are denoted in Table 2 with the symbol "×".

Model performances
The area under the receiver operating curve (AUC) was 
used to assess the performance of the Maxent model for 
species distribution prediction. We observed that this 
machine learning tool performs excellently (both for 
training and test data, AUC = 0.9–1.0) with all biocli-
matic time frames (Fig. 2) and for soil, slope, and aspect 
(training data AUC > 0.91) while model qualities were 
good with HHI and land use variables. However, the 
combination of BC + NBC reduced our model’s qualities 
to fair, as their respective AUC values were < 0.81 (Fig. 3).

Table  2 depicts the percent contribution (or vari-
able importance percentage) of various bioclimatic 

variables over different time periods. With the current 
bioclimatic scenario, precipitation of the coldest quarter 
(BC-19, VIP = 49.7), precipitation seasonality (BC-15, 
VIP = 18.1), and maximum temperature of the warmest 
month (BC-5, VIP = 13.8) were identified as most cru-
cial factors for this species, while temperature annual 
range (BC-7, VIP = 0.3) and precipitation of driest month 
(BC-14, VIP = 1.7) were the least effective factors for 
its habitat suitability during this time period. Precipita-
tion seasonality (BC-15, VIP = 55.1) was identified as the 
most important factor for habitat suitability of this spe-
cies with 2050 time frame followed by precipitation in the 
driest quarter (BC-17, VIP = 13.6). Our analysis revealed 
that mean diurnal range (BC-2, VIP = 2.5) and isother-
mality (BC-3, VIP 2.5) will be the least effective factors 
for this species during this time period (Table  2). With 
2070 climatic time frame, we noticed the effective role of 
precipitation of the coldest quarter (BC-19, VIP = 46.9), 
precipitation of the wettest month (BC-13, VIP 14.7) and 
precipitation seasonality (BC-15, VIP 14.1), while mean 
diurnal range, temperature seasonality and annual pre-
cipitation were identified as least effective variables.

With 2090 time frame, we noticed roughly equal con-
tribution of mean temperature of wettest quarter (BC-8, 
VIP 17.6), Isothermality (BC-3, VIP 14.4), and precipi-
tation of wettest quarter (BC-16, VIP = 13.4), while the 
mean temperature of the driest quarter (BC-9, VIP 1.7) 
and precipitation of the driest month (BC-14, VIP 1.7) 
were recognized as least effective factors (Table 2).

Table 3 shows the percent contribution of various non-
bioclimatic variables. Excess salt (which explains soil 
salinity, soil sodicity, and soil phases influencing salt con-
ditions) was the most effective variable (VIP = 75.3) that 
influenced the distribution of this species, followed by 
rotting condition (VIP = 20.3) that revealed the effective 
soil depth (cm) and effective soil volume (vol. percent) 
related to the presence of gravel and stoniness. The least 
effective factors were nutrient and oxygen availability.

Our findings indicated that slope 6 (15% ≤ slope ≤ 30%), 
slope 1 (0% ≤ slope ≤ 0.5%), slope 7 (30% ≤ slope ≤ 45%) 
and slope 2 (0.5% ≤ slope ≤ 2%) had the greatest influence 
among terrain slope and aspect variables, in decreasing 
order. When compared to south and west, the east and 
north aspects were the most influential (Table  3). GRS 
(VIP = 86.5), which denotes the percent share of grass/
scrub/woodland, was identified as the most effective fac-
tor for this species among land use variables (Table  3). 
Similarly, range (VIP = 39.5) was identified as the most 
important variable among habitat heterogeneity vari-
ables, followed by coefficient of variation (VIP = 19.2) 
and maximum (VIP = 18.4), while standard devia-
tion (VIP = 3) and evenness (VIP = 2.5) were the least 
influential.

Table 2  Percentage contribution (or variable importance 
percentage) calculated using four climate time frames

Bioclimatic variables with higher VIP values were then used as predictors 
alongside highly contributed non-bioclimatic variables to establish a link 
between species distribution and their environment

×: variables excluded due to their significant correlations with other variables

Climatic variables VIP of different variables with four climatic 
time frames

Current 2050 2070 2090

AMT 2.9 5.6 1.5 ×
MeDR 3.8 2.5 1.1 ×
Iso 3.6 2.5 2.2 14.4

TempS 2.6 4.8 1.5 ×
MaTWaM 13.8 5.6 2.6 ×
MiTCM 3.5 × × 7.9

TAR​ 0.3 × × 3.4

MeTWeQ × × × 17.6

MeTDQ × × × 1.7

MeTWaQ × × × 12.9

MeTCQ × × × ×
AnPr × × 1.6 ×
PrWeM × × 14.2 4.3

PrDM 1.7 × × 1.7

PrS 18.1 55.1 14.7 3.8

PrWeQ × 3.2 × 13.4

PrDQ × 13.6 2.4 3.3

PrWaQ × 7.3 11.3 5.3

PrCQ 49.7 × 46.9 10.4
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The coefficient of variation is the most influential factor 
for this species across all combination types, according 
to the percent contribution of different variables calcu-
lated with Maxent BC + NBC (Table  4). Its significance 
was greater than 95% when the NBC was combined with 
the current, 2070, and 2090 bioclimatic time frames. 
However, with 2050 + NBC, its percent contribution 
(VIP = 49) to this species’ distribution was shared with 
precipitation seasonality (VIP = 36.8) and rooting condi-
tions (VIP = 6.3).

Response curves illustrating the effects of predictors 
on occurrence probability
Species response curves depict the relationships between 
environmental factors and the likelihood of occurrence 
of a species. They demonstrate target species’ biological 
tolerances and habitat preferences. Response curve dur-
ing current climatic time frames reveal existence of low-
est C. wightii population with low value of precipitation 
of the coldest quarter (Fig. 4a). This bioclimatic variable 
basically provides the total precipitation (mm) during 

Fig. 2  Area under receiver operating characteristics curve (AUC) graphs for model performance (both training and test data set) belongs to four 
bioclimatic (current, 2050; 2070 and 2090) and four non-bioclimatic variables (soil, habitat heterogeneity indices, slope and aspects and land use)

Fig. 3  Area under receiver operating characteristics curve (AUC) graphs for model performance (both training and test data set) belongs to 
combination of bioclimatic and non-bioclimatic variables (soil, habitat heterogeneity indices, slope and aspects and land use)
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the coldest three months of the year. Under prevailing 
climatic scenario, 1–11 mm PrCQ is the threshold value 
for the habitat suitability of this species and we noticed 
subsequent decrease in the predicted value of this species 
with the higher PrCQ.

Precipitation seasonality (BC-15, coefficient of vari-
ation) reflects rainfall variability, with higher percent-
ages indicating greater precipitation variability (Fig. 4b). 
According to our findings, the optimum habitats of this 
species are supported with precipitation with a range of 

140–170  mm and then sharply decreased (Fig.  4b). We 
observed a sharp increase in species response at 38° to 
42  °C during the warmest month (BC-5), and then its 
presence declined sharply (Fig.  4c). Precipitation sea-
sonality (BC-15) was also identified as the most impor-
tant factor during BC-2050, and our findings indicated 
nearly similar trends for this species’ suitability with this 
bioclimatic variable (Fig. 5a). Figure 5b and c shows ROC 
curves for the BC-2050 time frames with precipitation 
of driest quarter (BC-17) and precipitation of warmest 
quarter (BC-18). Analysis revealed that a small amount 
of precipitation (up to 10 mm) during the driest quarter 
facilitates the suitability of this species, while the warm-
est month precipitation (BC-18, up to 200 mm) supports 
this species.

During 2070 BC, we observed that precipitation of 
the coldest quarter (BC-19), precipitation of the wettest 
month (BC-13), and precipitation seasonality (BC-15) 
were the most important influencing factors for this spe-
cies’ suitability. BC-19 exhibited similar trends to those 
observed during the current climatic time frame (Fig. 6a). 
Precipitation in the wettest month supports this spe-
cies and is optimized at 200  mm, remains constant up 
to 400 mm, and then sharply declines (Fig. 6b). Further-
more, the best suitability with precipitation seasonality 
was found to be between 140 and 160 mm (Fig. 6c).

We found that this species was most suitable in 2090 
BC, when the mean temperature of the wettest quarter 
(BC-8) ranged between 10 and 15 °C, and then declined 
(Fig.  7a). The percentage ratio of mean diurnal range/ 
annual temperature range is referred to as isothermal-
ity (i.e. the ratio of mean diurnal temperature range to 
annual temperature range 100). A site with an isother-
mality value of 100 has the same diurnal temperature 
range as the annual temperature range. Values less than 
100 indicate a lower level of diurnal temperature vari-
ability (mean of monthly (maximum–minimum tem-
perature)) compared to yearly temperature variability 
(maximum temperature of warmest month–minimum 
temperature of coldest month).

In this study, we found that isothermality (2090 BC) 
from 0.25 to 0.30 is ideal for this species, and its popu-
lation began to decline but in a rhythmic and consistent 
manner at 22 to 32 (Fig. 7b). Figure 7c depicts the ROC 
curve for the wettest quarter during the 2090 BC time 
frame. The results showed a gradual increase in suitabil-
ity with this climatic parameter up to 290  mm, with a 
peak of suitability at 300 mm (Fig. 7c).

Among the soil quality parameters, excess salt has the 
greatest influence on the occurrence probability of this 
species. The optimum range of this environmental fac-
tor was 0.5 to 3.5 dS/m, and the occurrence significantly 
decreased after that (Fig.  8a). We found that rooting 

Table 3  Percentage contribution (or variable importance 
percentage) of various non-bioclimatic variables

Variables with higher VIP values were then used as predictors alongside highly 
contributed bioclimatic variables to establish a link between species distribution 
and their environment

PC: percent contribution; GRS (percent share of grass/scrub/woodland); NVG 
(barren/very sparsely vegetated land)

Variables PC Variables PC

Soil qualities Land use

Excess salt 75.3 GRS 86.5

Rooting conditions 20.3 Forest cover 7.2

Nutrient availability 3.4 NVG 5.6

Oxygen availability to root 1 Habitat heterogeneity variables

Terrain slope and aspect variables Range 39.5

Slope 6 23.7 Coefficient of variation 19.2

Slope 1 19.2 Maximum 18.4

Slope 7 18.7 Uniformity 11.4

Slope 2 17.9 Shannon diversity 6.1

East aspect 5.1 Standard deviation 3

Slope 4 4.8 Evenness 2.5

Slope 5 3.7

North aspect 2.3

South, West aspect, Slope 3 1.1

Table 4  The percentage contribution (or variable importance 
percentage) of various bioclimatic and non-bioclimatic (NBC) 
variables was calculated by combining the highest VIPs of BC and 
NBC for the respective time frame

Variables with higher VIP values were used to connect species to their 
environment

PC: percent contribution; PrS: precipitation seasonality

Variables PC Variables PC

Current and NBC 2070 and NBC

 Coefficient of variation 95.9  Coefficient of variation 98.4

 Excess salt 3.0  PrS 0.6

2050 and NBC 2090 and NBC

 Coefficient of variation 49.0  Coefficient of variation 95.9

 PrS 36.8  Excess salt 3.0

Rooting conditions 6.3
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Fig. 4  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant bioclimatic predictor during current time frame: a PrCQ, b PrS and c MaTWaM

Fig. 5  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant bioclimatic predictor during 2050 time frame: a PrS, b PrDQ and c PrWaQ

Fig. 6  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant bioclimatic predictor during 2070 time frame: a PrCQ, b PrWeM and c PrS
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conditions ranging from 0.5 to 3.5 were the most suitable 
for this species, and that above this limit, the occurrence 
probability decreased (Fig.  8b). The maximum prob-
ability of occurrence with range textural measure was 
recorded between 350 and 420 (Fig. 9a), while this peak 
was attended at 150–180 with coefficient of variation 
(Fig. 9b) and 100–400 with maximum variable (Fig. 9c). 
With these textural habitat heterogeneity variables, the 
maximum probability of occurrences of this species was 
sharply reduced after exceeding peak values.

Among the land use parameters, the percent share of 
grassland/scrub/woodland (GRS) was the most signifi-
cant variable affecting its occurrence probability, and our 
response curve suggested a maximum probability beyond 
1% and stabilized up to 100% share of GRS (Fig. 10).

This species’ occurrence probability is affected by 
slopes 6, 1, and 7 (Figs. 11a, b, c, respectively). All of these 
variables demonstrated that this species can occur from 
0.5 percent slope (slope 1) to 45 percent slope (slope 7).

Species’ niche hypervolumes
The ecological niche can be viewed as a volume in mul-
tidimensional space, with each dimension describing 
an abiotic condition or biotic resource that a species 
requires. Niche hypervolume was also analysis to bet-
ter understand the behaviour of this species’ hypervol-
umes in relation to various factors. Table  5 shows the 
Mahalanobis distances (MD), suitability, and projected 
geographical abundance of this species. Furthermore, 
we did not conduct this analysis for land use because 
a single individual variable, GRS, demonstrated domi-
nance over other variables (forest cover and NVG) 
with VIP = 86.5. Similarly, we did not include the soil 
variable because there is a significant difference in VIP 
between the first three variables (Table 3). We can cate-
gorize the probability of occurrence as optimal (> 0.80), 
moderate (0.60–0.80), marginal (0.35–0.60), and low 
(0.15–0.30) based on suitability values. Highest suitabil-
ity values were closer to the centroid (Nunez-Penichet 

Fig. 7  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant bioclimatic predictor during 2090 time frame: a MeTWeQ, b Iso and c PrWeQ

Fig. 8  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant soil quality predictors excess salt (a) and rooting conditons (b)
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et al. 2021), and we found a significant negative linear 
relationship between MD and suitability with indi-
vidual BC and NBC (Table 5) as well as with combined 
inclusion of both variables pertains to BC and NBC 
(R2 = 0.97; Additional file  1: Fig. S2). Projected geo-
graphical abundance also revealed significant negative 
power relationship with suitability (Additional file  1: 
Fig. S3) that can be equate as Suitability = 2.07 × Geo-
graphical Abundanceˆ−0.22; R2 = 0.637 (P = 0.01). There 
were no such relationships found between Mahalanobis 
distances and geographical abundance.

In terms of bioclimatic space, C. wightii’s ellipsoidal 
niche had a larger hypervolume (55.41 × 104  °C·mm2) 
during BC-2090, followed by BC-2070 
(11.34 × 103  °C·mm2), and was the smallest during the 
current scenario (29.81 × 101  °C·mm2). Among all BC 
and NBC variables, slopes (75.70 × 106 °C·mm2) and HHI 
(71.83 × 106 °C·mm2) produced the highest hypervolume.

The influence of environmental variables on niche 
dynamics is indicated by their centroid values. Their 
proximity to the centroid indicates that they exert con-
trol over species suitability (Nunez-Penichet et al. 2021). 
Figures  12 and 13 show a graphical representation of 

Fig. 9  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant habitat heterogeneity predictors like range (a) coefficient of variation (b) and maxium (c)

Fig. 10  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant land use predictor GRS (percent share of grassland/scrub/woodland)
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niche hypervolume with studied variables. The blue col-
our represents niche stability, the green colour represents 
niche unfilling (the proportion of the native niche that 
does not overlap with the exotic niche), and the red col-
our represents niche expansion (Ahmed et al. 2019). The 
size of these zones corresponds to the volume of their 
niche. With current BC, this species demonstrated the 
greatest niche expansion from its fundamental niche with 
maximum temperature of the warmest month (BC-5, i.e. 
energy variable), while precipitation seasonality (BC-15, 

water availability), and precipitation of the coldest quar-
ter (BC-19) was identified as a facilitator to maintain its 
fundamental niche areas (Fig.  12). Precipitation season-
ality will be the most important factor for its expansion 
in areas in the future (2050), followed by other water 
availability parameters such as precipitation of the warm-
est quarter (BC-18), while the fundamental niche will be 
operated by precipitation of the driest quarter (BC-17). 
As a result, we can predict that in the future (2050), both 
the establishment of this species in its natural habitat and 
its expansion/dispersal in new areas will be governed 
by water availability (Table  6). Similar water availability 
operating behaviour was observed with BC-2070, where 
BC-19 (PrCQ) will be the controlling factor for its fun-
damental niche and its expansion will be favoured with 
BC-13 (PrWeM) and BC-15 (Fig.  12). Our third future 
bioclimatic projection (BC-2090, Table  6) revealed the 
significance of the energy variable Isothermality (BC-
3) for its fundamental niche, while its expansion will be 
governed by both energy (mean temperature of the wet-
test quarter, BC-8) and water availability (precipitation of 
wettest quarter, BC-16). With NBC, the range of EVI and 
the coefficient of variance of EVI (CV) were identified as 
the most important factors for its expansion into newer 
areas (Fig. 13), while the centroid will be maintained by 
the maximum of EVI (Table 6). The slopes with the great-
est expansion were slopes 1 and 6 (Fig. 13).

Habitat suitability classes
We used the ArcMap tool to interpret Maxent’s ASCII 
output (Raster projection and raster calculation) and 
categorized the probability of occurrence of this species 
into four suitability classifications. Tables 7 and 8 show 
the area (× 104 km2) of each suitability class with differ-
ent bioclimatic and non-bioclimatic variables, as well as 
the combination of BC + NBC. Figure 14 a to d depicts 

Fig. 11  Receiver operating characteristics curve (ROC) illustrating relationship between probability of occurrence of suitable conditions for 
distribution of C. wightii with most significant slope types slope 6 (a), slope 1 (b) and slope 7 (b)

Table 5  Values of ecological niche modelling attributes 
classified under four habitat suitability classes of C. wightii 

C: Current; 50 = 2050; 70 = 2070; 90 = 2090; MD: Mahalanobis distances; Sui: 
suitability and GA: geographical abundance

Variables Optimum Moderate Marginal Low

C-MD 0.25 0.90 1.85 3.36

C-Sui 0.88 0.64 0.40 0.20

C-GA 98.0 273.0 312.0 482.0

50-MD 0.24 0.90 1.84 3.28

50-Sui 0.88 0.64 0.40 0.20

50- GA 62.0 311.0 510.0 699.0

70-MD 0.23 1.00 1.80 3.37

70-Sui 0.89 0.60 0.40 0.19

70-GA 30.0 213.0 438.0 624.0

90-MD 0.25 0.93 1.83 3.40

90-Sui 0.87 0.63 0.40 0.19

90-GA 261.0 994.0 1312.0 2715.0

HHI-MD 0.30 1.15 1.47 3.30

HHI-Sui 0.86 0.66 0.43 0.20

HHI-GA 99.0 1512.0 1856.0 1679.0

Slope-MD 0.26 0.93 1.80 3.25

Slope-Sui 0.87 0.63 0.41 0.21

Slope-GA 745.0 5196.0 5249.0 5268.0
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Fig. 12  Graphical representation of C. wightii niche hypervolume with three most influential bioclimatic variables pertains to four climatic 
projections (current, 2050, 2070 and 2090). The blue colour represents niche stability, the green colour represents niche unfilling (the proportion of 
the native niche that does not overlap with the exotic niche), and the red colour represents niche expansion

Fig. 13  Graphical representation of C. wightii niche hypervolume with three most influential variables pertains to non-bioclimatic predictors 
(habitat heterogeneity and slopes)
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the geographical distribution of different classes. The 
optimal area for this species with individual variables 
was recorded maximum with landuse (104.45 × 104 
km2), whereas the minimum was reported with slope 
and aspect variables (0.066 × 104 km2). Among cli-
matic variables, the highest area under the optimum 
suitability class was documented with a time frame 
of 2090. Maximum (131.56 × 104 km2) and minimum 
(2.124 × 104 km2) areas in the moderate class were 

recorded with HHI and slope variables, respectively 
(Table 7).

With soil quality factors, the maximum marginal area 
(199.35 × 104 km2) was recorded. Maximum low suit-
ability class was recorded with slope and aspect factors 
covering 271.26 × 104 km2 area. HHI has the biggest total 
area (334.47 × 104 km2), followed by soil (311.43 × 104 
km2), land use (293.93 × 104 km2), and slope (277.28 × 104 
km2). Total area includes all suitability classes was lower 

Table 6  Values of centroid of different environmental attributes pertains to various bioclimatic and non-bioclimatic predictors

Values are corresponded to the distance of each predictors from the centre of hypervolume niche of C. wightii

HHI: habitat heterogeneity indices

Environmental variables Current 2050 2070 2090 HHI Slopes

BC-19 4.11 – 4.47 – – –

BC-15 19.26 145.97 160.25 – – –

BC-5 399.32 – – – – –

BC-17 – 3.97 – – – –

BC-18 – 101.68 – – – –

BC-13 – – 409.85 – – –

BC-8 – – – 132.18 – –

BC-3 – – – 94.38 – –

BC-16 – – – 239.32 – –

Range – – – – 4043.69 –

Coefficient of variation – – – – 1729.46 –

Maximum – – – – 300.24 –

Slope 6 – – – – – 737.15

Slope 1 – – – – – 596.44

Slope 7 – – – – – 245.37

Table 7  Area (× 104 km2) of each habitat suitability class with studied bioclimatic and non-bioclimatic variables

Suitability classes Current 2050 2070 2090 HHI Land use Slope Soil

Optimal 8.67 7.73 5.5 10.16 17.34 104.45 0.066 40.62

Moderate 13.62 14.07 10.26 18.87 94.67 131.56 2.124 52.69

Marginal 13.65 18.11 9.58 24.55 120.01 39.89 3.83 199.35

Low 31.02 45.82 17.02 61.13 102.45 18.03 271.26 18.77

Total 66.96 85.73 42.36 114.71 334.47 293.93 277.28 311.43

Table 8  Area (× 104 km2) of each habitat suitability class with studied combinations of bioclimatic variables and non-bioclimatic 
variables (habitat heterogeneity indices + land use + slope + soil)

Suitability classes Current + NBC 2050 + NBC 2070 + NBC 2090 + NBC

Optimal 153.93 137.79 124.72 114.27

Moderate 139.74 155.53 168.38 178.82

Marginal 3.57 3.06 2.75 2.85

Low 3.45 7.5 5.83 6.74

Total 300.69 303.88 301.68 302.68
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with bioclimatic variables than with non-bioclimatic 
variables, with 2090 BC having the highest total area 
(114.71 × 104 km2) and 2070 BC having the lowest 
(42.36 × 104 km2) (Table 7). To limit the complexity and 
text length, we only summarize our results for the opti-
mum and moderate classes. Details of specific sites under 
these suitability classes with different BC time frames 
and NBC are presented in Additional file 1.

Geographical locations of optimum and moderate classes 
within India: bioclimatic variables
With the current bioclimatic situation (Fig.  14a), the 
optimal region for this species is 8.67 × 104 km2, which 
can be divided into four large patches extended at land-
forms includes hilly terrain, sandy hummocks, young 
alluvial plains and saline depressions, while moderate 
areas (13.62 × 104 km2) dominantly located at Gujarat 
state. During the 2050 time frame, the optimum region 
will shrink in comparison to the existing scenario, and 
this suitability class will primarily located in Rajasthan 
state. We observed that greater lands in Gujarat state of 
optimum class were transformed to low suitability class 
(Fig. 14b). With the 2070 time frame, there was an over-
all drop of all suitability classes (Table 7). Optimal loca-
tions for this species seem to shift toward more western 
portions of the India (Fig.  14c). When compared to the 
previous two time periods, several places in Gujarat 

states would lose their optimal habitat. Moderate areas 
with this bioclimatic time frame will be located at hilly 
and young alluvial regions of Gujarat, and sandy areas of 
Rajasthan (Fig. 14c). In 2090, we had the most area in all 
classes compared to the preceding three time periods. 
However, we observed fragmentation of suitability classes 
over this time period (Fig. 14d). The optimum areas were 
identified in following states of India along with habi-
tat types: Tamil Nadu (youngalluvial plain, hilly regions 
and river basin), Andhra Pradesh (YAP, hilly regions and 
river basin), Kerala and Chhattisgarh (hilly areas), Karna-
taka (YAP and hilly region), Telangana (YAP, hilly region, 
sandy beaches), Chhattisgarh (hilly region), Assam 
(YAP), Utter Pradesh, Maharashtra and Jharkhand, Odi-
sha, Madhya Pradesh, Gujarat (YAP and hilly  region), 
Rajasthan (sand dune, YAP and hilly regions). Details of 
specific locations are presented in Additional file 1.

Geographical locations of optimum and moderate classes 
within India: non‑bioclimatic variables
Habitat heterogeneity index
Using this non-bioclimatic variable, our analysis found 
that the entire state of Rajasthan is covered by the opti-
mum and moderate classes of this species (Fig.  15a). 
From North to West, areas with optimum class includes 
districts like Churu, Jhunjhunun, Bikaner, Barmer, Jais-
almer and Jodhpur. At Gujarat, area covers Koddha, 

Fig. 14  Projected habitat suitability classes of C. wightii in India during various bioclimatic projection current (a), 2050 (b), 2070 (c) and 2090 (d)
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Zinzuwada, Hanjiyasar, Malia, Shiikarpur, Vavaniya, 
Nvalakhi. Moderate locations are identified at Kis-
hangarh, Ajmer, Nasirabad, Jaitaran, Bar, Beawar, Bilara, 
Sojat, Marwar Junction, Falna, Sumerur, Siwana, Bagra, 
Diyodar, Tervada, Tharad, Palitana, Damnagar, Gariyad-
har, Piyava, Jesar, Aurangabad, Jalna, Atpad, Pattadakal, 
Badami, Gajendragad, Rona, Holealur, Shalwadi, Nar-
gund, Shalwadi, Hadagali, Navalgund, Annigeri, Mul-
gund, Sita, Chitradurga.

Soil
Soil variable suggested that areas of several districts of 
Rajasthan: Jaisalmer, Barmer, Jodhpur, Bikaner, Nagor, 
Sikar, Sirohi, Mount Abu, Jalore, Pali, Jhunjhunun, Churu, 
Ganganagar, Hanumangarh are optimum and moderately 
suitable for this species (Fig.  15b). Similarly, the entire 
coastal area of Gujarat, including Porbandar, Keshod, 
Madhavpur, Mangrol, Somnath, Kodinar, Talala, Una, 
Timbi, Kovaya, Putwa Bay, Dungar, Datardi, Longadi, 
Bhaguda, Talaja, Tharad, Bhavnagar, Dhotera, Anand, 
Borsad, Kava, Bhadkodara, Gandhar, Dahej, Dandi, 
Hazira, Dumas, Ubhrat, Navsari, Umargam, Dahanu are 
under optimum habitat for this species. Furthermore, 
several locations in Haryana, Punjab, New Delhi (Union 
Territory), Uttar Pradesh, West Bengal, and coastal por-
tions of Andhra Pradesh and Kerala are ideal for this 
species.

Slope and aspect
With these geomorphological features, we observed that 
very few areas fall within the optimum and moderate 

categories. Nearby locations of Abasar (27° 50′ 34.80″ N 
and 74° 30′ 44.36″ E, elevation 319 m), Harasar (27° 50′ 
20.10″ N and 74° 31′ 51.53″ E, elevation 317  m), Ran-
dhisar Pahari (27° 52′ 45.32″ N and 74° 31′ 22.80″ E, ele-
vation 320 m), Nandiya Kalan (26° 44′ 46.79″ N and 73° 
11′ 48.85″ E, elevation 321 m), Sutharo ki Dhani 26° 40′ 
34.66″ N and 73° 12′ 51.89″ E, elevation 278 m), Bhagat ki 
Kothi (CAZRI, 26° 14′ 51.17″ N and 73° 00′ 57.59″ E, ele-
vation 227 m), Vopari (25° 43′ 22.98″ N and 73° 47′ 16.11″ 
E, elevation 325 m), Sarwal (25° 43′ 14.88″ N and 80° 48′ 
08.73″ E, elevation 108 m), Dahargaon (21° 43′ 22.84″ N 
and 78° 19′ 33.37″ E, elevation 691 m), Dharmaram (18° 
27′ 14.74″ N and 78° 41′ 14.89″ E, elevation 450 m) pro-
vide the optimum conditions. With these characteristics, 
the majority of the Indian subcontinent was classified as 
having low appropriateness (Fig. 16a).

Land use
Using this variable, we identified that bigger portions of 
Rajasthan, including districts such as Jaisalmer, Barmer, 
Bikaner, Jodhpur, Pali, Sanchore, Jalore, Sirohi, Hanu-
mangarh, Shri-Ganganagar, Sojat, Churu, Jhunjhunun, 
Ajmer, and Sikar, are best suited for this species. An 
elongated stretch including Nokha, Osian, Balotra, and 
Chautan localities, on the other hand, has moderate suit-
ability  for this species. The entire coastal parts of Guja-
rat, as well as some inland places such as Ahmedabad, 
Radhanpur, Anand, Deesa, Palanpur, and Surat, provide 
ideal habitat for this species. Some districts in Gujarat, 
like as Rajkot and Junagarh, are moderate for this species. 
The majority of Maharashtra state areas are classified as 

Fig. 15  Projected habitat suitability classes of C. wightii in India with non-bioclimatic variables HHI (a) and soil (b)
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Moderate (Fig.  16b). Southern coastal areas of Kerala, 
Karnataka, Tamil Nadu, Andhra Pradesh, and South-
Eastern states like Telangana, Odisha, and West Bengal 
are also ideal habitat. Similarly, a few districts in Uttar 
Pradesh, such as Varanasi, Etowah, Mainpuri, Prayagraj, 
Jhansi, and Rewa, are moderate for this species. Among 
the hilly places, Dharmshala, Manali, Shimla, Dehradun, 
Nanital, and Haldwani have shown the best suitability.

With a combined data set of bioclimatic and non-bio-
climatic variables, we found that the area under optimal 
and moderate classes was greater than the area under 

marginal and low classes (Table  8). The highest area 
under optimal class was recorded with the combination 
of NBC with the current bioclimatic scenario, followed 
by 2050, and the least with 2090, while the contrary ten-
dency was observed for the moderate class, which was 
greatest with 2090 and least with the current scenario. 
This inverse trend equalizes the total area under all BC 
and NBC combinations that ranged from 300.69 to 
302.68 (Fig. 17a–d).

Our analysis of the current combined scenario revealed 
higher optimal areas in western states (including 

Fig. 16  Projected habitat suitability classes of C. wightii in India with non-bioclimatic variables slope (a) and land use (b)

Fig. 17  Projected habitat suitability classes of C. wightii in India with combinations of bioclimatic and non-bioclimatic variables (habitat 
heterogeneity indices + land use + slope + soil), current combination (a), 2050 combination (b), 2070 combination (c) and 2090 combination (d)
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Rajasthan and parts of Gujarat), Western Ghat (Karna-
taka, Kerala), and Eastern Ghat (Tamil Nadu, Andhra 
Pradesh, and Telangana), eastern region (Odessa and 
West Bangel), and some northern regions (including 
Himachal Pradesh, Uttarakhand). As climatic time peri-
ods progressed, we saw a decrease in the intensity of this 
class (Fig. 17a–d). Maximum moderate areas were envi-
sioned with 2090, which covered various states in cen-
tral India as well as northern and western sections of the 
country, notably Gujarat state.

Percent changes in mean habitat suitability
Results of percent changes in mean habitat suitability 
between two bioclimatic time periods are presented in 
Additional file 1: Fig. S4. There was a reduction in opti-
mal suitability class between time frames current–2050 
(− 10.84%), current–2070 (36.56%), and 2050–2070 
(− 28.85%). As a result, the optimum suited zones for 
this species will shrink between now and 2070. However, 
when we examined our data from now to 2090 and 2070–
2090, we found that this class increased by 17.19% and 
84.73%, respectively.

Our findings also demonstrated that the overall per-
cent reduction area for all suitability classes decreased 
between current–2070 and 2050–2070, while we 
recorded an overall increase in area for all classes 
between the bioclimatic time frames of current–2090, 
2050–2090, and 2070–2090 (Additional file  1: Fig. S4). 
The higher percent growth in area of this species across 
all classes between 2070 and 2090 (83.92 to 259.17 per-
cent) demonstrates the resilience acquired by this species 
over specific bioclimatic time frames.

Results of the percent change in suitability class with 
combinations of bioclimatic variables and non-bio-
climatic variables (HHI + land use + slope + soil) are 
depicted in Additional file  1: Fig. S5. We observed an 
overall decrease in the area of the optimum and marginal 
classes with all types of combinations, except for the 
marginal class with 2070 + NBC to 2090 + NBC. Maxi-
mum percent decrease (25.76%) was obtained with Cur-
rent + NBC to 2090 + NBC. In contrast to the optimum 
class, all types of pairings resulted in an overall increase 
in the moderate suitability class. Maximum (27.97%) 
recorded with Current + NBC to 2090 + NBC. Decreas-
ing trends for the low suitability class were observed 
between 2050 + NBC and 2070 + NBC (− 22.27%) and 
2050 + NBC and 2090 + NBC (− 10.13%), whereas 
increasing trends for this class were observed between 
current + NBC and 2050 + NBC (117.39%), cur-
rent + NBC to 2070 + NBC (68.99%), current + NBC to 
2090 + NBC (95.36%), and 2070 + NBC to 20 (15.61%). 
Percent area change (total) likewise demonstrated similar 

tendencies, with 2050 + NBC to 2070 + NBC (− 0.72%) 
and 2050 + NBC to 2090 + NBC (− 0.39%).

Changes in core distribution centres
We employ Maxent output in conjunction with ArcMap’s 
SDM Tool Box to determine the centroid of this spe-
cies, specifically under the optimum class for all biocli-
matic time-frame projections (Additional file 1: Fig. S6). 
Its ideal centroid is currently located in Jalor district of 
Rajasthan state, but it will be relocated to Tharad dis-
trict of Gujarat state 111.11 km distant by 2050. Between 
2050 and 2070, the centre will move 102  km further 
from Tharad in Rajasthan, while its centroid migrated 
83 km from 2070 to 2090 and is now located in Barmer, 
Rajasthan at 72° 28′ E and 26° 15′ N between Balotra and 
Patodi areas.

Niche overlap
The amount of niche retained by this species under 
various projections was visualized using niche overlap 
analysis. To depict the ecological niche overlap, Schoe-
ner’s D (which evaluates the consistency of niche overlap 
per pair) and Hellinger’s-based I (which represents the 
degree of overlap of the geographical distribution) values 
were used. The values of Schoener’s D and Hellinger’s I 
range from 0 to 1, with values closer to 0 indicating a low 
degree of niche overlap and values closer to 1 indicating 
a high degree of niche overlap. Tables 9 and 10 show the 
values of the Schoener’s D and Hellinger’s I indices. High-
est D (0.74) and I (0.94) values were recorded between 
current and 2070 BC, while the lowest values of both 
these indices (0.33 and 0.54) were recorded between Soil-
2050 as well as Soil-2070. Both D and I values are nearly 
identical for the combined data set (Table 11).

Automated conservation assessments
Table 12 depicts the current state of C. wightii as well as 
the impact of niche modelling on EOO and AOO using 
the Maxent algorithm output. EOO and AOO were 
1,170,653 and 480 km2, respectively, with our actual spa-
tially thinned population. However, with the predicted 
current BC, the EOO was lowered to 909,237 km2, while 
the AOO (1540 km2) increased. Among BC and NBC 
variables, the highest EOO (6,007,288 km2) was recorded 
with slope and aspect variable, similarly the highest 
AOO (5244 km2) was recorded with HHI variable. With 
projected variables, lowest EOO (894,197  km2) and 
AOO (744 km2) were recorded with 2070 and 2090 time 
frames, respectively. We found a substantial positive lin-
ear association between spatially thinned population size 
and AOO (Additional file 1: Fig. S7), which can be inter-
preted as follows: Y = 3.998 X, R2 = 0.99.
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Table 9  Niche overlap Schoener’s D values between various bioclimatic and non-bioclimatic variables (individual)

2050 2070 2090 Current HHI Land use Slope

Soil 0.33 0.33 0.39 0.34 0.44 0.69 0.47

2050 – 0.65 0.54 0.74 0.50 0.45 0.65

2070 – – 0.50 0.75 0.42 0.43 0.65

2090 – – – 0.53 0.57 0.54 0.73

Current – – – – 0.49 0.43 0.64

HHI – – – – – 0.70 0.65

Land use – – – – – – 0.49

Table 10  Niche overlap Hellinger’s I values between various bioclimatic and non-bioclimatic variables (individual)

2050 2070 2090 Current HHI Land use Slope

Soil 0.57 0.55 0.62 0.58 0.66 0.89 0.65

2050 – 0.90 0.76 0.93 0.74 0.70 0.77

2070 – – 0.74 0.94 0.71 0.67 0.77

2090 – – – 0.77 0.79 0.78 0.82

Current – – – – 0.76 0.69 0.77

HHI – – – – – 0.89 0.81

Land use – – – – – – 0.68

Table 11  Niche overlap Schoener’s D and Hellinger’s I values between various bioclimatic and non-bioclimatic variables for combined 
data set

Bioclimatic time frames D index (combined) I index (combined)

2050 2070 2090 2050 2070 2090

Current 0.98 0.99 0.99 1.0 1.0 1.0

2050 – 0.99 0.99 – 1.0 1.0

2070 – – 0.98 – – 1.0

Table 12  Population dynamics of C. wightii and IUCN evaluation of extent of occurrence and area of occupancy calculated for both 
real data set and projected data set with BC and NBC variables

Data set types Population size of C. wightii up to moderate 
suitability class (before spatial thinning)

Population size after 
spatially thinning

EOO (km2) AOO (km2)

Real occurrences 144 130 1,170,653 480

Projected current-BC 844 385 909,237 1540

Projected 2050-BC 818 389 1,291,939 1556

Projected 2070-BC 607 290 894,197 1160

Projected 2090-BC 261 186 3,938,063 744

Projected HHI 2589 1311 4,506,402 5244

Projected slope 325 276 6,007,288 1104

Projected land use 34,259 468 4,535,803 1872

Projected soil 13,547 343 4,249,718 1372
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Discussion
Slow growth, poor seed establishment and germina-
tion, lack of cultivation, overharvesting for religious and 
household use (as fuel by rural people), and improper 
tapping for its gum resin by pharmaceutical enterprises 
have likely contributed to C. wightii extinction (Parmer 
2003; Soni 2010; Jain and Nadgauda 2013; Kulhari et al. 
2014; Singhal et al. 2014; Kumar and Kulloli 2017; Saini 
et  al. 2018; Choudhary et  al. 2021; Brindavanam et  al. 
2022). In India, studies identified province based source 
of variation in reproductive (Gupta et  al. 1996; Yadava 
et al. 1999; Prakash et al. 2000; Kasera and Prakash 2005; 
Haque et al. 2009, Yadava 2011; Bishoni et al. 2018; Brin-
davanam et  al. 2022), phenological (Singhal et  al. 2014; 
Samanta et  al. 2016) and morphological (Sinha et  al. 
2012; Tripathi et  al. 2016) traits of  C. wightii. Phytoso-
ciological exploration (Reddy et  al. 2012; Tomar 2013, 
2021; Kulloli et al. 2016; Kumar and Kulloli 2017) of this 
species also revealed the significant impacts of land use 
and landform types on the population density of this spe-
cies. Soil variables (texture, electric conductivity, pH, and 
available phosphorus) in relation to density and diversity 
of this species have been documented by Soni (2010), 
Kulhari et  al. (2012) and Kulloli et  al. (2016). However, 
cause-and-effect relationships between predictors and 
different traits of this species are very limited.

Our research filled scientific gaps concerning C. wightii 
national extent and area of occupancy. This study also 
emphasized the significance of bioclimatic and non-bio-
climatic predictors on this species’ current and future 
fate. Previous phytosociological observations docu-
mented its ecological characteristics primarily in the 
western hot arid and semi-arid parts of the country; 
however, our modelling approach revealed additional 
potential habitat for this species, including regions in 
both the southern and eastern halves of the country. 
In vitro research suggests an improved methodology for 
enhancing natural regeneration, specifically preferring 
plantation with stem cuttings over seeds (Soni 2010). 
Environmental conditions following planting, on the 
other hand, are critical to the success of rehabilitation, 
restoration, and reclamation efforts.

Population Viability Analysis (PVA) is able to pre-
dict a species’ susceptibility in terms of the number of 
years it has left to live under the current environmen-
tal conditions, which can be used to estimate the likely 
remaining life span for a vulnerable plant species under 
the current environmental conditions. However, this 
kind of analysis calls for the gathering of density data 
over a long period of time (more than 20 years, Mathur 
2014a). In the case of C. wightii, the majority of eco-
logical parameters are collected from single field-based 
inventories, whereas other phenological, reproductive, 

and morphological traits of this species were obtained 
through pure field-based investigation or through 
the use of some biotechnological approaches, and the 
results were interpreted based on their collection sites 
(provinces). However, as was already mentioned, PVA 
analysis needs a set of repetitive temporal data to be 
able to predict whether a species will succeed or fail in 
its environment. For C. wightii, this type of data is lack-
ing. Therefore, the most appropriate scientific approach 
for predicting the future of this species as well as the 
role of various predictors is evidence-based conserva-
tion inventories, such as modelling of C. wightii spa-
tial suitability in relation to different climate change 
scenarios and with bottom-up (plant community 
dynamics, slope, and land use type) and top-down (soil 
qualities) factors.

The earth’s temperature has risen over the past 
100 years, and new changes in precipitation patterns are 
anticipated in the future. These changes could directly 
or indirectly affect how species are distributed (Thakur 
et  al. 2022). The species’ phenological and metabolic 
activities may be dynamically affected by changes in tem-
perature and precipitation. Additionally, anthropogenic 
activity and climate change may accelerate the spread of 
pathogens, invasive species, and pests, preventing their 
regrowth and establishment in their natural habitats. 
The impact of bioclimatic variables may be influenced 
by regional biophysical features depending on slope and 
other geographical factors (Austin and van Niel 2011). As 
shown in the current study, understanding the roles of 
the soil, plant community, slope, and land use pattern is 
crucial for enhancing distribution modelling.

The loss of habitat, deforestation, degradation of the 
forest, overexploitation, climate change, and land deg-
radation are just a few of the serious threats that native 
Indian species must contend with (Rajpoot et  al. 2020). 
All of India’s territory, including Himachal Pradesh and 
Uttarakhand in the north, Jharkhand and portions of 
Chhattisgarh in the east, Odisha in the eastern coastal 
regions, and Karnataka and Andhra Pradesh in the south, 
has been studied for climate suitability (Sen et al. 2016a, 
b; Ray et  al. 2018; Sharma et  al. 2018; Bhandari et  al. 
2020). Maxent modelling was employed by research-
ers from the Indian subcontinent to ascertain the sig-
nificance of bioclimatic variables for the distribution of 
Myristica dactyloides, M. fatua, M. malabarica, Knema 
attenuate, and Gymnacranthera canarica (Priti et  al. 
2016), Parthenium hysterophorus (Ahmad et  al. 2019), 
Aristolochia indica (Sarma et al. 2018; Tiwari et al. 2022) 
and Clerodendrum infortunatum (Purohit and Rawat 
2022). On the other hand, similar kinds of scientific 
inventories are incredibly rare for plant species found in 
India’s hot, arid, and semi-arid regions.
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For predicting potential distribution under various cli-
matic conditions, the C. wightii Maxent model produced 
all AUC values greater than 0.940, which was consistent 
with earlier studies on other economically and medici-
nally important species (Remya et al. 2015; Yi et al. 2016; 
Adhikari et  al. 2018; Sharma et  al. 2018). Non-biocli-
matic parameters, with the exception of terrain slope 
and aspect, decreased the accuracy of our model. Addi-
tionally, Maxent accuracy was the lowest across all com-
binations of bioclimatic and non-bioclimatic variables 
(AUC = 0.75 to 0.78). This suggested that predictions for 
this species would be more accurate if they were based 
on either bioclimatic or non-bioclimatic variables; how-
ever, if we wanted to combine these two predictors, our 
model quality would be primarily limited by community 
members and habitat types, such as forest, grassland, or 
shrublands. Even with a model that accurately fits the 
data, a low AUC value may suggest poor discrimination 
between presences and absences, according to West et al. 
(2016). The number of predictors may also be related to 
this decline in AUC values (Li et  al. 2020). Because we 
had fewer variables (non-bioclimatic) to examine than 
bioclimatic variable numbers, this was true for our data 
set. The current study is the first to determine the Max-
ent model’s accuracy at three distinct levels, including the 
sum of individual bioclimatic and non-bioclimatic vari-
ables as well as their combinations. Therefore, our study 
can also add new methodological information for ENM 
analysis of plant species based on such findings.

In arid grazing lands in India, we previously evaluated 
the impact of Prosopis juliflora invasion on the popula-
tion dynamics of C. wightii. We unearthed that C. wightii 
density decreased as P. juliflora density increased (Kumar 
and Mathur 2014). In order to further understand the 
behaviours of such variables, community types and spe-
cies-specific associations ENM modelling for this species 
would be useful.

Our predictions indicated that, with the exception of 
2070, the distribution of C. wightii in potentially suitable 
climates would increase in the order of  2090 > 2050 ≈ 
current, indicating that more suitable habitats are avail-
able for increasing the current population of C. wightii 
through artificial cultivation and will be available for 
future bioclimatic projections of 2050 and 2090. These 
results were in line with earlier research that predicted 
that some locations would experience an improvement in 
the habitat suitability of plant species as a result of cli-
mate change (Gupta et al. 2023).

With our non-bioclimatic variables, we found more 
inter-variable variation for the area under the various 
classes. In the following order, the highest area under 
the optimal class was noted: and land  use > soil qual-
ity > HHI > slope. The tendency was slightly different 

for moderate suitability, with land use coming before 
HHI, soil, and slope. Additionally, the total area (which 
includes all classes) shows various perspectives for HHI, 
land use, soil property, and slope and aspect. The biology 
of this species’ reproduction can also be used to evalu-
ate the aforementioned realization. In general, apom-
ictic species can occupy a wider range of habitats than 
sexual and self-incompatible species because they are 
more independent of pollinator services (Horandl et  al. 
2018). The research by Bishoni et  al. (2018) found that 
genetic variation trends in C. wightii were also corre-
lated with population reproductive behaviour rather than 
geographic location. In contrast to the sexual popula-
tion of Gujarat, particularly that of the Kutchh, Dwarka, 
and Jamnagar areas, which exhibited the highest genetic 
variability, the apomictic Rajasthan populations had 
somewhat lower genetic diversity. They came to the con-
clusion from their RAPD analysis that these particular 
regions can be regarded as the original C. wightii distri-
bution areas from which the species was spread to the 
other regions of Gujarat and Rajasthan. This species may 
have become apomictic due to the prevailing unfavour-
able environmental conditions found in the newly accli-
matized areas. Our findings suggested that less suitable 
areas might also be able to support this species, but some 
human intervention is needed. The slope and aspect 
modification, community members, soil property (excess 
salt and rooting conditions), and finally selection of land 
uses (GRS that denote percent share of grassland/scrub/
woodland) can all be done in accordance with our best-
class values for non-bioclimatic variables (Table 7).

Our Maxent modelling with the fusion of bioclimatic 
and non-bioclimatic variables revealed a clear trend 
regarding the area under different habitat suitability 
classes. This trend implied that with such predictors, 
the optimum  areas for this species will decrease as we 
advance with climatic time frame (current, 2050, 2070, 
and 2090), while the opposite trend was observed for 
moderate suitability. In contrast, the overall area for all 
classes showed roughly equal areas for all BC and NBC 
combinations. This finding contradicts the findings of 
Wei et  al. (2018), who associate the lack of their Max-
ent modelling tendency for Carthamus tinctorius with 
human intervention (Gonzalez-Moreno et al. 2015), envi-
ronmental factor selection (Radosavljevic and Anderson 
2014), and uncertainties associated with IPCC global cli-
mate models (Mcsweeney et al. 2015).

VIP values of various water availability parameters such 
as AnPr, PrWeM, PrDM, PrS, PrWeQ, PrDQ, PrWaQ, 
and PrCQ indicate their controls on C. wightii habitat 
suitability during the current, 2050, and 2070 climatic 
time frames. In contrast, with 2090 projection, energy 
variables such as isothermality and MeTWeQ will be the 
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governing factors for this species (Table 2). Our findings 
using current and 2070 bioclimatic projections revealed 
that, despite having the highest importance value, 
PrCQ can only help C. wightii in the low suitability class 
(Figs. 4a and 6a). As a result, we can conclude that winter 
precipitation (extreme colder conditions) hampered the 
survival of this species during these time frames. Mondal 
et al. (2022) advocate similar findings for ENM analysis of 
other plant species from the Indian region.

According to Goncalves et  al. (2014), the seasonal-
ity of precipitation (i.e. the total precipitation of each 
month and their standard deviation—BC-15) provides a 
measure of the amount of soil water that is available for 
plant growth. This factor was found to be significant dur-
ing the current, 2050, and 2070 climate projections and 
was more suited for C. wightii at a peak between 140 and 
160  mm. Additionally, in future bioclimatic projections, 
precipitation in the warmest quarter (based on data on 
the average temperature and total precipitation for each 
month), in driest quarter (data of total precipitation for 
each month, 2050), in wettest month (total precipitation 
for each month, 2070), and in wettest quarter (2090) also 
suggested the significance of rainfall or water availability 
for the habitat suitability of this species.

Abundant rainfall leads to a significant increase in 
soil water content near the plant, providing an excel-
lent growth environment for C. wightii. However, if the 
rainfall is too much (200  mm), the waterlogging stress 
will lead to the closure of stomata, the decrease of photo-
synthetic capacity and the increase of respiratory energy 
consumption, which is not conducive to the accumula-
tion of organic matter. C. wightii growth pattern, leaf 
production, canopy cover and oleo-gum production 
quality and yields were significantly altered with tem-
poral/seasonal changes (Samanta et  al. 2016). Highest 
gum production was reported with high precipitation 
period, i.e. September and lowest during water stress 
conditions (April to May). From this species, the pro-
duction of economically important gum was physiologi-
cally related with transpiration rate/demand. Observed 
highest quantity when transpiration was low (rainy sea-
son, September) and produce lower resin when extreme 
drought stress occurs during late summer. Thus, for this 
deciduous species, extreme water deficits can ultimately 
lead to a collapse of the carbon allocation to secondary 
metabolism while, favourable soil moisture and plant 
water status critically enhanced physiological function 
which resulted in higher energy status, sap flow and tur-
gor to enable gum oozing (Samanta et al. 2012). Among 
the energy variables, we noticed that the maximum tem-
perature of the warmest month (38–42  °C) during cur-
rent climatic conditions and the mean temperature of the 
wettest quarter (10 and 15  °C) and isothermality (how 

large the day-to-night temperature oscillate relative to 
the summer to winter (annual) oscillations (0.25 to 0.30) 
during 2090 will affect this species’ habitat.

In general, plant growth is hampered by salinity 
because it inhibits water uptake. Moderate salinity has an 
effect on growth and yield; high salinity levels may kill the 
plant. Sodicity causes sodium toxicity and has an impact 
on soil structure, resulting in a massive or coarse colum-
nar structure with low permeability. Conditions indicated 
by saline and sodic phases may affect crop growth and 
yields in addition to soil salinity and sodicity. Further-
more, effective soil depth (cm) and effective soil volume 
(vol. %) are two rooting conditions that are affected by 
the presence of gravel and stoniness. The presence of a 
soil phase may affect rooting conditions by limiting the 
effective rooting depth or decreasing the effective vol-
ume accessible for root penetration. Rooting conditions 
address the various relationships between rooting zone 
soil conditions and crop growth. Rooting condition eval-
uation is important because it provides valuable informa-
tion on the adequacy of foothold (i.e. sufficient soil depth 
for the crop to anchor), available soil volume and pene-
trability of the soil for roots to extract nutrients, space for 
root and tuber crops to expand and economic yield in the 
soil, and the absence of shrinking and swelling properties 
affecting root and tuber crops.

In the present study, soil variables like excess salt and 
rooting conditions, revealed that they only support this 
species up to the moderate class. Our earlier empirical 
study (Kulloli et al. 2016) between soil factor and ecologi-
cal dominance of this species demonstrated that neutral 
soil reaction (neither acidity nor sodicity/salinity) ben-
efited this species. Furthermore, potassium levels in the 
mid-range (200–300 kg/ha) were shown to be most ben-
eficial to C. wightii density and health. The current study 
also demonstrated that textural habitat heterogeneity 
characteristics, such as range coefficient of variance and 
maximum, could support this species at an optimal level 
(Fig.  10a–c). Furthermore, slope and aspect, as well as 
land use variables, promote this species in a comparable 
way. In conclusion, the coefficient of variation obscured 
the effects of bioclimatic variables across all time frames 
when BC + NBC were combined, and these findings 
point to the much greater influence of dispersion of veg-
etation indices.

We modelled the distribution of C. wightii to explain 
its niche stability, proportion of native niche and niche 
expansion, and the likely environmental factors associ-
ated with such distribution in both native (western India) 
and exotic (north-east, central part of India, as well as 
northern and eastern Ghat). In order to simulate both its 
fundamental niche (defined as a species’ capacity to per-
sist and procreate in a wider range of environments when 
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not competing with other species; Franklin 2009) and its 
realized niche (when it is in the presence of other inter-
acting species; Booth 2017), we examined the impact of 
niche modelling on its EOO and AOO. In order to eval-
uate the RET in India and Egypt under climate change, 
Adhikari et al. (2018) and Kaky and Giblbert (2019) have 
previously argued for the inclusion of species distribution 
models and IUCN Red List criteria.

To the best of our knowledge, this is the first study 
into how C. wightii niches overlap. In comparison to 
non-bioclimatic variables, bioclimatic variables had bet-
ter consistency of niche overlap (D) and degree of over-
lap (I). Additionally, it was the smallest variable among 
bioclimatic and non-bioclimatic factors. D and I values 
were nearly identical for the combined bioclimatic and 
non-bioclimatic variables, though. This finding demon-
strated that this species has two distinct types of tenden-
cies for various predictor types. For instance, compared 
to non-bioclimatic predictors, it can share more among 
bioclimatic forecasters. But when both of these predic-
tors are equally potent, this species changes its propen-
sity to retain its niche and displays full niche overlap for 
better survival. Such results have already been reported 
for Paeonia mairei (Chen et  al. 2020), and Betula utilis 
(Hamid et al. 2019).

The Red List Categories and its associated five criteria 
developed by the International Union for Conservation 
of Nature (IUCN) provides an authoritative and compre-
hensive methodology to assess the conservation status 
of species. Red List criterion B, which principally uses 
distribution data, is the most widely used to assess con-
servation status, particularly of plant species. The Crite-
rion B is suitable for estimating conservation status even 
when the distribution of a taxon is only known from geo-
referenced herbarium or museum collections and with 
limited information on local threats and potential contin-
uing decline, and it plays a prominent role in describing 
global trends in extinction risk. Criterion B involves two 
sub-criteria (B1 and B2), which reflect two different kinds 
of geographic range size estimates [sub-criterion B1 is 
based on extent of occurrence (EOO) while B2 is based 
on area of occupancy (AOO)].

Extent of occurrence (EOO) is defined as “the area 
contained within the shortest continuous imaginary 
boundary that can be drawn to encompass all the known, 
inferred or projected sites of present occurrence of a taxon, 
excluding cases of vagrancy”. EOO is generally measured 
by a minimum convex polygon, or convex hull, defined as 
“the smallest polygon in which no internal angle exceeds 
180° and which contains all the sites of occurrence (IUCN 
2010).” AOO differs from EOO as it reflects the fact that 
a taxon will not usually occur all over its EOO, that is, 
there will be areas where the taxon is absent, including 

(unsuitable areas). The AOO will be a function of the 
scale or grid cell size at which it is measured, and which 
should reflect relevant biological aspects of the taxon 
(i.e. AOO = number of occupied cells × area of an indi-
vidual cell). The intent of EOO is to ‘measure the degree 
to which risks from threatening factors are spread spa-
tially across the taxon’s geographic distribution’ (IUCN 
2022), while the primary intent of AOO is ‘as a measure 
of the “insurance effect”, whereby taxa that occur within 
many patches or large patches across a landscape or sea-
scape are “insured” against risks from spatially explicit 
threats (Guillera-Arroita et al. 2015). With B1a + B2a, we 
can classify this species as least concern or near threat-
ened based on our expected EOO and AOO. Our find-
ings contrast those of Reddy et  al. (2012) and Kumar 
and Kulloli (2017), both of whom conducted research in 
Rajasthan State. However, our results are supported with 
study of Khan et  al. (2022) who calculated higher EOO 
and AOO for Pinus gerardiana with bioclimatic and non-
bioclimatic gradients at South Asia (India, Pakistan and 
China). Our anticipated range and area of occurrence 
reflect the possibility of many areas in India where this 
species can be planted and grown.

The current study confirms the findings of previous 
phytosociological investigations by Kumar and Shanker 
(1982), Dixit and Rao (2000), Maheshwari (2010), Mer-
tia et al. (2010), Reddy et al. (2012), Kulloli et al. (2016), 
Kumar and Kulloli (2017), and Tomar et  al. (2021). The 
majority of such research identified rocky substratum 
(shallow, gravelly, infertile soils, mountainous terrains) as 
its preferred niche in both protected and non-protected 
settings. However, in this study, in addition to rocky sites, 
our potential locations also include habitats like sand 
dunes, sandy plains, young alluvial plains, salty areas, and 
so on.

According to agro-climatic classifications of Rajasthan 
and Gujarat (Mall et al. 2016; Mathur and Sundaramoor-
thy 2019), the semi-arid eastern plain (500–700  mm), 
transitional plain of the Luni river basin (300–500 mm), 
and hyper-arid partial irrigated zone (100–350  mm) in 
Rajasthan are the most suitable environments for this 
species. Similar regions in Gujarat state include semi-
arid ones (1000–1500 mm heavy black clayey soils) and 
arid and semi-arid ones (250–500  mm sandy loam to 
sandy soil). This species does not do well in Rajasthan’s 
irrigated northwest plains (100–350 mm), internal drain-
age dry zone (300–500 mm), or flood-prone eastern plain 
(500–700 mm).

We noticed a decline in optimal regions in Gujarat state 
by the year 2050. Additionally, with a climatic time frame 
of 2070, we observed a shift in the optimal class toward 
the western half of India, particularly in the  districts of 
Jaisalmer and Barmer of Rajasthan. We found that most 
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regions of the nation were optimum suited for this spe-
cies during the 2090 climate time frame. According to 
non-bioclimatic factors like soil, this species can be 
found in Rajasthan, Gujarat, as well as several other states 
like Haryana, Punjab, New Delhi, Uttar Pradesh, West 
Bengal, and coastal areas of Andhra Pradesh and Kerala. 
Similar to how HHI variables indicate that Rajasthan and 
Gujarat are the most preferred locations, land use factors 
indicate that this species may also prefer other states like 
Uttar Pradesh and Himachal Pradesh.

Conclusion
In this study, potential C. wightii distribution areas were 
assessed in relation to present, and projected bioclimatic 
conditions as well as non-bioclimatic factors. The ENM 
model’s accuracy increased with bioclimatic variables, 
decreased with non-bioclimatic variables, and was low-
est when both bioclimatic and non-bioclimatic variables 
were present. Within these predictors, we also pinpointed 
the most crucial variables influencing habitat types. 
Based on the calculated area under various suitability 
classes, we can say that C. wightii’s  potentially suitable 
climatic distribution under the optimum and moder-
ate classes would increase under all future bioclimate 
scenarios (2090 > 2050 ≈ current), with the exception 
of 2070, showing that there are more suitable habitats 
available for C. wightii artificial cultivation and will be 
available for future bioclimatic projections of 2050 and 
2090. Additionally, we simulated its dispersal in both its 
native (western India) and exotic  environments (North-
east, Central Part of India as well as northern and eastern 
Ghat). Our niche hypervolume analysis reveals that this 
species has two distinct types of proclivities in relation to 
different predictors. It may be shared more among biocli-
matic forecasters than among non-bioclimatic forecast-
ers, for example. However, when both of these predictors 
are equally powerful, this species shifts its proclivity for 
niche retention and exhibits complete niche overlap for 
enhanced survival. This species also prefers landforms 
other than rocky habitats, such as sand dunes, sandy 
plains, young alluvial plains, saline locations, and so 
on. Based on our findings, we can conclude that the stud-
ied BC and NBC predictors will positively support suit-
able habitats for this species, and that this species will be 
more resilient to the examined predictors. However, as 
we can see in the current situation, human activities will 
ultimately determine how well the new habitats support 
this species in the future.

We also agreed to take a cautious approach because 
we only used bioclimatic data from SSP-4.5 (green-
house gas emissions are similar to current time frame) to 
model this species’ ecological niche. We would be better 
able to grasp this species’ ENM if the assessment used 

additional SSPs, such as 2.6, 6.0, and 8.5 (which, respec-
tively, indicate very little to greatest GHG emission). 
Future research may also take into account the applica-
tion of numerous different machine learning approaches, 
including random forest, support vector machine, artifi-
cial neural networks, and their ensemble methodology.
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