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estimates of microbial nitrogen use efficiency 
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Abstract 

Background Ecoenzymatic stoichiometry models (EEST) are often used to evaluate microbial nutrient use efficiency, 
but the validity of these models under exogenous nitrogen (N) input has never been clarified. Here, we investigated 
the effects of long-term N addition (as urea) on microbial N use efficiency (NUE), compared EEST and 18O-labeling 
methods for determining NUE, and evaluated EEST’s theoretical assumption that the ratios of standard ecoenzymatic 
activities balance resource availability with microbial demand.

Results We found that NUE estimated by EEST ranged from 0.94 to 0.98. In contrast, estimates of NUE 
by the 18O-labeling method ranged from 0.07 to 0.30. The large differences in NUE values estimated by the two meth-
ods may be because the sum of β-N-acetylglucosaminidase and leucine aminopeptidase activities in the EEST model 
was not limited to microbial N acquisition under exogenous N inputs, resulting in an overestimation of microbial NUE 
by EEST. In addition, the acquisition of carbon by N-acquiring enzymes also likely interferes with the evaluation of NUE 
by EEST.

Conclusions Our results demonstrate that caution must be exercised when using EEST to evaluate NUE under exog-
enous N inputs that may skew standard enzyme assays.

Keywords Extracellular enzyme, Resource allocation, Nitrogen addition, Microbial metabolism limitation, Isotope 
labeling

Background
Microbial nitrogen use efficiency (NUE) describes the 
proportion of N taken up by microorganisms that is 
allocated to biomass synthesis, and is a key characteristic 
of microbial metabolism that plays an important role in 
soil N cycling (Mooshammer et al. 2014; Sun et al. 2023; 
Zhang et  al. 2019). NUE has mostly been evaluated by 
isotope labeling methods. For example, 15N-labeled 
amino acids have been used to trace the uptake of organic 
N by microbes (Wild et  al. 2013). However, microbes 
can assimilate other N sources such as inorganic N 
and amino sugars, apart from amino acids. Hence, this 
method represents amino acid use efficiency but not a 
fully integrated NUE (Andresen et  al. 2015). Recently, 
18O-labeled water has been used to determine microbial 
growth and NUE, because microbes can assimilate 
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multiple N substrates, and the use of 18O-water 
avoids substrate addition effects (Zhang et  al. 2019). 
Alternatively, Sinsabaugh et  al. (2016) proposed a novel 
model based on the ecoenzymatic stoichiometric theory 
(EEST) and on the mass balance principle to evaluate 
NUE from the elemental stoichiometry of organic matter 
and microbial biomass, given the ratio of activities of 
enzymes that target carbon (C) vs. N acquisition. A 
growing body of studies have used the ecoenzyme model 
to evaluate microbial resource use efficiency in many 
ecosystems, including forest, farmland and grassland 
(Auwal et  al. 2023; Chen et  al. 2018b; Li et  al. 2023; Lv 
et al. 2022; Shen et al. 2023; Sun et al. 2022; Wang et al. 
2022), partly because parameter determination is rapid, 
relatively inexpensive and easy to evaluate (Schimel et al. 
2022).

The ecoenzymatic theory argues that the resource 
requirements of soil microbes are reflected by 
the activities of specific extracellular enzymes 
targeting different resources in organic polymers; 
i.e., β-1,4-glucosidase (BG) for C acquisition, β-1,4-
N-acetylglucosaminidase (NAG) and leucine 
aminopeptidase (LAP) for N, and acid/alkaline 
phosphatase (AP) for phosphorus (P), and predicts that 
microbes would regulate the ratios of ecoenzymatic 
activities to compensate for the imbalances between 
resource availability and microbial demand (Sinsabaugh 
et  al. 2008). However, exogenous N input can affect 
microbial N-acquiring enzyme activities because 
microbial use of soluble resources that do not require 
enzyme action to acquire, including mineral forms 
of N, can affect resource allocation for extracellular 
enzyme production (Allison 2005; Moorhead et al. 2023; 
Schimel et al. 2022). Also, N added such as urea fertilizer 
would not require the action of standard indicator 
enzymes (NAG + LAP) and similarly affect estimates 
of N acquisition unless urease was assayed. Therefore, 
exogenous N input can skew estimates of NUE by 
standard ecoenzymatic stoichiometry.

The aim of this study was to test predictions of NUE 
by the ecoenzyme model under conditions of N addition 
and to compare these to measurements of NUE based on 
the 18O-approach. We hypothesized that the ecoenzyme 
model would be less applicable to estimating NUE 
with external N input because NAG + LAP would not 
accurately reflect microbial N acquisition.

Methods
Study site and soil sample collection
The study site is located in the Changbai Mountain 
Natural Nature Reserve in northeastern China (42.70° 
N, 127.63° E). This region is characterized by a typical 
temperate climate, with warm summers and long 

and cold winters. The mean annual temperature and 
precipitation are 4  °C and 750  mm, respectively. The 
ambient atmospheric N deposition rate in this area is 
about ~ 27 kg N  ha−1   year−1. The N addition experiment 
consists of 12 experimental plots (50 × 50 m) in a Korean 
pine and broadleaf mixed forest with at least a 20-m 
buffer zone between plots. The dominant coniferous 
species are Pinus koraiensis Siebold & Zucc., and Abies 
holophylla Maxim., and the broad-leaved species 
are Corylus mandshurica Maxim., Tilia amurensis 
Rupr., Acer rufinerve Siebold & Zucc., and Acer 
pseudosieboldianum (Pax) Kom. in the plots. Starting in 
2014, each of these plots was randomly assigned to the 
following treatments (three replicates per treatment): 
Control (0 kg N  ha−1   year−1), low N treatment (25 kg N 
 ha−1  year−1), medium N treatment (50 kg N  ha−1  year−1), 
and high N treatment (75  kg N  ha−1   year−1). Urea was 
used as N fertilizer, which was spread once annually 
in May or June on the forest floor (Li et  al. 2021). The 
quantity of N added in the medium N treatment and high 
N treatment is equivalent to about twofold and threefold 
of the atmospheric N deposition rate, respectively.

Soil samples were collected at the beginning of June, 
July, August, September, and October 2021 after eight 
years of experimental treatment. Before soil samples 
were collected, soil temperature was determined with a 
PT100 thermometer. Fifteen subsamples were collected 
from the surface soil (0–10 cm, 2.5 cm diameter cores) in 
each plot. Then, the subsamples in each plot were pooled 
and mixed to form a composite sample and transported 
to the laboratory in cooling boxes on ice. Each composite 
sample was sieved (2  mm) and then divided into three 
subsamples. The subsamples were stored at −  20  °C, 
4  °C, or were air-dried, for extracellular enzyme activity 
analysis, the incubation experiment, and for the analysis 
of soil physicochemical properties, respectively. The 
incubation experiment was carried out within one week 
after sample collection. Soil samples in October were 
used to analyze soil properties.

Soil gross N mineralization analysis
We conducted two separate incubation experiments to 
determine microbial growth and gross N mineralization 
rates. Soil samples collected in June, July, and October 
were used to evaluate NUE by the 18O-approach. Soil 
temperatures in June, July, and October were 16, 21, and 
7 °C, respectively. For each composite soil stored at 4 °C, 
we prepared three conical flasks with fresh soil (20  g 
oven-dry base), two of which were used for the analysis 
of gross N mineralization and one for determination of 
microbial growth and microbial biomass C and N. Soil 
moisture was adjusted to 60% water holding capacity 
(WHC) and then pre-incubated at the respective in situ 
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soil temperature of the collection month for 24 h. For N 
mineralization determinations, flasks were amended with 
1  ml 15NH4NO3 (at 10 atom% 15N) solution at a rate of 
20 μg  NH4

+-N  g−1 soil, respectively, after pre-incubation. 
These flasks were sealed with parafilm with five pinholes 
and incubated for 0.5 h and 48 h at the respective in situ 
soil temperature. Soil extractions then were carried out 
with 2 M KCl (1:5 (w:v)) for 1 h to terminate isotope pool 
dilutions assays and to measure the concentrations and 
15N enrichments of  NH4

+-N at 0.5 h (first flask) and 48 h 
(second flask) after tracer addition.

Microbial growth rate and NUE analysis
After pre-incubation, we determined microbial growth 
rates and calculated NUE by the 18O-H2O tracer 
technique (Zhang et  al. 2019). For each composite soil, 
subsamples of 1  g soil from the remaining conical flask 
were weighed into 2 ml brown chromatographic vials in 
duplicates. One was amended with 18O-H2O (98 atom%) 
to reach 20 atom% of 18O in final soil water and the 
other one was amended with an equal volume of non-
labeled water serving as a control. Then, the vials were 
transferred to 20-ml headspace bottles, closed with butyl 
rubber stoppers, and incubated at the respective in  situ 
soil temperature for 48 h. After incubation, soil samples 
were stored at −  20  °C for DNA extraction and 18O 
abundance analysis. The rest of the pre-incubated soil 
was used for determination of microbial biomass (see 
below).

Soil physical and chemical properties
Soil pH was determined by a pH meter in a 2.5:1 (v:w) 
water to soil ratio. Soil organic matter (SOC), total N, and 
soil C/N ratio were determined by an elemental analyzer 
(vario MACRO cube, Germany). Soil texture was assayed 
by the pipette-sedimentation method. Soil water content 
was measured gravimetrically after oven drying for three 
days at 85  °C. Soil water holding capacity was analyzed 
by repeated saturation of soil in a funnel with filter paper 
for 2  h and draining for 8  h to approximate the water 
retained in soil at field capacity. Soil microbial biomass C 
(MBC) and microbial biomass N (MBN) were measured 
by the chloroform fumigation method (Vance et  al. 
1987). MBC and MBN were calculated as the differences 
in dissolved organic C and total N in extracts between 
non-fumigated subsamples and fumigated subsamples 
using conversion factors of 0.54 and 0.45, respectively. 
Soil  NH4

+-N content was assayed with a continuous flow 
analyzer (Skalar Analytical, Breda, The Netherlands) 
after extracting  NH4

+-N from soil with a 2  M KCl 
solution. The 15N abundance of  NH4

+-N was determined 
by the diffusion method (Brooks et  al. 1989).  NH4

+-N 
in the KCl extracts was isolated for 15N abundance 

measurements by adding MgO. The liberated  NH3 was 
trapped by acidified glass fiber filters wrapped in Teflon 
tape. The 15N abundance of  NH4

+-N was evaluated with 
an Elemental Analyzer (Thermo-Element Flash EA 1112, 
USA) coupled with an Isotope Ratio Mass Spectrometer 
(IRMS; Thermo Fisher MAT 253, USA).

Soil extracellular enzyme activities
We determined the activities of β-glucosidase (BG), β-N-
acetylglucosaminidase (NAG), leucine aminopeptidase 
(LAP), and acid phosphatase (AP) according to Saiya-
Cork et  al. (2002), following modifications by Allison 
et al. (2009) and German et al. (2011). We used a multi-
functional microplate reader  (SynergyH4 Hybrid Reader, 
 SynergyH4 BioTek, USA) with 365-nm excitation and 450-
nm emission filter to evaluate fluorescence after adding 
1  M NaOH to stop the reaction. The (NAG + LAP)/BG 
ratio indicated the ratio of N-acquiring enzyme activity 
to C-acquiring enzyme activity.

Soil DNA extraction and 18O abundance analysis
Total DNA in 18O-labeled and non-labeled soils was 
extracted using a DNeasy PowerSoil Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
The quantity of extracted DNA was evaluated by the 
Picogreen fluorescence assay (Quanti-iT™ PicoGreen 
dsDNA Reagent, Thermo Fisher, USA) using a multi-
functional microplate reader  (SynergyH4 Hybrid Reader, 
 SynergyH4 BioTek, USA). Then, aliquots (70  μl) of the 
DNA extracts were added to silver capsules and dried 
at 45  °C for 5  h. The concentration and abundance of 
O originating from the DNA were analyzed by a TC/
EA-IRMS system (Thermo Scientific, USA).

Calculations
Soil gross N mineralization rates (M) (ng N   g−1 soil 
 h−1) were calculated based on Eq.  (1) (Kirkham & 
Bartholomew 1954):

where t1 and t2 represent soil extraction time, Ct1 and Ct2 
represent soil  NH4

+-N content (μg N  g−1 soil) at t1 and t2 
respectively, and  APEt1 and  APEt2 represent 15N atom% 
excess of  NH4

+-N at t1 and t2, respectively.
The DNA produced  (DNAproduced), microbial N growth 

rate  (Ngrowth), and NUE were calculated as follows, with 
details given in Zhang et al. (2019). The DNA produced 
(ng) during the 48 h incubation was calculated based on 
Eq. (2):

(1)M =
Ct2 − Ct1

t2 − t1
×

ln(APEt1/APEt2)

ln(Ct2/Ct1)
,
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where at%excess represents the atom% of 18O in the labeled 
samples minus the atom% of 18O in control samples, 
31.21 is the mean weight% of O in DNA,  Ototal represents 
the O content of the dried DNA extracts (ng), and 
at%label is 18O atom% of soil water at the beginning of the 
incubation, which was 20 atom% in this study.

Microbial N growth rate (ng N  g−1 soil  h−1) was 
calculated based on Eq. (3):

where t is incubation time (h) and DW is soil dry mass 
(g). The fDNA represents the conversion factor, which was 
calculated separately at each site to represent the ratio of 
MBN to soil DNA content.

NUE was calculated as given below:

We also estimated NUE based on the ecoenzyme model 
for each soil sample (Sinsabaugh et al. 2016):

where  EEAN:C is (NAG + LAP)/BG ratio, BN:C and LN:C 
are the molar ratios of MBN/MBC and soil TN/SOC, 
respectively. KC is set to 0.5 and  NUEmax is set to 1. 
SN:C is a scalar that represents the extent to which the 
allocation of enzyme activities balances the disparity 
between elemental compositions of available resources 
and microbial biomass.

Statistical analysis
Repeated measures ANOVA followed by a Tukey multi-
ple-comparison test was conducted to evaluate the effect 
of N addition on NUE, microbial growth rate, gross N 
mineralization rate, BN:C/LN:C, and  EEAN:C across months. 

(2)

DNAproduced = Ototal ×
at%excess

100
×

100

at%label
×

100

31.21
,

(3)Ngrowth =
DNAproduced × fDNA

t × DW
,

(4)NUE =
Ngrowth

Ngrowth +M
.

(5)NUE = NUEmax[SN :C/(SN :C + KC)],

(6)SN :C = (1/EEAN :C)(BN :C/LN :C),

A one-way ANOVA followed by a Tukey multiple-com-
parison test was performed to evaluate the effects of N 
addition on soil properties. Prior to statistical analysis, 
the homogeneity of variances was checked by Levene’s 
test and data were transformed if necessary. Pearson cor-
relation analysis was used to assess relationships among 
variables. P < 0.05 was considered significant. All statis-
tical analyses were performed in R 4.1.2 (R Core Team 
2021). Figures were produced in R with the “ggplot2” 
package (Valero-Mora 2010).

Results
Soil pH (ranging from 4.67 to 5.02) decreased with N 
addition (Table  1). The contents of clay (ranging from 
22.3% to 35.7%), silt (ranging from 32.3 to 38.6%), and 
sand (ranging from 26.88 to 45.4%) did not change with 
N addition. The SOC and TN contents were lowest in 
the low N treatments, while soil C/N remained constant 
across N addition treatments.

NUE estimated by the ecoenzyme model ranged from 
0.94 to 0.98 and did not change with N addition (Fig. 1 
and Additional file  1: Table  S1). NUE estimated by the 
18O-approach ranged from 0.07 to 0.30 and tended to 
decrease with N addition (Fig.  2 and Additional file  1: 
Table S1). Microbial N growth rate showed a weak ten-
dency to decrease with N addition, while gross N min-
eralization rate did not change (Additional file 1: Fig. S2 
and Table S1).  EEAN:C and  BN:C/LN:C did not change with 
N addition (Additional file  1: Fig. S1 and Table  S1). No 
relationship was found between  EEAN:C and  BN:C/LN:C 
(Additional file 1: Fig. S3).

Discussion
The NUE values estimated by the 18O-approach (ranging 
from 0.07 to 0.30) were within the previously reported 
range of 0.02 to 0.73 in forest ecosystems (Sun et al. 2023; 
Zhang et  al. 2019). These reported NUE values likely 
varied greatly because they are affected by temperature, 
moisture, soil properties, and other factors (Zhang et al. 
2019).

In contrast, the NUE values estimated by the ecoen-
zyme model were much higher than those estimated by 
the 18O-approach (Fig. 2). We believe that this difference 

Table 1 Soil properties under control, low N addition, medium N addition, and high N addition

SOC soil organic carbon, TN total nitrogen, C/N SOC/TN. Different letters indicate a significant difference among N treatments. Data presented are mean and standard 
error (n = 3). Soil properties were measured using samples collected in October

 Treatments SOC (mg  g−1) TN (mg  g−1) C/N pH Clay (%) Silt (%) Sand (%)

CK 96.69 ± 9.53 a 5.54 ± 0.26 ab 17.55 ± 2.59 a 4.99 ± 0.04 a 30.76 ± 1.36 a 35.13 ± 1.76 a 34.12 ± 2.94 a

LN 81.60 ± 1.45 b 5.05 ± 0.01 b 16.17 ± 0.31 a 4.96 ± 0.01 a 29.29 ± 2.81 a 35.77 ± 1.55 a 34.94 ± 3.88 a

MN 89.59 ± 1.85 ab 5.53 ± 0.10 ab 16.20 ± 0.09 a 4.79 ± 0.02 b 32.16 ± 2.75 a 36.73 ± 2.29 a 31.11 ± 4.12 a

HN 93.12 ± 1.98 ab 5.67 ± 0.30 a 16.43 ± 0.58 a 4.67 ± 0.01 c 28.80 ± 6.74 a 35.02 ± 2.61 a 36.18 ± 9.34 a
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was the result of reduced contributions of NAG + LAP 
to microbial N acquisition under N addition, which led 
to an overestimation of NUE by the EEST method. We 
found that the ratios of N-acquiring enzyme activ-
ity to C-acquiring enzyme activity  (EEAN:C) were low 
(< 0.5) (Additional file  1: Fig. S1), which overestimates 
NUE by the ecoenzyme model (Eqs.  5 and 6). Possibly 
other N-acquiring enzymes were important for micro-
bial N acquisition under N addition (such as urease), 
however, these enzymes were not included in the cal-
culations (Eqs.  5 and 6). These results imply that β-N-
acetylglucosaminidase and leucine aminopeptidase 
activities cannot accurately indicate microbial N acqui-
sition under this external N input which decouples the 
expected relationships between N:C in microbial biomass 

and soil resources as balanced by N- to C-acquiring 
enzyme activities (Additional file 1: Fig. S3) (Sinsabaugh 
& Follstad Shah 2012). In addition, soluble resources 
(such as mineral N deposition) can be assimilated directly 
by microbes without enzyme catalysis, which similarly 
affects the estimation of microbial NUE by enzyme 
model. Taken together, we argue that ecoenzyme stoichi-
ometry does not accurately estimate NUE with external 
N inputs that affect microbial N acquisition outside the 
framework of the ecoenzyme stoichiometry model based 
on the standard indicator enzymes (NAG + LAP), con-
sistent with our hypothesis.

N-acquiring enzymes may be produced for C-liberation 
under exogenous N inputs, which also interferes with 
the estimation of NUE by the enzyme model. The 

Fig. 1 Estimates of soil microbial NUE by the enzyme stoichiometry method for N addition treatments. CK control (0 kg N  ha−1  year−1), LN low N 
addition (25 kg N  ha−1  year−1), MN medium N addition (50 kg N  ha−1  year−1), HN high N addition (75 kg N  ha−1  year−1). Different letters indicate 
a significant difference among N addition treatments in a specific month. Data presented are mean and standard error (n = 3)

Fig. 2 Estimates of soil microbial NUE by the 18O-based method for N addition treatments. CK, control (0 kg N  ha−1  year−1); LN low N addition 
(25 kg N  ha−1  year−1), MN medium N addition (50 kg N  ha−1  year−1), HN high N addition (75 kg N  ha−1  year−1). Different letters indicate a significant 
difference among N addition treatments in a specific month. Data presented are mean and standard error (n = 3)
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ecoenzymatic theory predicts that  EEAN:C should 
decrease with N addition because the relative activities 
of NAG and LAP should decrease compared to BG 
(Sinsabaugh & Follstad Shah 2012; Sinsabaugh et  al. 
2008). However, we did not find significant changes in 
the (NAG + LAP)/BG ratio  (EEAN:C) with N addition 
(Additional file  1: Fig. S1). This is inconsistent with 
ecoenzyme stoichiometry theory, but reported by 
previous meta-analyses that N addition had negligible 
effects on the ratio of total C- to N-acquiring enzyme 
activities (Chen et  al. 2018a; Jian et  al. 2016). This may 
be because microbes can utilize N-acquiring enzymes 
for acquiring C under C-poor and/or N-rich conditions 
(Mori 2020). N addition can stimulate microbial activity 
and growth by increasing the acquisition of C from 
organic N substrates, that reduces NUE but in turn 
increases the production of microbial residues containing 
chitin, peptidoglycans, and proteins (Hu et  al. 2022; 
Liang et  al. 2019; Mori et  al. 2021; Zheng et  al. 2022). 
As a result, N-acquiring enzymes may be increasingly 
important to obtain C under N addition.

The 18O-approach estimated microbial growth 
by tracing the incorporation of 18O from water into 
DNA; however, the concurrent mortality of growing 
microorganisms and the growth of cell size (without 
DNA replication) can cause an underestimation 
of microbial growth and therefore of element use 
efficiencies. To decrease the effect of microbial turnover, 
the 18O-approach is usually applied only over short-term 
measurement periods (1–3 days). In addition, microbial 
extracellular products, which may contain C and N 
or both, are currently not included in estimations of 
microbial element use efficiencies due to methodological 
limitations (Geyer et  al. 2016). This causes uncertainty 
in NUE estimation, which needs to be resolved in the 
future.

Conclusions
NUE values estimated by the ecoenzyme model 
were significantly higher than those estimated by the 
18O-labeling method and did not change with N addition. 
This is because the NAG + LAP cannot accurately 
reflect microbial N acquisition under conditions with 
external N inputs. In summary, our results suggest that 
the ecoenzyme model should be used with caution in 
managed ecosystems.
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