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Abstract 

Background Habitat degradation and flow regime alterations are two of the most prominent and common impact 
factors to freshwater mussel populations. Knowledge of the correlation between freshwater mussel distribution, 
density and habitat characteristics is important for maintaining and restoring their biodiversity and ecological func-
tions. Information on predicting habitat suitability of freshwater mussels is lacking in China. Here, we aimed to analyze 
the correlation between freshwater mussel density and complex hydraulic and physicochemical variables to predict 
habitat suitability.

Results The results showed that four complex hydraulic variables (boundary Reynolds number, critical shear stress, 
bed roughness and mean sediment particle size) and four physicochemical variables (water temperature, chlorophyll-
a, transparency and pH) were key factors for predicting habitat suitability of freshwater mussels. Freshwater mussel 
density was significantly correlated with Froude number, water temperature and chlorophyll-a.

Conclusions Our results confirmed that higher freshwater mussel density would be associated with areas that are 
stable in complex hydraulic and physicochemical variables. These results provide an important insight into the con-
servation of freshwater mussel diversity and their habitat restoration in China and globally.

Keywords Habitat suitability, Freshwater mussel, Complex hydraulic variable, Habitat degradation

Introduction
Freshwater mussels are among the most imperiled animal 
fauna globally (Bogan 2008; Lopes-Lima et al. 2017; Liu 
et al. 2022). Freshwater mussel population declines have 

been attributed to multiple anthropogenic pressures, 
including climate change, invasive species, and habitat 
degradation  (e.g., water pollution, overexploitation, flow 
regime alterations, expansion of agricultural and urban 
landscapes) (Vörösmarty et  al. 2010; Lopes-Lima et  al. 
2017; Böhm et  al. 2021; Liu et  al. 2022). Habitat degra-
dation and flow regime alterations are two of the most 
prominent and common factors influencing freshwater 
mussel populations (Haag 2012). Freshwater mussels pro-
vide important ecosystem services including filtration, 
excretion of nutrients, and biodeposition (Geist 2010; 
Lummer et  al. 2016; Vaughn 2018; Zieritz et  al. 2019). 
Therefore, declines in their population will have negative 
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impacts on the ecological function in freshwater ecosys-
tems (Ilarri et al. 2018).

Freshwater mussels are benthic animals, and interact 
strongly with the water–sediment interface (Lummer 
et al. 2016; Vaughn 2018). As they live partly or wholly in 
the sediments of rivers and lakes, the substrate type has 
an impact on their assemblage structure (Strayer 2008). 
Some species can tolerate a wide range of sediments, 
while others can only occur in certain substrate types 
(Allen and Vaughn 2010; Colle and Callil 2012). Because 
they are sedentary, the dissolved oxygen-deprived habi-
tat is particularly challenging for freshwater mussels. 
Dissolved oxygen for respiration may be the main habi-
tat conditions for maintaining their populations, and 
habitats with low dissolved oxygen availability affect 
freshwater mussel survival (Strayer 2008). Flow is also 
an important driving factor of habitat heterogeneity and 
species distribution (Strayer 2008; Silva and Yalin 2017). 
At low flow, aquatic organisms can be exposed to lower 
dissolved oxygen concentrations, higher water tempera-
tures, and dry environments, while increased flow and 
hydraulics can be equally harmful at high flow (Allen 
and Vaughn 2010; Stoeckl and Geist 2016). Distribution 
and density of freshwater mussels are also influenced by 
changes in flow conditions (Goodding et al. 2019; Stoeckl 
and Geist 2016). Therefore, knowledge of freshwater 
mussel habitat preferences is essential for their effective 
conservation and management (Ferreira-Rodrıguez et al. 
2019).

Knowledge of the correlation between freshwater mus-
sel distribution, density and habitat characteristics are 
important for maintaining and restoring their biodiver-
sity and ecological functions (Haag and Williams 2014; 
Dobler et al. 2019; Smit and Kaeser 2016). Many studies 
have explored the response of freshwater mussel assem-
blage composition to human disturbances, such as flow 
alteration and habitat degradation (Cao et al. 2013; Dan-
iel and Brown 2013; Johnson et al. 2014), which improved 
our knowledge of the effects of environmental change 
on freshwater mussel assemblage. Early studies have 
explored the correlation between freshwater mussel dis-
tribution, density and simple hydraulic variables (e.g., 
depth, current velocity, substrate type) to predict habitat 
suitability (Holland Bartels 1990; Strayer and Ralley 1993; 
Box et al. 2002). However, simple hydraulic variables did 
not reflect the effect of flow on the ecosystem for pre-
dicting habitat suitability (Allen and Vaughn 2010; Lopez 
and Vaughn 2021). Recently, some studies have provided 
evidence that freshwater mussel distribution and density 
was related to complex hydraulic variables (e.g., Froude 
and Reynolds numbers, shear stress and shear veloc-
ity) (Steuer et  al. 2008; Allen and Vaughn 2010; Cao 
et al. 2015; Simeone et al. 2021). For example, low shear 

stress provides hydraulic refuges for freshwater mussels, 
while high shear stress may limit habitat suitability for 
them (Gangloff and Feminella 2007; Steuer et  al. 2008; 
Stoeckl and Geist 2016). Complex hydraulic variables 
were related to flow conditions, which were more robust 
for predicting habitat suitability (Strayer 1999; Steuer 
et al. 2008; Simeone et al. 2021; Lopez and Vaughn 2021). 
Complex hydraulic variables have been used to predict 
habitat suitability in North America and Europe (Allen 
and Vaughn 2010; Steuer et al. 2008; Lopez and Vaughn 
2021).

Information on predicting habitat suitability of fresh-
water mussels is lacking in China, and the correlation 
between freshwater mussel density and physicochemical 
factors have sometimes been reported (Sun et al. 2019). 
Furthermore, there are no studies from China that com-
bine complex hydraulic variables and physicochemical 
variables to analyze the effect of these changes on mussel 
density. This is of great concern because the habitats of 
Chinese basins have been modified by multiple anthro-
pogenic pressures, including climate change, habitat loss 
and degradation, water pollution, flow regime alterations, 
expansion of agricultural and urban landscapes (Liu et al. 
2020; Böhm et al. 2021; Liu et al. 2022). Many freshwa-
ter mussel populations have been extirpated or greatly 
reduced because of these negative impacts on habi-
tats (Shu et  al. 2009; Liu et  al. 2020, 2022). In addition, 
information on the correlation between freshwater mus-
sel distribution, density and habitat characteristic has 
been developed on streams or rivers (Allen and Vaughn 
2010; Steuer et al. 2008; Simeone et al. 2021; Lopez and 
Vaughn 2021), whereas floodplain lakes have received 
much less attention. Floodplain lakes are environmental 
and fluvial systems with variable properties that create 
complex habitat, which contain unique biota, including 
rare and highly specialized species with high conserva-
tion value, and provide important ecosystem services 
(Ward et al. 1999; Amoros and Bornette 2002; Schindler 
et  al. 2014). Hydraulic and physicochemical conditions 
available to biota in floodplain lakes may be more diverse 
than smaller systems. For example, change of water level 
and water flow in floodplain lakes was more diverse than 
smaller systems (Li et al. 2019). Some freshwater mussels 
may track water levels closely, moving shoreward dur-
ing high water elevation and retreating to deeper water 
as water levels recede (Allen and Vaughn 2010; Gough 
et al. 2012). This movement behavior may reduce mortal-
ity because it can allow mussels to avoid emersion during 
times of receding water levels (Allen and Vaughn 2010). 
Therefore, floodplain lakes are good community systems 
to study the correlation between community composition 
and environmental variables. Historically, they are more 
likely hydraulically and physiochemically stable than 
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smaller systems, but these conditions have been altered 
in China by multiple anthropogenic pressures (Liu et al. 
2022). Poyang Lake is the largest floodplain lakes with 
~ 50% of the endemic freshwater mussel species in China 
(Wu et  al. 2000; Shu et  al. 2009; Xiong et  al. 2012; Liu 
et al. 2020). Poyang Lake is also a dynamic wetland sys-
tem, covering an expansive area in the rainy season and a 
low water level in the dry season, and has diverse hydrau-
lic and physicochemical conditions (Li et al. 2019). Here, 
we aimed to analyze the correlation between freshwater 
mussel density and complex hydraulic and physicochemi-
cal variables to predict habitat suitability. We hypoth-
esized that the freshwater mussel density would exhibit 
significant spatial differences, where they were correlated 
with Froude number, water temperature and chloro-
phyll-a, and higher freshwater mussel density would be 
associated with complex hydraulic and physicochemical 
variables. This study provides an important reference for 
the conservation of freshwater mussel diversity and res-
toration of freshwater ecosystem in China and globally.

Methods
Study area
Poyang Lake (28° 22′–29° 45′ N, 115° 47′–116° 45′ E), the 
largest floodplain lake in China, is located in the middle 
reach of the Yangtze River and northern Jiangxi Province 
with a total area of 162,200  km2 and an average annual 
precipitation of 1350–2150  mm (Li et  al. 2019; Fig.  1). 
Poyang Lake is interconnected river–lake–wetland sys-
tem, fed by five rivers, including Gan River, Fu River, Xiu 
River, Xin River and Rao River. The fluctuations of water 
level in Poyang Lake exhibit significant seasonal change, 
which have the lowest surface area during dry season 
(146  km2) and the highest surface area during wet season 
(2993  km2; Wu et al. 2019; Li et al. 2019).

Sampling areas were selected in the Poyang Lake based 
on considering different geomorphic units, environmen-
tal conditions (complex hydraulic and physicochemical 
variables), spatial distribution and sampling processes 
(for details, see Tables 1, 2; Li et al. 2019; Simeone et al. 
2021; Wang et al. 2021). A total of 17 sampling sites were 
established across four different sampling areas with 
unique habitat characteristics. There was a significant 
difference in complex hydraulic and physicochemical var-
iables among different habitats (ANOVA, p < 0.05). Sam-
pling areas were established as follows: (a) M1 included 
the lake outflow into the Yangtze River (3 sampling sites); 
(b) M2 included the connected river channel of Poyang 
Lake (3 sampling sites); (c) M3 included the main lake 
area of Poyang Lake (7 sampling sites); (d) M4 included 
the mouths of the rivers meeting Poyang Lake (4 sam-
pling sites) (Fig. 1).

Sampling methods
Freshwater mussel surveys were mainly conducted in 
April, July, and October 2019 and January 2020 (Addi-
tional file 1: Table S1). Four replicate surveys were con-
ducted of each site. We used homemade mussel rakes 
(60 cm wide, 20 mm mesh, rake tooth spacing 15 mm) to 
collect freshwater mussel samples across the survey site. 
The homemade mussel rakes were thrown into the water 
and dragged 50  m with slow uniform speed by a boat. 
The sampling area (30  m2) was obtained by multiplying 
the mussel rake mouth width (15  mm) by the dragging 
distance (50 m). Freshwater mussel samples were poured 
into a white porcelain container then sorted. Freshwater 
mussel specimens were then identified and counted. Tax-
onomic levels of freshwater mussel were mainly based on 
Liu et al. (1979), He and Zhuang (2013), Liu et al. (2022), 
MolluscaBase (https:// mollu scaba se. org/ index. php) and 
Graf and Cummings (2022).

Measurement of hydraulic variables and physicochemical 
factors
The data set of physicochemical factors were obtained 
from Lu et al. (2021). The hydraulic variables and physic-
ochemical factors were measured on the same day mussel 
surveys took place in April, July, and October 2019 and 
January 2020 (Additional file 1: Table S1). We calculated 
a number of lake descriptors for each sampling areas, 
including: dissolved oxygen (DO; mg/L), hydrogen ions 
(pH), salinity (Sal; mg/L), turbidity (TURB; NTU), and 
water temperature (T; °C), chlorophyll-a (Chl-a; mg/L), 
water velocity (V; m/s), water depth (WD; m), Total 
nitrogen (TN; mg/L) and total phosphorus (TP; mg/L) 
(Table  3). The substrate samples were collected using 
a modified Petersen grab (area of 1/16  m2), which were 
then bagged and shipped to the laboratory. The substrate 
samples in the laboratory were first oven-dried at 105 °C 
for 24 h (Gordon et al. 2004). The substrate samples were 
sieved using mesh sieves and laser diffraction particle 
size analyzer (LS13320; for details see Table 1). The com-
plex hydraulic variables were calculated according to the 
value of complex hydraulic variables in Table 2 and for-
mula in Table 3.

Data analysis
To predict habitat suitability of freshwater mussels, a 
Random Forest Model (RMRF) was used to assess the 
correlation between density and complex hydraulic and 
physicochemical variables in the randomForest package 
(Liaw and Wiener 2002) in GNU R 4.0.1 (R Core Team 
2020). The repeated measures random forest (RMRF) 
was used to consider the possible independence and 
potential pseudo-duplication of randomly selected 

https://molluscabase.org/index.php
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replicates within each sampling areas (Calhoun et  al. 
2021). The raw data of freshwater mussel density was log 
transformed by log (x + 1) transformation (Simeone et al. 
2021). We overtrained the model by guiding the selection 
of sub-samples from the entire data set by bootstrapping 
(Simeone et  al. 2021). We then ran the training model 
step-by-step to increase the number of predictors used 

for group splitting (mtry functions; Liaw and Wiener 
2002; Simeone et  al. 2021). The following settings were 
tested: mtry = 1 to 8 for physicochemical variables and 
mtry = 1 to 9 for hydraulic variables. These models were 
ran five times using different random seeds (ntree func-
tion = 200, 400, 600, 800 and 1000) at each level of mtry. 
Observations not included in the bootstrap subsample 

Fig. 1 Map showing the study area in Poyang Lake, China
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Table 1 Habitat stability, sediment composition, particle size and water flow velocity in four habitats, Poyang Lake

Habitat stability Sediment classification Grain size range (mm) Water flow 
velocity (m/s)

Poyang Lake outflow with Yangtze River M1 Unstable Clay to fine gravel < 0.005, 0.005–10 0.36 ± 0.07

Connected river channel of Poyang Lake M2 Stable Clay to giant sand < 0.005, 0.005–2 0.25 ± 0.03

Main lake area of Poyang Lake M3 Stable Clay to fine gravel < 0.005, 0.005–10 0.20 ± 0.02

Mouths of the rivers meeting Poyang Lake M4 Stable Clay to fine gravel < 0.005, 0.005–10 0.20 ± 0.03

Table 2 Mean value and the one-way analysis of variance (ANOVA) of complex hydraulic variables and physicochemical factors in four 
habitats, Poyang Lake

Significant results are in bold (*p < 0.05; **p < 0.01, ***p < 0.001)

Complex hydraulic variables

D (mm) So ks (mm) Fr Re Re* V (m/s) Τ (N/m2) τc (N/m2)

M1 0.053 ± 0.010 5.67 ± 0.04 0.089 ± 0.019 0.056 ± 0.014 160,156 ± 38,172 0.039 ± 0.007 0.009 ± 0.002 0.117 ± 0.043 0.027 ± 0.006

M2 0.023 ± 0.001 5.30 ± 0.11 0.030 ± 0.002 0.036 ± 0.006 160,037 ± 20,397 0.010 ± 0.002 0.005 ± 0.001 0.050 ± 0.010 0.009 ± 0.001

M3 0.048 ± 0.008 4.70 ± 0.16 0.090 ± 0.007 0.047 ± 0.007 75,131 ± 14,103 0.029 ± 0.004 0.006 ± 0.001 0.044 ± 0.011 0.027 ± 0.002

M4 0.290 ± 0.015 2.50 ± 0.13 0.515 ± 0.034 0.090 ± 0.033 101,029 ± 20,228 0.192 ± 0.030 0.006 ± 0.001 0.051 ± 0.013 0.153 ± 0.010

F 119.797 79.303 141.683 1.793 4.107 30.936 2.074 2.663 140.841

p 0.000*** 0.000*** 0.000*** 0.157 0.010** 0.000*** 0.112 0.050* 0.000***

Physicochemical factors

WD (m) SD (cm) T (℃) DO (mg/L) Chl-a (mg/L) pH TN (mg/L) TP (mg/L)

M1 9.4 ± 1.4 48.4 ± 6.2 19.3 ± 1.9 98.6 ± 1.6 7.3 ± 2.1 7.2 ± 0.1 2.01 ± 0.05 0.146 ± 0.023

M2 9.3 ± 0.8 48.9 ± 4.6 19.1 ± 1.9 98.8 ± 1.6 9.2 ± 2.7 7.0 ± 0.1 2.05 ± 0.06 0.165 ± 0.012

M3 6.8 ± 0.7 46.2 ± 3.4 20.0 ± 1.3 96.2 ± 3.4 8.5 ± 1.7 6.7 ± 0.1 1.87 ± 0.06 0.135 ± 0.006

M4 5.8 ± 1.1 52.8 ± 5.8 21.0 ± 1.9 100.7 ± 5.9 10.9 ± 2.6 7.1 ± 0.1 2.18 ± 0.07 0.161 ± 0.013

F 2.787 0.164 1.034 4.744 0.095 10.246 10.013 1.097

p 0.048* 0.920 0.384 0.005** 0.962 0.000*** 0.000*** 0.357

Table 3 Calculation of complex hydraulic variables for four habitats in Poyang Lake

D = the substrate size in the sample (mm), d = water depth (m), φ = phi unit size of the substrate size (φ =  −  log2D [mm]); φx = percentage of substrate with particle 
size x in the sample, U = average velocity (m/s), g = acceleration of gravity (9.8 m/s), v = dynamic viscosity of water (0.0000176 m/s), ρ = density of water (996 kg/m3, 
average temperature 28 ℃), ρs = density of substrate (2730 kg/s), θc = masking parameter (0.035) (Gordon et al. 2004)

Complex hydraulic variables Formula Description

Substrate variables

 D (mm) Laser diffraction particle size 
analyzer

Mean particle size

 Sorting index (So, unitless) ϕ84−ϕ16

2
Substrate heterogeneity

 Bed roughness (ks, mm) 2 ×D50 Topographical variation of river bed

Hydraulic variables

 Froude number (Fr, unitless) U2

gd
Ratio of inertial to gravitational forces

 Reynolds number (Re, unitless) ud
v

Turbulence of free flow

 Boundary Reynolds number  (Re*, unitless) Uks
v

Near-bed turbulence

 Shear velocity (V, m/s)
√

τ

ρ

Friction velocity

 Shear stress (τ, N/m2) ρ (u*
2) Force of friction on substrate

 Critical shear stress (τc, N/m2) θcgD50 (ρs–ρ) Shear stress required to initiate substrate motion
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were defined as out-of-bag (oob) samples and used to 
create oob estimates for generalized errors in the model 
(Breiman 2001; Simeone et al. 2021). The optimal num-
ber of mtry was selected from the forest with the least 
generalized error for the final model (Breiman 2001; 
Liaw and Wiener 2002). We evaluated the relationship 
between the predictor and the response variable using 
the increase in mean standard error (MSE, Breiman 2001; 
Liaw and Wiener 2002).

One-way analysis of variance (ANOVA) performed by 
the SPSS 22.0 was used to test for significant differences 
(*: p < 0.05; **: p < 0.01;  ***: p < 0.001) between density, 
complex hydraulic and physicochemical variables among 
each sampling site. The post hoc tests was used to make 
further comparisons, Tukey’s honestly significant differ-
ence test was used to compare group means, but in cases 
of persistent heteroscedasticity we used Welch tests. 
Nonmetric multidimensional scaling (NMDS) ordina-
tion plots and the Bray–Curtis index were used to assess 
the variation in the freshwater mussel density among 
sampling sites. Permutational multivariate analysis of 
variance (PERMANOVA) was used to determine the sig-
nificance of differences in the density of freshwater mus-
sels among sampling sites. Heat map analysis was used to 
analyze the significance of the correlations between the 
freshwater mussel species density and complex hydrau-
lic and physicochemical variables and t tests were used 
to analyze significant difference for these correlations. 
Redundancy analysis (RDA) was used to analyze the cor-
relations between the freshwater mussel species density 
and complex hydraulic and physicochemical variables. 
The NMDS ordination plots, Bray–Curtis index, PER-
MANOVA and heat map analysis were performed in R 
4.0.1 (R Core Team 2020) using the VEGAN (Oksanen 
et  al. 2015). CANOCO Version 4.5 (ter Braak and Ver-
donschot 1995) were used to perform RDA.

Results
Freshwater mussel density in different habitats
There was a significant difference in freshwater mussel 
density among different sampling areas that contained 
unique habitat characteristics (ANOVA, Fdf1,df2 = 3.481, 
p = 0.016). The freshwater mussel density in M3 was the 
highest, followed by M2, the density in M4 was the low-
est (Fig. 2a). The species with the highest density in M1 
and M2 was Lanceolaria lanceolata (Fig.  2b). The spe-
cies with the highest density in M3 and M4 was Nodu-
laria douglasiae and Lamprotula caveata, respectively 
(Fig.  2b). The NMDS plot showed that there were two 
different groups of sites, and the structure of freshwater 
mussel community exhibited significantly spatial change 

based on the result of PERMANOVA test (F = 2.098, 
p = 0.014 < 0.05; Fig. 3).

Habitat suitability for freshwater mussels in Poyang Lake 
based on hydraulic and physicochemical variables
The final RMRF hydraulic and physicochemical model to 
predict suitable habitats explained 84% and 90% of the 
total variance for freshwater mussels, and the oob gen-
eralized error was 0.21 and 0.19, respectively (Table  4), 
which indicated predictive ability for these models. The 
first four predictors ranked were both the key predictors 
for hydraulic and physicochemical model of freshwater 
mussels (Table 4). There was a significant difference in D, 
sorting index, bed roughness, Reynolds number, bound-
ary Reynolds number, shear stress, critical shear stress, 
water depth, dissolved oxygen, hydrogen ions, water 
temperature and total nitrogen among different habitats 
(Table  2). The boundary Reynolds number (Re*), bed 
roughness (ks), water temperature, pH and transparency 
in different habitats ranged from 0.01 to 0.09, 0.1 to 0.5, 9 
to 28, 5.2 to 8.0 and 20 to 100, respectively, and freshwa-
ter mussel density generally decreased for all of these var-
iables (Fig. 4). The critical shear stress range (τc) ranged 
from 0.015 to 0.080, showing a bimodal trend, with the 
highest mussel density in 0.015–0.025 and 0.006–0.008 
(Fig. 4). The mean sediment particle size (D) ranged from 
0.025 to 0.25, showing a unimodal trend, with the high-
est density in 0.025–0.1 (Fig. 4). The chlorophyll-a ranged 
from 2.5 to 30.0, and freshwater mussel density generally 
increased for all of these variables (Fig.  4). Freshwater 
mussel species were absent in the habitats measured out-
side of these habitat measurement ranges.

The correlation between the density of each freshwater 
mussel species and complex hydraulic and physiochemical 
variables
For complex hydraulic variables, the freshwater mussel 
density was significantly correlated with Froude number 
based on heat map analysis (t tests, p < 0.05; Fig.  5a). In 
addition, Sinosolenaia oleivora was significantly nega-
tively correlated with Reynolds number. Lepidodesma 
languilati and Lanceolaria lanceolata were both sig-
nificantly positively correlated with substrate index 
(Fig.  5a). Sinohyriopsis cumingii was significantly nega-
tively correlated with boundary Reynolds number and 
Froude number (Fig. 5a). For physicochemical variables, 
the freshwater mussel density was significantly posi-
tively correlated with chlorophyll-a and negatively cor-
related with water temperature and based on heat map 
analysis (Fig. 5c). Lamprotula leaii was also significantly 
correlated with water depth and total nitrogen (Fig. 5c). 
Anemina arcaeformis and Sinohyriopsis cumingii were 
also significantly correlated with total nitrogen (Fig. 5c). 
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Fig. 2 Mean density of freshwater mussels (a) and species density (b) in different habitats, Poyang Lake
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Nodularia douglasiae and Lanceolaria lanceolata were 
also significantly correlated with water depth (Fig.  5c). 
Sinosolenaia oleivora was significantly correlated with 
transparency, total nitrogen and total phosphorus 

(Fig. 5c). The redundancy analysis (RDA) showed a simi-
lar pattern of correlation to the heat map analysis of 
complex hydraulic and physicochemical variables, with 
freshwater mussel density being significantly correlated 
with Froude number, sorting index, water temperature 
and chlorophyll-a (Fig. 5b, d).

Discussion
This study was one of the first to analyze the correla-
tion between freshwater mussel density and complex 
hydraulic and physicochemical variables to predict habi-
tat suitability in the floodplain lake, China. Our results 
clearly showed that freshwater mussel density would be 
associated with complex hydraulic and physicochemical 
variables.

Many previous studies estimated the relationship 
between hydraulic variables and freshwater mussel density, 
but the relationship between complex hydraulic variables 
and freshwater mussel density explained more community 
variability than did simple hydraulic variables (Steuer et al. 
2008; Allen and Vaughn 2010; Simeone et al. 2021). Sim-
ple hydraulic variables, such as current velocity and sub-
strate type, did not reflect the real impact on flow, so they 
produced weak predictions for the identification of these 
habitats (Hardison and Layzer 2001; Allen and Vaughn 

Fig. 3 Non-metric multidimensional scaling (NMDS) ordination for 
the community structure of freshwater mussels in Poyang Lake

Table 4 Random forest importance ranking of four habitat hydraulic variables and physicochemical factors on freshwater mussel 
density in Poyang Lake

The ranking is based on the magnitude of MSE% value of freshwater mussel density

Rank Hydraulic predictors % 
increase 
in MSE

1 Re* (unitless) 8.5

2 τc (N/m2) 6.5

3 ks (mm) 6.0

4 D (mm) 6.0

5 Fr (unitless) 5.9

6 τ (N/m2) 3.5

7 So (unitless) 3.3

8 V (m/s) 2.9

9 Re (unitless) 2.7

Rank Physicochemical factors % 
increase 
in MSE

1 T (℃) 8.2

2 Chl-a (mg/L) 5.4

3 SD (cm) 3.4

4 pH (unitless) 4.0

5 TN (mg/L) 1.6

6 DO (%) 1.6

7 TP (mg/L) 1.5

8 WD (m) − 0.2
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2010). Complex hydraulic conditions can be more impor-
tant factors for the habitat suitability of freshwater mus-
sels (Allen and Vaughn 2010), due to the fact they may 
change with flow conditions (Morales et al. 2006; Newton 
et  al. 2008; Drew et  al. 2018). Some studies have showed 
the upper limit of near-bed complex hydraulic conditions 
as an important predictor of mussel distribution (Steuer 
et al. 2008; Allen and Vaughn 2010; Simeone et al. 2021). 
Our results showed that four hydraulic variables (boundary 
Reynolds number, critical shear stress, bed roughness and 
mean sediment particle size) were key factors for predict-
ing suitable habitats of freshwater mussels, which indicated 
habitats with low hydrodynamic energy were more suitable 
for many freshwater mussels. Freshwater mussel density 
was usually the highest in the low flow period, while those 
habitats with low hydrodynamic energy in the high flow 
period were more likely to provide shelter habitats for mus-
sels (Simeone et al. 2021). The hydrodynamic conditions in 
this study area were different (Li et al. 2019). For example, 
M2 was located in the inside shoreline bend of the lake and 
maintained a lower hydrodynamic condition and substrate 
stability in the high flow period, which provided shelter 
habitat for the survival of freshwater mussels (Hegeman 
et al. 2014; Simeone et al. 2018; Quinlan et al. 2015). M3 
was located in the lake area and had low hydrodynamic 
energy and substrate stability, which may increase the sur-
vival of many freshwater mussels.

Habitat stability was positively correlated with freshwa-
ter mussel density, confirming similar studies in rivers or 
streams (Zigler et al. 2008; Randklev et al. 2019; Steuer et al. 
2008; Simeone et al. 2021). Habitats with stable substrates 
are more likely to provide shelter for many freshwater mus-
sels (Wilson et  al. 2011; Mansur and Pereira 2006), and 
our studies confirmed that this view is an important factor 
for the survival of freshwater mussels in Poyang Lake. The 
shear stress is strongly correlated with the habitat stability. 
Low shear stress may provide a hydraulic shelter for fresh-
water mussels, while high shear stress may limit the habi-
tat suitability of them (Gangloff and Feminella 2007; Steuer 
et  al. 2008; Stoeckl and Geist 2016). In addition, habitat 
stability was associated with Froude number and Reynolds 
number (Simeone et al. 2021), because Froude number and 
Reynolds number are good predictors of habitat stabil-
ity and describe flow conditions (Gordon et al. 2004). Our 
results also confirmed that boundary Reynolds number 
and critical shear stress were key factors for predicting suit-
able habitats of freshwater mussels. At the same time, the 

freshwater mussel density was significantly correlated with 
Froude number in this study.

The spatial difference and the complexity of habitat char-
acteristics affected the community structure of freshwater 
mussels (Haag 2012). Many studies showed that the com-
plex habitat heterogeneity had higher diversity of fresh-
water mussels (Daniel and Brown 2014; Sun et  al. 2019). 
This study showed that the community structure of fresh-
water mussels in Poyang Lake showed spatial differences. 
Freshwater mussels are sensitive to environmental change, 
and  species with stronger adaptability to environmental 
change may become dominant (Bogan 2008; Vaughn 2018). 
Information on the correlation between freshwater mus-
sels and habitat characteristics is considered as the key way 
to protect endangered freshwater mussels (Williams et al. 
1993; Vaughn 2018; Lopez and Vaughn 2021), and we may 
apply that information to make decisions involving habi-
tat management. The habitat characteristics of freshwater 
mussels are different (Vaughn 2018). For example, species 
within Nodularia and Sinanodonta have extensive habitats 
in lakes, rivers, reservoirs and ponds with mud substrates, 
while species within Aculamprotula and Sinosolenaia pre-
fer habitats with rapid water flow, clear water and hard 
mud substrate (Liu et  al. 2022). Some studies have also 
shown that habitat characteristics, such as physicochemi-
cal factors affected the survival of freshwater mussels, such 
as water depth, current velocity, pH, transparency, water 
temperature and chlorophyll-a (Strayer and Ralley 1993; 
Vaughn et al. 2004; Nakano et al. 2007; Zieritz et al. 2016; 
Simeone et  al. 2018; Sun et  al. 2019). For example, some 
studies showed that the survival and growth of freshwater 
mussels was significantly correlated with turbidity (Oster-
ling et al. 2008; Sun et al. 2019). Water temperature is an 
important physical factor driving the change of freshwater 
mussel community structure, which affects growth and 
reproduction of mussels (Clarke 2010; Xiong et  al. 2012; 
Su et al. 2014; Yang et al. 2011). In addition, some studies 
showed higher freshwater mussel density occurred in envi-
ronments with lower pH (Simeone et al. 2018). Our results 
showed that four physicochemical variables (water temper-
ature, chlorophyll-a, transparency and pH) were key fac-
tors for predicting suitable habitats of freshwater mussels. 
Freshwater mussel density was significantly correlated with 
water temperature and chlorophyll-a.

Habitat loss and fragmentation are usually considered 
one of the most important threats to freshwater mus-
sels (Lopes-Lima et al. 2017; Böhm et al. 2021; Liu et al. 

Fig. 4 Dependence plots based on Random Forest regression, showing the relationship of the hydraulic (a) and physicochemical (b) predictors, 
with freshwater mussel density, in Poyang Lake, China. Dissolved oxygen (DO; mg/L), hydrogen ions (pH), salinity (Sal; mg/L), turbidity (TURB; 
NTU), and water temperature (T; °C), chlorophyll-a (Chl-a; mg/L), water velocity (V; m/s), water depth (WD; m), Total nitrogen (TN; mg/L) and total 
phosphorus (TP; mg/L), D (mm), Sorting index (So, unitless), Bed roughness (ks, mm), Froude number (Fr, unitless), Reynolds number (Re, unitless), 
Boundary Reynolds number (Re*, unitless), Shear velocity (V, m/s), Shear stress (τ, N/m2). Critical shear stress (τc, N/m2)

(See figure on next page.)



Page 10 of 14Jia et al. Ecological Processes           (2023) 12:15 

Fig. 4 (See legend on previous page.)



Page 11 of 14Jia et al. Ecological Processes           (2023) 12:15  

2022). When attempting to preserve declining freshwa-
ter mussel populations, habitat restoration and suitabil-
ity is suggested as one of the most effective methods for 
increasing freshwater mussel diversity (Cope and Waller 
2010). Direct physical habitat disturbance, such as dams 
and sand mining, resulting in alteration of flow regimes 
and habitat fragmentation of rivers or lakes, usually leads 
to mussel diversity and abundance decline (Mueller et al. 
2011). Knowledge of the correlation between freshwa-
ter mussel distribution, density and hydraulic and phys-
icochemical variables for predicting suitable habitats is 
important for maintaining and restoring their biodiver-
sity and ecological functions (Haag and Williams 2014; 
Dobler et  al. 2019; Smit and Kaeser 2016). Our results 

provide insights into habitat suitability of freshwater 
mussels for Poyang Lake correlated with four key hydrau-
lic variables (boundary Reynolds number, critical shear 
stress, bed roughness and mean sediment particle size) 
and four key physicochemical variables (water tempera-
ture, chlorophyll-a, transparency and pH). These results 
showed that hydrodynamics habitat was important for 
maintaining freshwater mussel populations. Therefore, 
management plans should consider habitat diversity 
in terms of hydrodynamics types, which are important 
for freshwater mussels and other aquatic diversity. In 
addition, landscape design should give priority to the 
protection of shoreline buffer habitats to maintain the 
freshwater mussel populations and habitat quality.

Fig. 5 Correlation between density of freshwater mussel species and hydraulic (a, b) and physicochemical variables (c, d) based on heat map 
analysis and redundancy analysis (RDA). The clustering dendrograms of heat maps including the distance metrics of density of freshwater mussel 
species, hydraulic and physicochemical variables used to produce it. Horizontal coordinates are hydraulic and physicochemical variables in heat 
map analysis, vertical coordinates are density of freshwater mussel species. Red shows positive correlation between density of freshwater mussel 
species and hydraulic and physicochemical variables. Blue shows negative correlation between density of freshwater mussel species and hydraulic 
and physicochemical variables. The color patch gradient is used to show the value of R2. The clustering dendrograms on the left and top are 
the result of clustering of species density (left), hydraulic and physicochemical variables (top), respectively. Significant results are in * (*p < 0.05; 
**p < 0.01; *** p < 0.001). Dissolved oxygen (DO; mg/L), hydrogen ions (pH), salinity (Sal; mg/L), turbidity (TURB; NTU), and water temperature (T; 
°C), chlorophyll-a (Chl-a; mg/L), water velocity (V; m/s), water depth (WD; m), Total nitrogen (TN; mg/L) and total phosphorus (TP; mg/L), D (mm), 
Sorting index  (So, unitless), Bed roughness (ks, mm), Froude number (Fr, unitless), Reynolds number (Re, unitless), Boundary Reynolds number (Re*, 
unitless), Shear velocity (V, m/s), Shear stress (τ, N/m2), Critical shear stress (τc, N/m2). Code of freshwater mussel species see Additional file 2: Table S2
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