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Abstract 

Background Mara River Basin is an ecologically fragile area in East Africa, with a pattern of alternating wet and dry 
seasons shaped by periodic precipitation. Considering the regional biological traits and climatic change, the vegeta-
tion’s response to seasonal variation is complicated and frequently characterized by time lags. This study analyzed 
the variation of the Normalized Difference Vegetation Index (NDVI) and investigated its time lag to precipitation 
at the monthly scale. NDVI characteristic peaks were proposed from the perspective of seasonal mechanisms 
and were quantified to assess the lag effect.

Results The results showed that the Anomaly Vegetation Index could identify low precipitation in 2006, 2009, 
and 2017. The NDVI showed an increasing trend in 75% of areas of the basin, while showed a decreased significance 
in 3.5% of areas, mainly in savannas. As to the time lag, the 1-month lag effect dominated most months, and the spa-
tiotemporal disparities were noticeable. Another method considering the alternations of wet and dry seasons found 
that the time lag was approximately 30 days. Based on the time distribution of NDVI characteristic peaks, the average 
time lag was 35.5 days and increased with the range of seasons.

Conclusions The findings confirmed an increasing trend of NDVI in most regions from 2001 to 2020, while the trends 
were most obvious in the downstream related to human activities. The results could reflect the time lag of NDVI 
response to precipitation, and the 1-month lag effect dominated in most months with spatial heterogeneity. Four 
NDVI characteristic peaks were found to be efficient indicators to assess the seasonal characteristics and had a great 
potential to quantify vegetation variation.
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Introduction
Vegetation in terrestrial ecosystems indicates a variation 
of regional features due to the interaction between 
the land surface and atmosphere (Cao and Woodward 
1998; Zhang et  al. 2013; Jeong et  al. 2017). Geospatial 

differentiation of vegetation is obvious, and regional 
and seasonal variations have an impact on its growth. 
Although the surface and climatic conditions that 
determine different regions vary greatly, the vegetation 
condition is the most effective and comprehensive 
indicator of ecosystems (Chamaille-Jammes et  al. 
2006). The vegetation index can effectively monitor the 
photosynthetic biomass of plant canopy (Tucker 1979), 
and depict vegetation productivity and conditions 
accurately. Former studies concentrated on the 
seasonal changes of the vegetation index, particularly 
its association with climate change and anthropogenic 
activities (Piao and Fang 2003; Jiang et  al. 2017). The 
Normalized Difference Vegetation Index (NDVI) is 
widely utilized for vegetation monitoring, and its periodic 
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fluctuation reflects the differentiation characteristics of 
geographical environments.

Due to the impact of surface environments and 
human activities, NDVI exhibits spatial and temporal 
fluctuations with seasons (Chamaille‐Jammes et  al. 
2006). Previous research mainly focused on the seasonal 
changes of vegetation determined by temperature 
changes (Xu et  al. 2013). Since temperature is the 
primary climatic component, seasons are categorized as 
spring, summer, autumn, and winter (Jaber et  al. 2020). 
However, in arid and semi-arid areas, precipitation 
becomes the main climatic factor affecting the inter-
annual fluctuation of vegetation (Tang et  al. 2017). 
Random forest algorithms have been used to assess the 
influence of temperature and precipitation on vegetation 
greenness trends (Zhu et al. 2022). However, the former 
study did not quantify the impact or examine how 
vegetation responds to climate factors, especially the 
response of vegetation to seasonal precipitation. Studying 
the relationship between precipitation and vegetation 
is critical for terrestrial ecosystems (Chen et  al. 2020), 
particularly the spatiotemporal response and lag features 
of vegetation to seasonal alternation.

The division of seasons caused by precipitation can be 
categorized as wet and dry. The Mara River Basin (MRB), 
located on the East African Plateau close to Lake Victoria, 
exhibits a typical bimodal rainfall pattern. The periodic 
precipitation shapes the pattern of alternating wet 
and dry seasons in the MRB, evidently reflected in the 
seasonal variation of vegetation features. The response of 
NDVI to the seasonal precipitation is complex and often 
exists time lags. The variation of NDVI trends exhibits 
apparent spatial heterogeneity, which is consistent with 
regional characteristics and climatic change (Pang et  al. 
2017). A considerable time lag between vegetation and 
the seasonal precipitation brought on by the climate 
will occur from the accumulation of climate states, and 
this lag will exhibit significant spatial heterogeneity 
(Wen et  al. 2019). The time lag effect, essentially based 
on regression analysis, is used in existing studies to 
determine the lag of NDVI on climate factors (Zhao 
et al. 2017). The lag time that corresponds to the highest 
determination coefficient is thought to be the ideal one.

The time lag effect was analyzed on a large scale in 
the earlier studies (Wu et al. 2015; He 2019; Kraft et al. 
2019), in  which spatial resolution was scarce and could 
not accurately reflect the features at the regional level. 
The geographical heterogeneity of local regions could not 
be well predicted by spatial variability at the continental 
scale. In addition, correlation analysis had not been 
carried out at a monthly scale, which would generate 
great spatiotemporal variability. When a constant lag 
time was applied for all months, the distinctions between 

months were hidden and the consequences of seasonal 
changes were completely disregarded. The variation 
of seasonal precipitation would alter the lag time. The 
seasonal features of alternation tended to be ignored in 
previous studies and need to be taken into account from 
the perspective of seasonal mechanisms.

This study examined the temporal and spatial trends 
of NDVI. Two methods were adopted to analyze the 
time lag of NDVI response to seasonal precipitation, 
which were (1) the correlation analysis and (2) the 
characteristics of seasonal changes. The time lag of NDVI 
to seasonal precipitation was calculated at a monthly 
scale. It was proposed that NDVI showed characteristic 
peaks during each wet and dry season, which was 
indicative of vegetation analysis and the time lag effect. 
In addition, this study analyzed the time lag based on the 
temporal distribution and characteristics of NDVI peaks. 
The research overcame the restriction of a constant lag 
time and indicated the difference in lag time over months. 
The results considered the seasonal variation, and could 
better represent the lag time of regional areas with a high 
spatial resolution. Four NDVI characteristic peaks were 
proposed, which was helpful to better understand the 
vegetation characteristics and regular seasonal change. 
Quantifying time lag based on NDVI characteristic peaks 
can provide a new perspective on vegetation response to 
ecological processes.

Study area and data
Study area
The Mara River Basin (MRB) is located in eastern Africa 
(Fig.  1), spanning Kenya (about 65% of the region) and 
Tanzania (about 35% of the region), originating in the 
wetlands of the forested Mau Escarpment. Although 
it accounts for only about 5% of the water flowing into 
Lake Victoria, it is one of the most important catch-
ments. The upstream basin (1–4 sub-basins) is heavily 
forested. The midstream basin (5–9 sub-basins) is cov-
ered with savanna, and it flows through wetlands at lower 
elevations downstream (10–12 sub-basins) to Lake Vic-
toria. The elevation of the basin ranges from 1100 m to 
over 3000 m, presenting a pattern of high in the east and 
low in the west. Natural resources, social and cultural 
heritage, and a rich and original biodiversity are all still 
retained in the MRB (Dessu 2013). Environmental con-
servation and biodiversity implications are profound and 
significant for water-scarce Kenya and Tanzania (Birundu 
and Mutua 2017).

Precipitation in the MRB varies greatly between 
seasons and sub-basins. Due to the lack of observation 
stations, obtaining in  situ data on precipitation, 
temperature, evapotranspiration, and air pressure is 
difficult. The near meteorological stations in Musoma 
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are generally used to characterize the features of 
MRB. Annual precipitation can reach 1000–1750  mm 
in the upstream catchment and 300–850  mm in the 
downstream catchment (Hulsman et  al. 2018). In the 
wet season in April, the monthly precipitation in the 
downstream catchment can be over 180 mm; while in 
the driest season in July, the minimum precipitation 
is less than 20  mm (World Weather & Climate 
Information 2022).

The socio-economic of the municipalities along the 
MRB is strongly dependent on the Mara River and its 
tributaries. The semi-intensive agricultural farming and 
animal husbandry are the main socio-economic activities 
(Roy et  al. 2018; Das et  al. 2022a). Wildlife tourism 
around the national forest park is the major economic 
industry pillar, accounting for a significant proportion of 
GDP and foreign exchange earnings. The tourist income 
improves the living conditions of residents and supports 

wildlife conservation in the MRB (WREM International 
Inc. 2008).

The rainfall pattern of MRB presents a bimodal 
regime and is considered to be the most complex 
in Africa (McClain et  al. 2014). Associated with 
annual oscillations of the Intertropical Convergence 
Zone (ITCZ), the rainfall in MRB is controlled by 
the southward or northward migration of the ITCZ 
(Hulsman et  al. 2018). The wet seasons are led on by 
ITCZ, which also causes short- and long-duration 
rainfall (Dessu and Melesse 2012; Das et  al. 2022b). 
The seasonal variation is reflected by scarce rainfall in 
January–February (short-dry season), increased rainfall 
in March–May (long-wet season), decreased rainfall 
in June–September (long-dry season), and increased 
rainfall in October–December (short-wet season). The 
midstream of MRB is an important part of the Masai-
Mara and Serengeti ecosystems and is the route of East 
African animal migration during the dry season.

Fig. 1 Location, elevation, sub-basins, and main rivers of the Mara River Basin. The nearest city Musoma is located in the downstream of MRB. The 
relative positions of the MRB, Lake Victoria, Kenya, and Tanzania are shown in the upper left subgraph
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Data
Based on the Moderate Resolution Imaging 
Spectroradiometer (MODIS) of the environmental 
remote sensing satellite Terra, the 16-day synthesized 
Level-3 MOD13Q1 product (Didan 2021a) and monthly 
MOD13A3 product (Didan 2021b) were used to obtain 
NDVI data. MOD13Q1 has the highest temporal resolution 
during the products of MODIS NDVI, which is a benefit to 
calculating time lags. The regions with cloud coverage were 
replaced by the climate records of the previous time series 
to achieve global cloud coverage. 23 images with spatial 
resolutions of 250 m were acquired each year (except 
21 images in 2000) for process and analysis. MOD13A3 
product was used to match the temporal resolution of 
precipitation data with a spatial resolution of 1000 m and 
was created by a time-weighted average of the 16-day 1-km 
products (Huete et al. 1999).

Monthly precipitation products of CHIRPS (Climate 
Hazards Group Infrared Precipitation with Stations) with 
a resolution of 0.05° (Funk et  al. 2015) were selected to 
analyze the time lag of NDVI to seasonal precipitation. 
CHIRPS combines multi-data sources, taking advantage 
of in situ rain gauge measurements and long-term average 
satellite rainfall fields to derive climatological surfaces 
(Dinku et al. 2018). The original merging of station data was 
conducted at the pentad time scale, in which pentads were 
rescaled to generate other temporal resolution products. Its 
application has been confirmed and evaluated after being 
proposed (Chen et al. 2022; Duan et al. 2016; Zhong et al. 
2019), as well as in East Africa (Dinku et  al. 2018; Ayugi 
et al. 2021). To ensure the integrity of data, MOD13A3 and 
CHIRPS were selected from 2003 to 2022 since little data 
on MOD13A3 were missing before 2002.

Methods
Spatial and temporal trend analysis of NDVI
MOD13Q1 product was used to analyze the spatial and 
temporal variation in the MRB and obtain spatial variation 
at high resolution. The average value of NDVI was 
synthesized from 23 images each year, and the Anomaly 
Vegetation Index (AVI) was calculated to analyze the 
temporal variation (Chen et al. 1994). The anomalous value 
of NDVI reflects the inter-annual change of vegetation 
and indicates a bidirectional relationship with short-term 
climate characteristics. AVI can intuitively carry on the 
preliminary judgment of drought, which is reliable in areas 
that are highly dependent on precipitation, like MRB. The 
AVI could be expressed as (Yang et al. 2010):

(1)AVI = NDVIi −
1

n

n
∑

i=1

NDVIi,

where NDVIi is the NDVI of each year, and n is the num-
ber of years. Similar to Eq. (1), the Anomaly Precipitation 
Index (API) was calculated at an annual scale to verify 
the vegetation’s bidirectional indication of short-term 
climate characteristics. API could reflect the anomaly of 
precipitation and recognize its features:

where Precipitationi is the precipitation of each year, 
and n is the number of years. Through unary linear 
regression analysis (Niu and Ni 2003; Liu et al. 2016), the 
spatial variation trend of NDVI of each year from 2001 
to 2020 was calculated pixel by pixel. This method could 
be used to analyze the major trend of NDVI in the MRB 
and reduce the impact of extreme years. The calculation 
formula could be expressed as follows:

where θ is the slope of trend change, n is the number of 
years, and Vi is the vegetation index of each year. The 
significance of the change in 20 years can be judged 
by the correlation degree between the year and the 
vegetation index.

Classification of spatial variation trends of NDVI
To directly reflect the difference in trends and calculate 
the area proportion, the trend results were reclassified 
into six categories according to the trend value and 
P-value (Table  1). The changes in NDVI around the 
basin could be compared, and spatial variation could be 
connected to the land cover types. Here, the P-value was 
used to judge the significance of the trend variation.

(2)API = Precipitationi −
1

n

n

i=1

Precipitationi,

(3)θ =
nVi

∑n
i=1 i −

∑n
i=1 i

∑n
i=1 Vi

n
∑n

i=1 i
2 −

(
∑n

i=1 i
)2

,

Table 1 The classification of spatial variation trend according 
to the trend value and P-value of NDVI based on unary linear 
regression analysis

Trend Trend value P-value

Decreased significantly  < 0  < 0.01

Decreased significantly  < 0 0.01–0.05

Decreased not significantly  < 0  > 0.05

Increased not significantly  > 0  > 0.05

Increased significantly  > 0 0.01–0.05

Increased significantly  > 0  < 0.01
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Lag responses of NDVI response to seasonal precipitation 
by correlation analysis
Vegetation responds and adapts to seasonal changes under 
various climatic conditions. In the MRB, vegetation is more 
hydrologically resilient and sensitive to the water balance 
during dry seasons (Gan et  al. 2021). In this study, two 
common methods were applied to calculate the lag time of 
NDVI response to seasonal precipitation. The first method 
was based on the correlation, while the second method was 
based on the mechanism of a seasonal alternation.

Generally, correlation analysis is the most common 
method to explore the relationship between variables. 
High correlation tends to be related to a strong association. 
The time lag of NDVI response to seasonal precipitation 
can be quantified by correlation analysis. The hysteretic 
relationship could be expressed as:

where NDVIm+i is the time series data of MOD13A3 
from 2003 to 2022 for the same month expressed 
as m, i represents the lag month ranges from 0 to 3. 
Precipitationm is the corresponding time series data of the 
CHIRPS. For instance, when m represents January and 
considering 1-month lag (i = 1), NDVI is the time series of 
February and precipitation is the time series of January; 
the time ranges of precipitation were set according to 
NDVI and the lag months. Here, ki represents the linear 
regression coefficient, and b represents the constant 
term. We only consider a 3-month lag at most, 0-month 
represents no time lag. Since the time lag existed for the 
whole year, the analysis was conducted at a monthly scale 
in order to compare the seasonal differences.

Lag responses of NDVI to seasonal precipitation 
by seasonal alternations
Considering the seasonal variation of NDVI in the MRB, 
another method was applied to calculate the time lag and 
analyze the features of seasonal alternation. The average 
value of NDVI was calculated during each season based 
on the assumed lag time. The lag time can be inferred 
according to the changes in average values during 2001–
2022. This method was based on seasonal alternation, 
which could provide a more accurate time lag. Here, a 
16-day MOD13Q1 product was applied for the assumption. 
The lag time range was set from 0 to 60 days (the shortest 
season lasts 60 days), and the interval of lag time was set as 
10 days. The average NDVI values were calculated within 
the corresponding season range, which could be expressed 
as:

(4)NDVIm+i = ki ∗ Precipitationm + b,

(5)f (t1, t2, t) =
∑t2+t

i=t1+t
NDVIi,

where t1 is the start time of wet and dry seasons, t2 is the 
end time of wet and dry seasons; t is the lag time; NDVIi 
is the average value of NDVI within the time range of 
( t1 + t,t2 + t ) of each year; f (t1, t2, t) is the average value 
of NDVI within the corresponding wet and dry seasons 
under the lag time. The corresponding dates of t1 and t2 
are shown in Table 2.

Lag responses of NDVI characteristic peaks to seasonal 
changes
In this section, we proposed characteristic peaks of NDVI 
and thus analyzed the time lag. In order to obtain NDVI 
changes of long time series, the average NDVI of each 
image was calculated. The spatiotemporal characteristics 
of peaks were discussed from the time range of seasonal 
changes. From the start of each wet/dry season to the end 
of the next dry/wet season (the range considering time 
lag), the extreme points of the corresponding seasons 
were marked as the characteristic peaks. They could be 
expressed as the maximum value points in the wet season 
and the minimum value points in the dry season. Each 
peak was named according to its season as follows: short-
dry peak, long-wet peak, long-dry peak, and short-wet 
peak.

However, due to the response of NDVI to precipitation 
varied in seasons and reflected in the time lag of 
vegetation to reach the best or worst growth, the 
occurrence date of characteristic peaks might not be in 
the corresponding seasons.

Four characteristic peaks existed each year, and 
their variation characteristics were discussed. The 
time interval was calculated to characterize lag time 
according to the time range of characteristic peaks and 
the range of wet and dry seasons. The interval between 
the start and end of the time range could be expressed as 
X1 = tbegin − sbegin and X2 = tend − send , thus calculating 
the time lag:

where X represents the time interval between the earli-
est/latest time and the start/end time of seasonal varia-
tion for four characteristic peaks, respectively; tbegin and 

(6)
peaktimelag =

tend + tbegin

2
−

send + sbegin

2
=

X1 + X2

2
,

Table 2 Corresponding dates (month/day) of the start time ( t1 ) 
and end time ( t2 ) of four wet and dry seasons in the MRB

Season Short-dry 
season

Long-wet 
season

Long-dry 
season

Short-wet season

t1 1/1 3/1 6/1 10/1

t2 2/29 5/31 9/30 12/31
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tend represent the earliest and latest time of characteristic 
peaks; sbegin and send represent the start and end times of 
the wet and dry seasons. The peaktimelag reflects the lag 
time of NDVI characteristic peaks to the beginning of 
seasonal changes; it is an average interval between two 
ranges: the range of characteristic peaks and the range of 
the wet and dry seasons.

Results
Spatial and temporal variation of NDVI
The relatively dry or wet conditions from 2001 to 2020 
were obtained by calculating the AVI and API. Results 
showed that the difference in annual NDVI was not obvi-
ous in most years. The short-term climate character-
istics indicated by the anomaly values were reflected in 
the precipitation changes in the MRB. Negative anomaly 
values were significantly associated with insufficient pre-
cipitation. In Fig.  2, it was found that vegetation grew 
well during 2001, 2007, and 2020 while presenting a 
reversed trend during 2006, 2009, and 2017. The low AVI 
was mainly related to the precipitation in adjacent years. 
According to the API, rainfall in 2005 was extremely 
insufficient, while in 2006 was higher than average. This 
phenomenon resulted in a low NDVI in 2006 and a high 
NDVI in 2007, indicating that vegetation responded hys-
terically to precipitation. In 2009 and 2017, the lower API 
was consistent with lower AVI. The highest precipita-
tion in 2020 coincided with the highest AVI from 2001 
to 2020.

In order to analyze the spatial variation features 
of NDVI, the variation trend in the whole basin was 
obtained based on unary linear regression analysis. Areas 
that showed significant variation coincided with the land 
cover changes since a consistent trend from forest to 

cropland had been reported in the past years. The spatial 
variation trend of NDVI is shown in Fig. 3.

The trends showed that NDVI changed not significantly 
over 80% of areas, whereas the increase has not 
significantly occupied 60% of areas in the MRB. Almost 
75% of areas presented an increased trend, and the areas 
increased significantly in several sub-basins. The land 
cover types were combined to illustrate the features 
of spatial trends. In the upstream, the increased trend 
areas were covered by savannas and cropland/natural 
vegetation mosaics of sub-basins 1 and 2. The increased 
trend areas were covered by grasslands of sub-basin 7 
in the midstream and sub-basins 10, 11, and 12 in the 

Fig. 2 Temporal variation of AVI and API from 2001 to 2020 in the MRB

Fig. 3 Spatial variation trends of NDVI from 2001 to 2020 in the MRB
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downstream. Besides, the increased trend of NDVI near 
the northwest boundary of Masai-Mara National Reserve 
presented a distribution along the boundary.

Moreover, the areas that decreased significantly 
showed specific characteristics and occupied nearly 
3.5% of the areas in the MRB. In the upstream, the 
decreased trend areas were covered by savannas, 
although they occupied only a few regions compared to 
the increased trend areas. In the downstream, part of 
the areas covered by grasslands and cropland presented 

a decreased trend in sub-basins 11 and 12, especially 
areas around the wetland. The analysis was carried out 
on the pixel level, and the pixel number and proportion 
of different trends is shown in Table 3.

Time lag of NDVI response to seasonal precipitation
Time lag of NDVI response to seasonal precipitation based 
on correlation analysis
Regression analysis showed that the maximum cor-
relation of time lag between NDVI and precipitation 
was considered the most reliable. The corresponding 
lag month was regarded as the lag time. The time lag of 
NDVI response to precipitation in the MRB during each 
month is shown in Fig.  4. Considering the significance 
of the correlation coefficient, grids whose P-value were 
greater than 0.05 were depicted in grey in Fig. 4, yellow in 
Fig. 5, and not included in the analysis.

From the perspective of time lag effects, the lag month 
presented spatiotemporal heterogeneity in the MRB. 
One-month lag effect dominated in January, May, and 
November; the 2-month lag effect dominated in February 
and March. Due to the lack of valid values, features of 
some months could not be detected especially in the 

Table 3 NDVI change trend and pixel proportion from 2001 to 
2020 in the MRB

Change trend Proportion (%)

Decreased significantly (P < 0.01) 1.89

Decreased significantly (P < 0.05) 1.73

Decreased not significantly (P > 0.05) 21.53

Increased not significantly (P > 0.05) 60.08

Increased significantly (P < 0.05) 7.86

Increased significantly (P < 0.01) 6.91

Fig. 4 Lag time (0–3 months) of NDVI response to precipitation and spatial variation over months on the pixel scale in the MRB
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dry seasons from June to September. In addition, the 
1-month lag effect was obvious in April, July, September, 
and October. In June, the 1-month lag effect took effect 
mainly located upstream near Mau forest, while the 
2-month lag effect appeared in the east of midstream. 
Most pixels were not available in August. No lag effect 
took up almost half areas in December mainly in the 
middle of MRB, while the 1-month effect took up in the 
east. December was the rare month when no lag effect 
took effect, as well as when the spatial variation of time 
lag was the most salient. The time lag statistics of valid 
pixels are shown in Table 4. Almost all months presented 
a 1-month lag effect, except February and March which 
presented closer to the 2-month lag effect. Mean and 
median months of time lag showed similar features.

The longer time lag in February and March might be 
related to the short-dry season. To meet the ecological 
water demand of the vegetation, the vegetation would be 
affected by longer periods of insufficient precipitation in 
the dry season. In general, the time lags of dry seasons 
were longer, especially in long-dry season when lacking 

Fig. 5 Maximum correlation corresponded to the time lag of NDVI response to precipitation and spatial variation over months on the pixel scale 
in the MRB

Table 4 The statistical values of the lag response of NDVI to 
precipitation over months in the MRB, including the lag time, 
correlation, and number of valid pixels that pass the significance 
test

Month Number of 
valid pixels
(P-value ≤ 0.05)

Average month Median 
month

Average 
correlation

January 412 1.01 1 0.70

February 418 1.58 2 0.65

March 381 1.76 2 0.60

April 286 1.14 1 0.58

May 343 1.11 1 0.61

June 321 1.30 1 0.55

July 181 1.42 1 0.54

August 168 1.26 1 0.55

September 208 1.24 1 0.53

October 264 0.90 1 0.55

November 353 0.91 1 0.60

December 387 0.67 1 0.61
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precipitation from July to September. However, time lags 
were not as long as that of February to March, still longer 
than the wet seasons. This phenomenon was related to 
the number of valid pixels. During the long-dry seasons, 
vegetation responded physiologically to a continuous 
lack of precipitation. This caused the test results to be 
insufficient to support the correlation analysis between 
NDVI and precipitation, resulting in less than half of the 
pixels being available in this season. Seasonal variation 
also affected the time lag of vegetation through varied 
precipitation.

The maximum correlation corresponding to the lag 
month is shown in Fig. 5. Generally, the correlation was 
higher than 0.44, and the maximum surpassed 0.85. A 
good correlation demonstrated the effectiveness of time 
lag, especially in January. Average correlations in the 
wet seasons were higher than those in the dry seasons 
since the long-dry season showed a lower correlation 
compared with other months. The results of the average 
correlation of each month are shown in Table 4.

Time lag of NDVI response to seasonal precipitation based 
on the mechanism of seasonal alternation
Rainfall lasted a long time in the MRB during the long-
wet season and improved vegetation growth conditions 
with sufficient precipitation. The precipitation was seri-
ously insufficient in the long-dry season, and vegeta-
tion was in a state of water shortage. Precipitation in the 
short-wet season was no more sufficient than long-wet 

season, and vegetation experienced a gradual recovery 
from the long-dry season with slightly worse growth. 
NDVI in the short-wet season was lower than that of the 
long-wet season but higher than that of the short-dry sea-
son. During the short-dry season, the precipitation was 
reduced. The vegetation showed slightly arid but could 
still maintain greenness for a period due to the influence 
of the last wet season and the growth mechanism of veg-
etation. Vegetation grew better in the wet seasons than 
that of the dry seasons. According to different time lags, 
the average values of NDVI divided into wet and dry sea-
sons were plotted.

Figure  6 illustrates the highest NDVI in the long-wet 
season and the lowest NDVI in the long-dry season. 
However, the NDVI of the short-wet and short-dry sea-
sons were not that far apart when time lag was consid-
ered. In the alternation of seasonal changes, the complete 
effect of rainfall on vegetation was reflected. The NDVI 
of the wet season was higher than that of the dry season. 
The time required for this process was the lag time, which 
could be thought of as when the NDVI of the short-wet 
season was close to that of the short-dry season. Results 
showed that the requirement was satisfied when the lag 
time was 20–40 days, and 30 days was almost the divid-
ing line and thus was considered to be the suitable lag 
time in the MRB. The conclusion was consistent with the 
previous one in "Time lag of NDVI response to seasonal 
precipitation based on correlation analysis" section.

Fig. 6 Variation of mean NDVI of wet and dry seasons at 10-day intervals within the assumed lag time range from 0 to 60 days. The blue shadows 
indicate situations where the mean NDVI in the short-wet season was close to that of the short-dry season
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Time lag of NDVI characteristic peaks response to seasonal 
variation
The features of wet and dry seasons lead to four charac-
teristic peaks of NDVI, and the four peaks reflected the 
response of NDVI to seasonal variation. By calculating 
the mean value of each image, the long-time series of 
NDVI is plotted and shown in Fig. 7. The first day of each 
year (in 2000 was the date of the first available data) was 
marked on the horizontal axis.

The long-time series diagram showed that each year 
was accompanied by a sharp change in the mean value 
of NDVI, which formed an upward short-wet peak, 
followed by a downward short-dry peak, and then formed 
an upward long-wet peak again. After experiencing a 
shock in the middle of the year, it formed a downward 
long-dry peak. The four upward or downward peaks had 
the characteristics of a single peak or two similar double 
peaks, only to be recognized as the first one.

Generally, four peaks had annual characteristics and 
appeared alternately. Figure 7 shows the positions of four 
characteristic peaks in the past 20 years. The occurrence 
times of the short-wet peak, short-dry peak, and long-
wet peak were concentrated on 12/2–1/17, 1/17–4/7, and 
4/7–6/26. Long-dry peak appeared over a longer time 
horizon, and the occurrence time was 7/27–11/1. Long-
dry peak fluctuated greatly from the end of July to the 
beginning of January of the next year from 2001 to 2009, 
which was related to the longest dry season. After 2010, 
the long-dry peak was relatively stable from the end of 
July to the end of September, only delayed in 2015, which 
may be related to the severe drought at the end of 2016.

In Fig. 8, the gray lines represent the time range of wet 
and dry seasons, and the red dashed lines represent the 
time range of the characteristic peaks. For visual display 

in the mapping, the following parameters corresponded 
to the X1 and X2 : a1, b1, c1, and d1 represented the inter-
vals from the start time of seasons to the earliest time 
range of four peaks; a2, b2, c2, and d2 represented the 
intervals from the end time of seasons to the latest time 
range of four peaks. Due to the severe drought, there was 
a systematic deviation in 2006, so the NDVI characteris-
tic peaks of 2006 were not considered when calculating 
the time range.

The results from Table  5 showed that the longer the 
duration of seasons, the greater the difference between 
the time range of peaks and the values of seasonal peak_
timelag. The time lag of the four peaks varied slightly, and 
the average lag time from the start of the seasons to the 
appearance of the characteristic peaks was 35.5 days.

The values of four characteristic peaks varied greatly 
with time (Fig.  9), as well as a sensitive indicator for 
drought. According to AVI, insufficient precipitation was 
captured by the long-wet peak in 2006, the long-dry peak 
in 2009, and peaks short-wet peak, short-dry peak, and 
long-wet peak in 2017. Short-wet and short-dry peaks 
showed high values during 2001, 2007, and 2020, consist-
ent with AVI.

Discussion
Temporal and spatial variation of NDVI characteristics
The AVI outliers could be used to deduce obvious wet-
ness or drought at the annual scale. The negative values 
in 2006, 2009, and 2017 indicated the severe drought 
that might be caused by insufficient precipitation, corre-
sponding to the low levels of rivers (Dybas 2011). Since 
vegetation lags behind seasonal precipitation, the precipi-
tation from the preceding year could have an impact. The 
average monthly precipitation for the short-wet season 

Fig. 7 Four NDVI characteristic peaks and their time distributions during the long time series of NDVI from 2000 to 2020 in the MRB. Peaks in 2000 
were not plotted due to missing data for January
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was just 49.78 mm at the end of 2005, but it increased to 
160.57 mm by the end of 2006. That made it clear how the 
previous year’s precipitation affected the NDVI of the fol-
lowing year and showed how the two factors interacted. 
In 2009 and 2017, the precipitation was less than the 
average from January to May, related to the low NDVI. 
The shortage of precipitation in 2017 influenced NDVI 
in 2018, even if precipitation was sufficient from 2018 to 
2020. The vegetation’s lag response to precipitation was a 

representation of the intricate process within the ecosys-
tem, and this sustained impact necessitated quantifying 
the lag impact. The precipitation in 2018 was concen-
trated in the long-wet season, while the short-wet sea-
son at the end of 2019 saw the most precipitation. Due 
to the occurrence time of seasonal precipitation, the lag 
response led to extraordinarily high values of AVI and 
NDVI in 2020 but not in 2019. In 2020, precipitation was 
consistently greater than the average, especially during 

Fig. 8 Time distributions of four NDVI characteristic peaks from 2001 to 2020, and intervals between the start/end of four seasons 
and corresponding NDVI characteristic peaks: a short-wet peak, b short-dry peak, c long-wet peak, and d long-dry peak

Table 5 The statistical values of time lag of NDVI characteristic peaks to seasonal variation, including duration of each season, intervals 
between the start/end of the season and NDVI characteristic peaks, and the peak_timelag (unit: days)

Peak Season duration Xi(i = 1, 2) Value pea{k}_{timelag} Total average

Short-wet peak 90 a1 62 39 35.5

a2 16

Short-dry peak 60 b1 16 27

b2 38

Long-wet peak 90 c1 37 32

c2 27

Long-dry peak 120 d1 56 44

d2 32
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the wet seasons, which provided favorable conditions for 
the growth of plants. These events demonstrated the effi-
ciency of time lag by illustrating the dynamic effects of 
time distribution of seasonal precipitation on the vegeta-
tion growth process.

In most regions, the NDVI did not change significantly 
from a spatial perspective, and the major feature was the 
increased trend. In the upstream, areas surrounding the 
Mau Forest were favorable for agriculture. The decreased 
trend was related to the expansion of small-scale 
agriculture, which was the main type. The situation was 
similar downstream, where there was a concentration 
of wetlands and grasslands. Land use in the MRB has 
significantly changed (Mwangi et al. 2017) since the end 
of the last century, which negatively impacts vegetation 
from the performance of extremely dry or wet years.

Although there were frequent droughts in the MRB, 
precipitation had not drastically decreased in recent 
years. Gradient precipitation existed in different sub-
basins, and the difference between wet seasons and dry 
seasons might be larger. According to models and pre-
dictions of water resource supply coupled with climate 
change (Kumar et al. 2014), water availability in the MRB 
will continue to rise during the wet seasons and fall dur-
ing the dry ones in the coming decades. The seasonal 
fluctuations in vegetation that interact with human activ-
ities would be more impacted by this tendency. Popula-
tion migration to catchments in search of water resources 
was connected with an increase in human demand for 
food and water resources (Mati et al. 2008), as well as the 
change in NDVI features near the wetland. Deforestation, 
animal husbandry, and agricultural land expansion were 
on the rise for subsistence purposes, which had negative 

impacts that were reflected in the spatiotemporal charac-
teristics of NDVI trends.

Lag responses of NDVI to seasonal changes
The lag effect of NDVI to seasonal precipitation was 
analyzed from a statistical perspective. The results 
considered the time lag at a monthly scale and revealed 
that there were geographical and temporal variations in 
the lag response of NDVI to precipitation. The seasonal 
characteristics of precipitation were affected by climatic 
conditions in various regions and were significantly 
related to the variation of the lag effect. In addition, the 
time lag was analyzed from the perspective of seasonal 
changes and was consistent with the average time lag 
obtained by statistics. The statistical method was limited 
by the temporal resolution of data, while the time lag 
obtained from the seasonal changes could be more 
flexible.

According to the alternation of seasons, the fact that 
NDVI of wet seasons was stably higher than that of 
dry seasons was utilized to obtain lag time. Deviation 
existed in the 10-day interval since the calculation was 
based on 16-day NDVI, but the results were still very 
convincing. Shorter interval and high-resolution NDVI 
data will be used to calculate the time lag, which is more 
precise. However, the lag time varies greatly from year 
to year, and an average time that can fully reflect the lag 
is more valuable. According to the results, the time lag 
of NDVI to seasonal precipitation was about 30 days in 
the MRB which was consistent with the existing study 
(Wu et al. 2015). The variation at the monthly scale was 
still outstanding and worth further study since complex 
precipitation behaviors on terrestrial vegetation had been 
found (Wen et al. 2019).

Fig. 9 The values of four NDVI characteristic peaks from 2001 to 2020: a short-wet peak, b short-dry peak, c long-wet peak, and d long-dry peak
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In this study, the accurate lag time still existed 
deviations at a monthly scale, and higher temporal 
resolution data shall solve this problem. The geographic 
difference has not been explained. For example, no lag 
effect showed in the middle basin in December, while 
there was a 1-month lag in the upper areas. The primary 
factor and the mechanism that resulted in the situation 
would be detected from the perspective of rainfall 
patterns and soil’s physical and chemical properties. 
Besides, the accumulative effect of precipitation on NDVI 
(Jiang et  al. 2022) was not considered. The land cover 
related to vegetation might have changed due to human 
activities, which will influence the time lag of NDVI 
(Kong et  al. 2020). Detailed influence of accumulative 
effect and land cover types could be compared with a 
time lag in the future.

Lag responses of NDVI characteristic peaks to seasonal 
changes
This study proposed four NDVI characteristic peaks and 
examined their values and occurrence time in the MRB. 
The MRB presented a bimodal rainfall pattern, reflecting 
the alternation of seasons. Four typical peaks were 
deemed appropriate to depict the seasonal variation of 
the wet and dry seasons in light of the aspects of seasonal 
changes. The short-wet peak appeared at the end of each 
year, and its value fluctuated greatly under the influence 
of the long-dry season. The short-dry peak reflected a 
transition from the short-wet season to the long-wet 
season, with a slight decrease in NDVI. Long-wet peak 
symbolized the most abundant rainfall for vegetation 
growth, which was usually reflected in the annual 
maximum NDVI. Long-dry peak represented the driest 
time and the longest season of each year.

The time lag based on the difference between NDVI 
characteristic peaks and the time range of seasonal 
variation represents the stabilization effect of the wet 
and dry seasons on vegetation growth. The lag time of 
wet seasons represents the accumulation of rainfall that 
makes vegetation grow best, while that of dry seasons is 
when continuous drought makes vegetation grow worst. 
The average value of NDVI in the MRB varied from 0.4 
to 0.7 over time. When a persistent drought appeared, 
the position of four NDVI characteristic peaks would 
decrease significantly. The general status of drought 
features, vegetation growth, and animal movement in 
the MRB could be thoroughly studied. The vegetation 
recovery after drought could also be assessed according 
to the periods and values of four peaks.

Four peak_timelags were special because they 
represented the lag effect of wet or dry seasons. Time 
lag took effect differently during each season, and the lag 
time could vary more than 10 days. But the duration of 

different seasons could vary by up to 2 months. So the 
average time lag of 35.5 days aimed to show the general 
time lag and the difference in each season still existed.

Since the characteristic peaks represent the maximum 
or minimum values of NDVI in the corresponding 
seasons, the time lag varies in different seasons. In 
general, the longer the season range, the longer the 
time lag. The mean time lag was slightly more than one 
month, consistent with the results of statistical and 
seasonal mechanisms. The values of NDVI characteristic 
peaks also captured the drought and wetness represented 
by AVI, but the exact relationship between the four peaks 
and the AVI needed to be further studied. The growth of 
vegetation indicated by NDVI characteristic peaks may 
also be affected by other natural or human factors, which 
should be considered in the future.

Conclusions
AVI and unary linear regression analysis were used 
to investigate the temporal and spatial variation 
characteristics of NDVI in the MRB. AVI showed trends 
for drought conditions in 2006, 2009, and 2017 and 
for wet conditions in 2001, 2007, and 2020. The API 
demonstrated plants’ lag response and proved AVI’s 
accuracy in detecting wetness and drought. From 2001 
to 2020, NDVI presented an increasing trend in most 
regions, although almost 60% of areas of MRB increased 
not significantly. In the downstream of the MRB, the 
change trends were most obvious compared with other 
areas, reflecting the influence of human activities. The 
decreased trend areas were mainly covered by savannas 
close to the human-inhabited area.

Two methods were applied to explore the time lag of 
NDVI to seasonal precipitation. Correlation analysis 
showed that the 1-month lag effect dominated in most 
months, with February and March showing more of a 
2-month lag effect. The seasonal variation and the time 
lag led to different spatial patterns among months. The 
lag time of NDVI to the changes between wet and dry 
seasons was examined and was considered to be 30 days.

Four NDVI characteristic peaks were found to be an 
efficient way to describe the seasonal characteristics 
of average NDVI. After examining the timing of the 
characteristic peaks and the various seasons, the findings 
revealed an average time lag of 35.5 days between each 
seasonal change to the characteristic peak. The rationality 
and meaning of NDVI characteristic peaks were clear, 
which could better capture seasonal variation.

It is challenging to enable the monitoring of short time 
intervals, long time ranges, and broad areas due to the 
absence of infrastructure construction in the MRB. The 
vegetation in the basin is extremely sensitive to variations 
in the wet and dry seasons, and water resources are 
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in short supply. Water resources need to be managed 
rationally according to lag response for the utilization 
of water resources by human activities, which should 
be in harmony with the development of the ecological 
environment. The meaningful exploration provides a new 
perspective to study the variation characteristics of wet 
and dry seasons in the basin.
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