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Ecological Processes

Functional traits: the pathways to riverine 
plant resistance in times of hydropeaking
Alejandro Baladrón1  , María Dolores Bejarano2* and Isabel Boavida1 

Abstract 

Hydropeaking, which refers to rising or falling discharges caused by the turning on or off of hydro-turbines to gen-
erate electricity, is a topic of growing interest due to its impact on fluvial ecosystems. To date, most hydropeaking 
studies have focused on the impact of peak fluctuations on invertebrate and fish communities, but little attention 
has been paid to its impact on riverine plants and how functional traits may make them resistant to hydropeaking. 
We performed a review to assess how a set of 32 plant functional traits can be expressed in riverine plant species, 
and found evidence of how such expression affects their capacity to cope with common sources of hydropeaking 
disturbance (i.e., inundation, fast water drawdown, and rapid water fluctuations linked to up-ramping and down-
ramping hydropeaking operations). The information here presented can simplify the evaluation of impacts on riverine 
plant communities worldwide, as well as to detect suitable species to successfully restore rivers affected by hydro-
power production.

Keywords Drought, Flooding, Waterlogging, Hydropeaking, Plant trait, Riverine vegetation

Background
Hydropeaking (HP), which refers to repeated daily or sub-
daily sudden water releases downstream of a hydropower 
plant in response to daily peaks of electricity demand 
(e.g., Cushman 1985; Morrison and Smokorowski 2000; 
Costa et al. 2019), is considered a flexible method of pro-
ducing electricity because it can generate power within 
minutes. Unfortunately, it is also one of the most ecologi-
cally harmful modes of hydropower generation since the 
river ecosystem’s downstream biotic and abiotic elements 
suffer from extreme flow events that deviate greatly from 
the free-flowing natural regime (Smokorowski 2022). 
The range of flow alterations resulting from HP depends 
highly on the operation scheme of the hydropower plant 

(i.e., magnitude, rate of change, frequency, duration, 
and timing of HP operations; Harby and Noack 2013), 
but four distinct operational phases are commonly dis-
tinguished: baseflow discharge (no electricity produc-
tion), increasing discharge or up-ramping (start of the 
turbines), continuous high peak discharge (peak energy 
demand), and decreasing discharge or down-ramp-
ing (shutdown of the turbines) (e.g., Bruder et  al. 2016; 
Tonolla et  al. 2017). The succession of multiple daily 
hydropeaks (with their respective operational phases) 
introduces a significant number of artificial flow events 
altering the ecological integrity of the river downstream 
of hydropower stations (e.g., Bunn and Arthington 2002).

Like other organisms, riverine plants in HP systems 
are exposed to frequent inundations, fast water draw-
downs, and short-term fluctuations in water flow and 
water levels, but also extended periods of drought linked 
to periods of low energy supply and along bypassed river 
reaches (Stella et al. 2010; Bejarano et al. 2020; Baladrón 
et al. 2022). Novel hydrology caused by HP has no natu-
ral correspondence in freshwater systems, and hence few 
species have adaptations to all its aspects (Bejarano et al. 
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2018). Although riverine plants have mechanisms and 
adaptations to cope with peak flows, drought periods, 
fast water currents, and rapid water-level changes (see 
Kawecki and Ebert 2004), the frequent and abrupt varia-
tions in hydraulic parameters imposed by HP may exceed 
plant tolerance (Bejarano et al. 2018), ultimately affecting 
germination, growth and long-term survival, inducing 
changes in plants´ morphology and physiology (Baladrón 
et  al. 2022), and modifying long‐established patterns of 
local adaptation.

Climate change is putting pressure on governments to 
reduce reliance on fossil fuels. In this regard, hydropower 
can play a dual role in the transition toward a low-car-
bon energy future (Jager et al. 2022). First, it can support 
the grid when wind and solar are not available. In addi-
tion, hydropower has flexibility similar to that provided 
by natural gas and may constitute a key renewable source 
in the electricity portfolio (Shan et  al. 2020). Therefore, 
given that HP is unavoidable (Smokorowski 2022), it is 
critical to understand the adaptive capacity of riverine 
plants to the various environmental stresses resulting 
from it to ensure proper river management. The study 
of plant functional traits can serve this purpose, as they 
are behind the mechanisms that determine whether spe-
cies manage to adapt to environmental change and stress 
(Kearney et  al. 2010; Pollock et  al. 2012; Regos et  al. 
2019).

Functional traits are defined as morphological, ana-
tomical, biochemical, physiological, and phenological 
features or mechanisms of resilience, with the capacity to 
impact fitness via their effects on growth, reproduction, 
and survival of individuals (McGill et al. 2006; Violle et al. 
2007; Mouillot et al. 2013; Nock et al. 2016). The use of 
plant functional traits to investigate the effects of human 
disturbance at multiple field scales (from plant communi-
ties to ecosystem-level functions; e.g., Suding et al. 2008) 
is gaining momentum nowadays (e.g., Garnier et al. 2004; 
Miedema Brown and Anand 2022). The adaptive capac-
ity of plants to the surrounding environment depends 
on functional trait expression (e.g., Pollock et  al. 2012), 
meaning that only species adopting particular trait val-
ues or modalities have the opportunity to become abun-
dant under certain environmental conditions (Tang et al. 
2022). The values or modalities taken by each trait are 
called attributes (see Violle et  al. 2007). Independently 
of their taxonomic identity, plants sharing identical 
attributes are expected to respond similarly to environ-
mental stressors (Lavorel et al. 1997; Merritt et al. 2010; 
Stromberg and Merritt 2015) and will display similar 
degrees of tolerance to them (see Valladares et al. 2007). 
Environmental filters, such as fluvial disturbances, can 
exclude species lacking suitable attributes from entering 

and remaining in a community, consequently shaping 
its structure (Venn et al. 2011). In this respect, the novel 
hydrology imposed by HP regimes may filter out species 
from functional groups without appropriate trait attrib-
utes to cope with flooding, frequent water-level fluctua-
tions, and drought (i.e., intolerant plants). Conversely, 
species with attributes suitable to deal with the new flu-
vial environment (i.e., easily dispersed, flexible, flood-tol-
erant, and amphibious plants; Keddy 1992; Mouillot et al. 
2013; Bejarano et  al. 2018) may successfully germinate, 
grow, and persist.

Identifying functional trait attributes capable to confer 
plants advantages against common HP disturbances may 
help determine which riverine communities are vulner-
able to HP and, conversely, which ones may reasonably 
withstand it without risk of suffering severe degradation 
(Baladrón et al. 2022). Additionally, analyzing the impact 
of HP on plant species from a trait-based perspective is 
more informative than predicting their response accord-
ing to “ecological affinities” (i.e., data that describe 
the general response of a species to an environmental 
variable, habitat, or resource (e.g., drought or flood-
ing tolerance, soil moisture); see Palmquist et  al. 2017). 
Trait-based approaches facilitate the generalization of 
patterns and transfer across systems since traits may 
be shared among different floristic regions (Díaz et  al. 
1998; Bejarano et  al. 2016), whereas “ecological affini-
ties” approaches often integrate multiple traits, obscuring 
linkages among environmental variables and hampering 
efforts to avoid circularity in cause and effect (Verberk 
et al. 2013; Palmquist et al. 2017).

Previous trait database and website projects, includ-
ing EcoFlora (Fitter and Peat 1994), BiolFlor (Klotz et al. 
2002), BIOPOP (Poschlod et  al. 2003), LEDA (Kleyer 
et  al. 2008), PLANTS (USDA 2010), SID (SER, INSR, 
RBGK 2023), GLOPNET (Reich et  al. 2009), MARI-
WENN (Baralotto et al. 2011), BROT (Paula and Pausas 
2013), FLOWBASE (Aguiar et al. 2013), TRY (Boenisch 
and Kattge 2014), and eHALOPH (Flowers et  al. 2015), 
have gathered data on biological traits and ecological 
affinities of thousands of common plant species through-
out the world (Bejarano et al. 2016; Palmquist et al. 2017). 
Likewise, there is an extensive literature published on 
how plants benefit from functional traits to withstand the 
effects of fluvial disturbances and water availability gradi-
ents in a variety of freshwater ecosystems (Tables 1, 2, 3).

However, to date, no specific studies have been con-
ducted to compile information on traits capable of 
improving the fitness of riverine plant species exposed 
to common HP disturbances. The goal of this study is 
to synthesize and bring together information from pub-
lished sources on functional plant traits scattered in the 
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literature which, if well selected and analyzed from an 
HP perspective, can help to advance science and manage-
ment in the field of HP.

Selection of relevant traits in the HP context
Common HP disturbances affecting riverine vegetation
We selected the most relevant hydrological alterations 
linked to HP (i.e., inundation, water drawdown and water 
fluctuations) likely impairing plants’ performance (e.g., 
germination, plant survival and growth). The main con-
sequences of HP on plant performance were retrieved 
from Bejarano et al. (2018) and summarized in Table 4.

Functional trait selection
We selected a list of 32 functional traits (19 morpho-
anatomical and 13 physiological) which, directly or indi-
rectly, have been extensively documented as capable to 
adapt plants to the stress imposed by submergence, soil 
waterlogging, mechanical forces exerted by large flow 
discharges, and drought. The selected pool of traits is 
therefore important with respect to the hydrological 
alterations and derived changes in the river environment 
(Table 4) resulting from HP.

A review of the TRY database (Kattge et  al. 2011; 
Boenisch and Kattge 2014) and of multiple published 
papers in the field of plant traits was performed to find 
functional traits of interest in the field of HP. Consulted 
papers showed a wide variety of attribute descriptions, 
and focused on particular or several traits. Deciding on 
the number of functional traits to include in the study 
was a back-and-forth process in which multiple consid-
erations were made. Some trait-based approaches rely on 
the smallest number of traits to explain plants’ responses 

to environmental conditions (principle of parsimony, 
e.g., Bernhardt-Römermann et  al. 2008), whereas other 
approaches encourage to consider as many traits as pos-
sible in the analysis (e.g., Cornelissen et  al. 2003). We 
chose to include multiple traits a priori intercorrelated 
and functionally redundant (i.e., traits syndrome; e.g., 
Bontemps et al. 2017). For instance, thick leaves, woody 
stems, and the presence of trichomes in plants’ surfaces 
appear together as coordinated suites of traits to help 
plants prevent excessive evapotranspiration (Crang et al. 
2018) during dry periods. Since these traits are function-
ally correlated, we could select one of them and disregard 
the other two. However, recent studies have highlighted 
that simplifying trait dimensionality can obscure over-
all patterns of plant adaptation because individual traits 
often contribute in a combined way to plant tolerance 
in different environments (Bruelheide et  al. 2018; Yin 
et al. 2018). Given that HP creates complex and substan-
tially different environments in the river within short-
time scales (i.e., inundation and desiccation may occur 
within periods of a few hours or days), it is possible that 
some  traits framed within a given trait syndrome may 
provide resistance only against a specific HP compo-
nent. For instance, thick leaves, woody stems, and tri-
chomes protect plants against drought, but not against 
the mechanical forces that occur during up-ramping HP 
stages, or against the inundation events resulting from 
water storage.  Therefore, we believe it is key to incor-
porate multiple traits  presumably relevant from an HP 
standpoint, even those functionally redundant.

Additionally, trait selection is constrained by the amount 
of information available in the literature (Gayraud et  al. 
2003). Traits may be soft or hard. A variety of soft traits 

Table 4 Main consequences resulting from HP affecting plant performance (Baladrón et al. 2023; adapted from Bejarano et al. 2018)

Hydrological alterations Changes triggered in the river environment Consequences for vegetation

Flooding Rapid light attenuation Reduced biomass production, difficulties to regenerate plant organs 
(e.g., leaves and absorbing roots)

Flooding Slow gas difussion Photosynthesis and respiration impairment, inhibition of root formation 
and branching, limited growth of existing roots and mycorrhizae

Flooding Anoxia Cell acidification, reactive oxygen species (ROS) generation, low ATP 
production (oxidative phosphorylation disruption), depletion of plant 
carbohydrate reserves, impairment of plant functions (e.g., stomatal 
opening, photosynthesis, water and mineral uptake, hormonal balance)

Flooding Accumulation of toxic compounds Impaired physiological and plant biochemical reactions, breakdown 
of cell membranes

Water drawdown Soil moisture deficits and water shortage Reduced growth and vigor, wilting, inhibition of seed germination

Water fluctuations Increase in drag and lift mechanical forces Physical injury, biomass loss, breakage and uprooting of plants, limited 
seed germination

Water fluctuations Erosion during up-ramping and peak flow stages Loss of riparian substrate, plant uprooting, biomass loss due to impact 
of river substrate materials (sand, gravel, pebbles)

Water fluctuations Sediment deposition during receding discharge Plants coated in silt or buried, soil surface clogging, limited seedling 
establishment and survival
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(i.e., morphological traits; e.g., plant and shoot growth-
form, presence of woody tissues, leaf cuticle thickness, leaf 
mas per leaf area) and hard traits (i.e., physiological traits; 
e.g.,  CO2 concentrating mechanisms, antioxidants genera-
tion, stomatal control aperture) provide plants different 
abilities to live in a range of magnitudes, frequencies, and 
durations of extreme flow events (Bejarano et  al. 2016), 
including those imposed by peaking hydropower plants. 
Soft traits are relatively easy and quick to quantify, but also 
less directly related to a given plant function (Hodgson 
et al. 1999; Cornelissen et al. 2003). Conversely, hard traits 
usually are more accurate indicators of plant responses 
(e.g., Lavorel and Garnier 2002; Cornelissen et  al. 2003) 
than soft traits, but also time-consuming and difficult to 
measure. As a result, the amount of information available 
on soft traits was significantly higher than that published 
on hard traits, explaining the higher number of morpho-
logical traits included in our study.

After having a definitive list of relevant traits, we 
defined modalities (i.e., trait attributes under which plant 
species can be grouped; Violle et al. 2007). Subsequently, 
we evaluated the degree of protection that each trait 
attribute may offer against HP disturbances. Generally, 
an attribute that confers an advantage against one dis-
turbance triggered by HP may at the same time confer a 
disadvantage against a contrasting HP disturbance. For 
instance, deep-rooting systems in plants may contribute 
to capture water during dry conditions associated to HP 
drawdown (e.g., Bielak et al. 2014), but they will not be of 
help to avoid root hypoxia (e.g., Kaelke and Dawson 2003) 
in waterlogged soils resulting from frequent flow rise. 
Following this rationale, trait attributes were reclassed 
into three HP categories: "resistant”, “partially resistant” 
and “vulnerable” (see Baladrón et al. 2023). We used the 
term “resistant” for attributes that may help plants to 
either avoid or tolerate HP disturbances (i.e., avoidance 
refers to traits that help plants to prevent the deleterious 
effects of adverse conditions, whereas tolerance consists 
in traits that enable plants to endure adverse conditions; 
Fitter and Hay 2002; Puijalon et  al. 2011). On the con-
trary, the term “vulnerable” refers to attributes that may 
not offer plants the capacity to successfully avoid neither 
tolerate the negative effects of HP (Baladrón et al. 2023).

Traits were of binary nature when a functional prop-
erty was present or absent (e.g., presence of chloroplasts 
in epidermis can adopt the categories “yes” or “no”), or 
adopted a set of categorical values e.g., stomatal control 
adopted three categories: (1) non-efficient control of sto-
matal aperture, (2) moderately efficient control, and (3) 
highly efficient control. The final list of selected traits, as 
well as the attributes adopted by each trait, is summa-
rized in Table 5.

Riverine vegetation‑hydropeaking response traits
Trait–disturbance interactions, as well as the degree of 
resistance (or vulnerability) that trait attributes may con-
fer against HP are described from Sects.  "Plant growth-
form (PGF)" to "Mycorrhizal symbioses (MS)", and 
summarized in Table 6.

Plant growth‑form (PGF)
Plants can be grouped into life form or growth-form 
classes based on similarities in structure. PGF describes 
the plant form based on the place of the plant’s growth-
point (bud) during seasons with adverse (cold or dry) 
conditions (Raunkiær 1934). Plant growth-forms can 
be divided into nine categories: (1) nano-phanerophyte; 
(2) micro-phanerophyte; (3) meso-phanerophyte; (4) 
macro-phanerophyte; (5) chamaephytes; (6) hemicrypto-
phytes and cryptophytes; (7) hydrophytes; (8) helophytes; 
and (9) geophytes. Hydrophytes can live in water or on 
substrates at least periodically anaerobic due to excess 
water (Raunkiær 1934), but will not tolerate exposure to 
drought. Helophytes can root in mud and waterlogged 
soils, but are less specialized to water than hydrophytes 
(Raunkiær 1934). This suggests that helophytes may 
withstand sedimentation of fine materials during down-
ramping stages and frequent soil moisture disturbances 
derived from HP  rapid water fluctuations, but will not 
cope with long-lasting submergence as hydrophytes 
may do. Geophytes can protect buds under the soil from 
desiccation and the mechanical stress induced by drag 
and lift forces derived from rapid water fluctuations 
(Raunkiær 1934). Phanerophytes (i.e., large shrubs and 
trees) present overwintering (perennating) structures 
(i.e., buds, meristems, and leaves) located high above 
the ground, and therefore can avoid a flood from reach-
ing them (Raunkiær 1934). Chamaephytes, hemicrypto-
phytes, some cryptophytes and small phanerophytes may 
minimize the risk of breakage by flow mechanical forces 
by reducing plant frontal area (Puijalon et al. 2011) but, 
as opposed to tall plants (i.e., phanerophytes), their struc-
tures will be close to the ground, and therefore affected 
even by hydropeaks of reduced water release. Geophytes 
have buds positioned deep in the soil (Lubbe and Henry 
2020), and this may confer an advantage to  desiccation 
periods associated to low flow release.

Shoot growth‑form (SGF)
This trait describes the canopy structure of shoots 
(Kleyer 1995). Shoot growth-forms can be (1) submerged, 
attached to the substrate; (2) free-floating plants; (3) 
floating leaves, attached to the substrate; (4) emergent, 
attached to the substrate (amphibious); (5) stem pros-
trate; (6) stem ascending to prostrate; and (7) stem erect.
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The diffusion of gases in water is about  104-fold slower 
than in air and, therefore, plant submergence during HP 
events may difficult the access to gases (i.e., oxygen and 
carbon dioxide) for their metabolism (Voesenek et  al. 
2006). Aquatic plants efficiently maintain photosynthesis 
rates and aerobic respiration under flooding with differ-
ent adaptations to overcome oxygen and carbon dioxide 
deficiencies (Björn et  al. 2022). Submerged plants may 
enhance plant ventilation via passive molecular diffusion 
processes (Colmer 2003), promote aeration of rhizos-
phere via buried leaves (Winkel et al. 2011), and perform 
direct exchange of gases between plant tissues and water 
(Mitsch and Gosselink 2007).

Free-floating and plants with floating leaves can 
improve  O2 supply to respiring tissues via thermo-
osmotic gas transport systems (e.g., thermal transpira-
tion; Schröder 1989; Björn et  al. 2022). Solar warming 
and cooling by transpiration of the upper leaf surface 
in these plants generate a temperature gradient within 
the leaf, inducing a flow of pressurized gas (Grosse 
et  al. 1991; Armstrong and Armstrong 2005; Richards 
et al. 2012); the air enters through the stomata of young 
leaves that have just reached the water surface, streams 
through the channels of long petioles, through rhizomes 
and roots, and back to the external air through older 

leaves (Björn et al. 2022). Additionally, stomata in float-
ing leaves and free-floating plants are found on the upper 
surface exposed to the air (Crang et  al. 2018) favoring 
 CO2 uptake. Also, floating leaves contain air spaces that 
give the plant buoyancy allowing the leaves to float on the 
water surface. As in most aquatic species, ventilation is 
enabled by an extended system of air canals and intercel-
lular spaces called aerenchyma (Justin and Armstrong 
1987; Jackson and Armstrong 1999) that provide a diffu-
sional pathway for oxygen transport to the roots (Crang 
et al. 2018). In addition to the atmosphere, gases in aer-
enchyma can originate from the rhizosphere or plant 
metabolism (Lambers and Oliveira 2019). All the afore-
mentioned attributes help plants with floating leaves  to 
resist flooding events derived from hydropeaks. Oxygen 
generated in the leaves of emergent plants during pho-
tosynthesis is transported to the submerged stem and 
roots, maintaining respiration when exposed to low envi-
ronmental oxygen concentrations (Crang et al. 2018). In 
addition to aerenchyma, suction via old broken stems 
(Venturi-effect; e.g., Armstrong et al. 1992), air films on 
leaves when submerged (e.g., Armstrong and Armstrong 
2014), water-repellent leaf surfaces; large air spaces inside 
leaves and roots, tissues remarkably porous, and barriers 
in roots to prevent radial  O2 loss from roots (Groot et al. 

Table 6 Summary of resistance (green), partial-resistance (orange) and vulnerability (red) conferred by each trait category described 
in Table 5 to flooding (F), water stress (WS) and water fluctuations (WF)

FUNCTIONAL TRAIT F WS WF F WS WF F WS WF F WS WF F WS WF F WS WF F WS WF F WS WF F WS WF
Plant growth-form (PGF)
Shoot growth-form (SGF) 
Woodiness (WD)
Leaf cu�cle thickness (LCT)
Leaf shape (LSH)
Leaf size (LSI)
Leaf consistency (LCON)
Leaf anatomy (LAN)
Leaf mass per leaf area (LMA)
Roo�ng depth (RDE)
Root morphology (RMO)
Shape reconfigura�on (SHRE)
Suberin barriers (SB)
Below-ground organs and root mass alloca�on (BGOs) 
Plant height (PHE)
Leaf vena�on network (LVN)
Presence of chloroplasts in epidermis (PCHE)
Loca�on of stomata (LSTO)
Presence of trichomes (PTRI)
Leaf persistence (LPER)
Resprou�ng ability (RA)
CO2 concentra�ng mechanisms (CO2-CM)
An�oxidant mechanisms (AM)
Presence of coleop�le (PCOL)
Seed germina�on (SG)
Stomatal control (STOC)
Non-structural carbohydrates and flooding acclima�on responses (NSC) 
Plant ven�la�on systems (PVS)
Presence of adven��ous roots (ADV)
Chloroplasts movement under changing light intensi�es (CHMOV)
Cor�cular photosynthesis (COPH)
Mycorrhizal symbioses (MS)

7 8 961 2 3 4 5

The blue color indicates that further research is needed to determine resistance against HP. The brown color indicate a shifting behavior (partial resistance or 
vulnerability) depending on the timing of HP operations
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2005; Colmer et al. 2006; Herzog et al. 2018) are also spe-
cial features allowing emergent plants to thrive in oxy-
gen-deficient environments (Björn et al. 2022), similar to 
those imposed by HP submergence.

In contrast to aquatics, aerenchyma in terrestrial 
plants (i.e., rigid, non-floating, erect forms) has in gen-
eral a reduced ventilation capacity, and therefore flooding 
will usually compromise their survival (see Björn et  al. 
2022). In aquatic species, intercellular spaces associated 
with aerenchyma contribute up to 60% of the leaf vol-
ume (Laan et al. 1989), while in non-aquatic species leaf 
volumes range from 2–7% (Larcher 2003). On the other 
hand, trees with large erect forms ensure that some parts 
of the plant will remain unscathed during submergence 
(Bejarano et al. 2018), which might help counterbalance 
their rather limited capacity to supply  O2 via ventilation.

While being good at resisting stress imposed by flood-
ing conditions, aquatic plants (especially floating and 
submerged plants) usually present low tolerance to 
above-water conditions (Havens et  al. 2004). This is 
in contrast to non-floating plants (e.g., erect stems or 
stems ascending to prostrate forms), which usually pre-
sent stems of high density, and therefore more capable of 
reducing evapotranspiration and tolerate water stress.

Additionally, non-rigid, non-erect structures are less 
flexible and less resistant to mechanical disturbance dur-
ing submergence and stages of rapid water fluctuations 
compared to large, erect shoot growth forms (Bejarano 
et al. 2018). Prostrate forms minimize the risk of break-
age by mechanical forces by reducing plant frontal area 
(e.g., small growth forms; Puijalon et  al. 2011), but will 
be more prone to be buried and experience mud coating. 
Conversely, erect stems will experience less mud coat-
ing, but their larger plant frontal area increases the risk 
of breakage.

Woodiness (WD)
Woodiness is a soft trait which is a surrogate of the stem 
tissue density and flexibility. Three categories have been 
defined: (1) non-woody; (2) semi-woody; and (3) woody 
species. Non-woody plants have flexible organs and the 
ability to reconfigure shape with increasing flow velocity 
(e.g., through flattening and the alignment of shoots in 
the flow direction; Kouwen and Fathi-Moghadam 2000), 
therefore avoiding physical injury derived from HP forces 
(Bejarano et  al. 2018). In contrast, denser branches can 
be a mechanical liability because they are less flexible 
and cannot adopt streamline shapes under flow, which 
increases the likelihood of breakage (Vogel 1988; Kouwen 
and Fathi-Moghadam 2000). The higher density of woody 
tissues, on the other hand, prevents xylem embolism 
derived from drought. Xylem embolism occurs when 
gaseous bubbles are aspirated into xylem conduits (e.g., 

Delzon et al. 2010), a phenomenon which becomes more 
likely during dry periods (Tyree and Sperry 1989; Nardini 
et al. 2011). Under drought conditions, bending stresses 
occur in the common wall between an embolized and a 
water-filled conduit generating a negative pressure that 
may cause conduit collapse (Hacke et al. 2001), ultimately 
reducing plant hydraulic conductance (Nardini and Pitt 
1999; Nardini et  al. 2011). In extreme cases, the reduc-
tion of hydraulic conductance may lead to complete fail-
ure of water transport and plant death (e.g., Brodribb and 
Cochard 2009). The thicker (or denser) the double wall 
between xylem conduits, the greater the reinforcement 
against collapse from bending (Young 1989; Hacke et al. 
2001). For this reason, woody plants, with greater inter-
nal loads on the xylem conduit walls than non-woody 
plants, are likely to be more resistant to HP drought 
events.

Leaf cuticle thickness (LCT)
The cuticle, a protective barrier of aerial surfaces of 
plants, acts as a diffusion barrier and, therefore, influ-
ences the diffusion of multiple molecules, including 
water,  O2 and  CO2 (e.g., Chen et al. 2011a, b). Leaf cuticle 
thickness (LCT) varies more than 100 times across spe-
cies (Onoda et al. 2012), although most species present a 
LCT comprised between 1 and 10 μm (Riederer and Mul-
ler 2006). To our knowledge, there is no clear threshold 
defined in the scientific literature to accurately differenti-
ate plant leaves based on their cuticle thickness. Scientific 
publications usually describe leaves with thicker cuticle 
layers as “thick”, “leathery” and/or “waxy”. On the con-
trary, leaves with rather thin cuticle layers are described 
as “thin”, “flat” and/or “broad” (e.g., Furlow 1979; Jermy 
et  al. 1982; Hultén and Fries 1986; Tutin et  al. 2001; 
López Gonzalez 2001; Clayton et  al. 2006; Chytrý et  al. 
2021). Such adjectives may provide guidance to group 
species under two broad categories: (1) thin leaf cuticles 
(e.g., Betula pubescens, Filipendula ulmaria, Viola palus-
tris, Agrostis sp., Rosa sp.;  Baladrón et  al. 2023) and (2) 
thick leaf cuticles (e.g., Alnus incana, Pinus sylvestris, 
Ledum palustre, Salix sp.; Baladrón et al. 2023). Thinner 
leaves facilitate underwater gas exchange (e.g., Maberly 
and Madsen 2002) and therefore photosynthesis (e.g., 
Pedersen et al. 2013) during hydropeaks. Maintenance of 
photosynthesis is key in sustaining both internal oxygen 
concentrations and carbohydrate contents in submerged 
plants (Mommer and Visser 2005), and it facilitates aero-
bic respiration (under submergence, anaerobic glycoly-
sis can substitute aerobic respiration, but it is inefficient 
and toxic end products accumulate; Parolin 2012). On 
the other hand, plants with thicker cuticle layers enable 
plants to minimize water losses under drought conditions 
(Yul Yoo et al. 2009; Onoda et al. 2012; Arya et al. 2021), 
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including those derived from periods of low water release 
for hydropower production. Thick cuticles constitute a 
barrier to water movement because leaves’ lipophilic bar-
riers are very hydrophobic, which difficults water move-
ment out of the leave (e.g., Lambers and Oliveira 2019). 
Additionally, thicker cuticles can increase mechanical 
resistance (Onoda et al. 2012), potentially helping plants 
to cope with rapid water flow fluctuations  linked to HP 
operations.

Leaf shape (LSH)
Plant leaf shape plays important roles in photosynthetic 
capacity, water use (Givnish 1979; Nicotra et al. 2011) and 
physiological tolerances to abiotic stresses (Demmings 
et  al. 2019), including that imposed by extreme hydro-
logical events derived from HP. Leaf shape can be divided 
into five general categories: (1) dissected leaves; (2) leaves 
finely divided into cylindrical pinnae; (3) finger-like 
leaves; (4) needle-like leaves; (5) others (e.g., egg-shaped, 
oblong, elliptical, obovate). Dissected leaves present a 
relatively thinner boundary layer that reduces diffusional 
resistance resulting in a greater gain of carbon, which is 
potentially beneficial for enhancing photosynthesis dur-
ing HP submergence (Gurevitch and Schuepp 1990; 
Nicotra et  al. 2007). Likewise, leaves finely divided into 
cylindrical pinnae allow for a greater and more uniform 
surface for the diffusion of carbon dioxide (Crang et  al. 
2018). Finger-like leaves also help to circulate dissolved 
gases (Crang et  al. 2018), hence facilitating the plant´s 
photosynthetic activity during prolonged submergence of 
aerial parts (Bejarano et al. 2018). Needle-like leaves are 
suited to dry environments (Du et al. 2020) and therefore 
can cope with HP drawdown periods. Simple leaves may 
not confer any clear advantage against HP disturbance.

Leaf size (LSI)
Leaf size is a key plant structural trait associated with 
plant growth, light interception, and photosynthetic effi-
ciency (e.g., Rouphael et al. 2010). Raunkiær (1934) pro-
posed the following classes of plant leaves based on their 
size: leptophyll (< 25  mm2); nanophyll (25–225  mm2); 
microphyll (225–2025  mm2); mesophyll (2025–18,225 
 mm2); macrophyll (18,225–164,025  mm2); megaphyll 
(> 164,025  mm2). Later authors have modified the classes 
(e.g., microphyll (< 2025  mm2); notophyll (2025–4500 
 mm2); mesophyll (> 4500  mm2); Webb 1959) and have 
sometimes used leaf length instead of leaf area (nano-
phyll (< 2.5  cm); microphyll (2.5–7.6  cm); notophyll 
(7.6–12.7  cm); mesophyll (> 12.7  cm); Boland et  al. 
2006). Whitten  et al. (1996), Ingrouille (2012) and van 
der Maarel and Franklin (2012) have also provided defi-
nitions for leaf size categories. According to these clas-
sifications, three broad categories have been defined for 

leaf size: (1) large (> 4500  mm2); (2) medium (4500–2000 
 mm2); and (3) small (< 2000  mm2). Generally, smaller 
leaves are advantageous in dry environments, while large 
leaves are so in cooler and lower irradiance environments 
(e.g., Tozer et al. 2015). Large leaves maximize light inter-
ception (e.g., Atwell et al. 1999), and therefore may help 
plants to maintain photosynthetic rates under presum-
ably low irradiance levels and cooler temperatures result-
ing from HP submergence. Conversely, during prolonged 
HP drawdowns, plants may potentially benefit from 
having small leaves since these will reduce evapotran-
spiration under soil moisture deficits and water scarcity 
characterizing the no electricity production phases (e.g., 
Bejarano et al. 2018).

Leaf consistency (LCON)
Leaves can be categorized by referring to the hard-
ness of the leaves (Shugart and Woodward 2011). Four 
general leaf consistency categories can be established: 
(1) succulent, ligneous (with woody photosynthetic 
parts); (2) papery (malacophyllous, herbaceous leaves); 
(3) between papery and coriaceous (hard and stiff, par-
tially sclerophyllous leaves); and (4) coriaceous (thick, 
leathery, sclerophyllous leaves). Succulent leaves have 
specialized water-storing tissues to survive under water 
shortages (e.g., Eggli and Nyffeler 2009; Ogburn and 
Edwards 2010). Coriaceous leaves are more resistant 
to drought than malacophylls (soft, thin, papery leaves) 
because cells in sclerophyllous leaves have thick and rigid 
walls. This characteristic prevents cell collapse caused by 
negative turgor pressures (contraction of the cell wall) 
developing in them under water stress (e.g., Oertli et al. 
1990), and therefore helping the plant to cope with  HP 
drawdown periods. Additionally, coriaceous leaves usu-
ally exhibit a high tensile strength (Wang et  al. 2010) 
compared to more papery leaves. An advantage of papery 
and flexible leaves is that they float above the water 
where gas exchange is optimum, which is advantageous 
during phases of up-ramping and continuous high peak 
discharge.

Leaf anatomy (LAN)
This trait classifies leaves according to their water rela-
tions, as follows: (1) helomorphic (i.e., leaves with 
well-developed aeration tissue (e.g., aerenchyma) as an 
adaptation to oxygen deficiency in swampy soils); (2) 
hygromorphic (i.e., leaves that depend on a large supply 
of moisture or grow partly or completely submerged in 
water); (3) mesomorphic (i.e., leaves that require abun-
dant available soil water and a humid atmosphere); (4) 
xeromorphic (i.e., leaves adapted to dry habitats); and (5) 
Kranz leaf anatomy (leaves with specialized structures to 
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perform  C4 photosynthesis, an adaptive feature for plants 
to cope with water stress (see Grigore et al. 2012; Crang 
et al. 2018).

Hygromorphic and helomorphic leaves are adapted to 
maximize the diffusion of  CO2 from the water into the 
leaves for photosynthesis by means of ventilation systems 
(e.g., aerenchyma structures). Proper ventilation provides 
buoyancy to leaves and maintains them out of the water 
where gas exchange is faster. It also enables a diffusional 
pathway from emergent leaves to roots for oxygen trans-
portation (Sculthorpe 1967; Crang et  al. 2018). Hygro-
morphic and helomorphic leaves present characteristics 
that are key to cope with the slow gas exchange rates 
(Crang et al. 2018) presumably occurring under HP sub-
mergence. Some of these leaf characteristics are the pres-
ence epidermal cells with a single-layered mesophyll (or 
even lack of the entire mesophyll), finger-like shapes (or 
leaves presenting fine divisions into cylindrical pinnae), 
and stomata located on the leaves’ upper surface (i.e., 
adaxial position, very common in floating leaves).

Xeromorphic and helomorphic leaves can minimize 
water losses under HP drawdown and water stress peri-
ods by adopting a number of anatomical adaptations, 
including: thick cuticles, dense covering of trichomes, 
reduced number of stomata, deeply sunken stomata 
(which allows reducing the diffusion gradient nearby 
the stomate area), leaf epidermis with thick lignified 
secondary walls, and the presence of epistomatal cavi-
ties (i.e., depression over guard cells of stomata) filled 
with deposits of wax particles. Some xeromorphic and 
helomorphic leaves also have the ability to roll exposing 
the thick, waterproof cuticle, and creates a humid space 
in the middle of the rolled leaf (Taiz et  al. 2015; Crang 
et al. 2018). Xeromorphic leaves may also present needle 
(pines), scale-like (cedars, cypress), or flattened (spruces 
and firs) shapes to reduce the surface-to-volume ratio 
and likewise transpiration (Crang et al. 2018). Mesomor-
phic leaves are adapted to habitats intermediate between 
hydrophytic and xerophytic.

Leaf mass per leaf area (LMA)
This trait refers to the ratio between leaf dry mass and 
leaf area (e.g., Poorter et  al. 2009). This morphological 
trait is highly correlated with leaf and whole-plant pro-
cesses (de la Riva et al. 2016), including plant’s maximum 
photosynthetic rates (e.g., Wright et  al. 2004) and spe-
cies’ potential growth rate (e.g., Ruíz-Robleto and Villar 
2005). In general, (1) aquatic plants may have the lowest 
LMA, followed by (2) ferns; (3) herbs/grasses; (4) decidu-
ous shrubs and trees; (5) evergreen shrubs and trees; and 
(6) succulents, which usually present the highest LMA 
(Poorter et al. 2009; de la Riva et al. 2016).

Metabolic cost production of each single leaf in low 
LMA plants is low compared to high LMA leaves. A 
“low-cost” strategy is associated with leaves with short 
life spans and fast turnover rates (i.e., leaves that may not 
age in excess and display a high photosynthetic capacity 
during their entire lifespan; see Westoby et al. 2002). The 
production of short-lasting, low LMA leaves could be 
an advantageous strategy for plants under submergence, 
drag forces, and water stress derived from HP because 
the ratio of resource investment to photosynthetic func-
tion will be likely maximized; in relation to its photosyn-
thetic activity, a leaf with a short lifespan will most likely 
have been amortized by the time it is damaged or dragged 
by high flow velocities derived from HP. In addition, low 
LMA leaves have more light-capture area deployed per 
mass (Reich et al. 1997), higher leaf nitrogen concentra-
tions (Field and Mooney 1986; Lambers et al. 1998), and 
shorter diffusion paths from stomata to chloroplasts 
(Parkhurst 1994). All these characteristics may facili-
tate photosynthesis under light attenuation and slow gas 
exchange conditions likely occurring during HP submer-
gence. On the other hand, high LMA, usually related to 
cuticle thickening, allows leaves to cope better with soil 
moisture deficits usually triggered by HP drawdown.

Rooting depth (RDE)
Rooting depth refers to the distribution of roots over 
sequential soil layers ranging from the soil surface to 
deeper horizons (Mueller et  al. 2013; Ravenek et  al. 
2014; Freschet et  al. 2021), and it is considered a trait 
of drought avoidance (Kashiwagi et al. 2005; Padilla and 
Pugnaire 2007).

Shallow and spreading rooting systems may help plants 
avoid deeper anoxic soil layers, and hence root hypoxia 
(Hosie 1969; Pedersen et  al. 2021). This rooting pattern 
might be beneficial for plants to deal with waterlogged 
riverbanks derived from increasing and maximal water-
level phases of HP. Conversely, deep-rooting systems 
contribute to an upward transport of water and nutri-
ent from deeper soil layers (Bielak et  al. 2014). Even a 
small number of roots deep in the soil profile may enable 
plants to capture water from deeper soil layers (Caldwell 
et al. 1998; Jackson and Armstrong 1999), which can be 
extremely relevant for plants to successfully cope with 
dry conditions associated to HP drawdown periods.

But in addition to giving access to permanent water, 
deep and wide root systems may provide mechanical 
stand stabilization (Bielak et al. 2014) to cope with drag 
forces derived from HP, therefore maximizing resistance 
to uprooting (see Bejarano et al. 2018).

Riverine species variation in mean rooting depth is 
extremely ample, ranging from 0.5  m (e.g., Carex) to 
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more than 10 m (Acacia) (Fan et al. 2017). Three rooting 
depth categories have been established according to the 
mean rooting depths (MRD) reported by Fan et al. (2017) 
for different plant genera: (1) shallow-rooted systems 
(i.e., MRD < 1.5  m; e.g., Carex, Fagus, Picea, Salix, Fes-
tuca, Abies, Stipa); (2) moderately deep-rooted systems 
(1.5 m < MRD < 3 m; e.g., Populus, Juniperus, Andropogon, 
Acer, Pinus) and (3) deep-rooted systems (MRD > 3  m; 
e.g., Ulmus, Quercus, Tamarix, Eucalyptus, Acacia).

Root morphology (RMO)
Root morphology is a trait tightly related to the root 
system architecture and provides spatial and structural 
information on the root system (e.g., Kalliokoski 2011), 
including its capacity to support plant growth via water 
and nutrient absorption, and to provide anchorage to the 
plant (e.g., Tripathi et al. 2001). Types of root morphol-
ogy can be classified into three groups: (1) lateral/fibrous 
systems; (2) lateral and taproot; and (3) taproot.

Taproots are characterized by the presence of a pri-
mary or dominant root that grows deep into the soil 
while developing lateral roots from the main root. On the 
contrary, fibrous root systems move more horizontally 
than vertically, and may not penetrate deeper into the soil 
(e.g., Mauseth 2009). Therefore, taproots may anchor the 
plant more tightly and firmly to the soil than fibrous roots 
(see Nair 2010), hence preventing plant uprooting during 
HP rapid water fluctuations. Taproots may also facilitate 
water uptake from deep soil layers under baseflow peri-
ods (see Brunner et al. 2015) as opposed to fibrous roots, 
which are considered surface feeders as they do not pen-
etrate deep into the soil (e.g., Mauseth 2009). Conversely, 
fibrous roots may expose plants less to deeper anoxic 
soil layers than taproots, and hence to root hypoxia. In 
this regard, fibrous roots might help plants to cope with 
waterlogged soils resulting from HP operations.

Shape reconfiguration (SHRE)
Some riverine plants are flexible and bend under high 
flow velocities. This reconfiguration can reduce drag 
forces acting on the plant (Vogel 1994; O’Hare et  al. 
2007), both by reducing the frontal area and by creating 
a more streamlined shape (Nikora 2010; Zhang and Nepf 
2020).

In general terms, riverine plants can be categorized 
into the following groups: (1) plants presenting flexible, 
streamlined leaves and/or flapping leaves, as well as the 
elastic deformation of stems in response to current; 
(2) plants in which elastic deformation of stems likely 
occurring in response to current, but streamlined/
flapping leaves are absent; and (3) plants with strong 
and rigid stems and leaves that may experience plastic 
deformation under strong water currents, and therefore 

at risk of experiencing damage or breakage (see Nikora 
2010). Plants belonging to category (1) will passively 
follow the flow (Nikora 2010) adopting a ‘flexible and 
extensible’ biomechanical strategy (Koehl 1979), which 
may significantly reduce injuries by drag forces derived 
from HP. Flapping leaves under high flow motion may 
also improve photosynthetic activity due to a decrease 
in self-shading and an increase in gas exchange (Koehl 
and Alberte 1988; Nikora 2010), which may ben-
efit growth on plants during maximal HP water-level 
phases involving turbulent and fast water currents.

Suberin barriers (SB)
Suberin is a structural lipophilic polyester of fatty acids, 
glycerol and some aromatics found in cell walls of plant 
tissues (Serra and Geldner 2022). The presence of suberin 
gives rise to radial  O2-loss barriers (i.e., apoplastic barri-
ers in root outer cortex/exodermis; Manzur et al. 2015), 
which help plants tolerate anoxic conditions by prevent-
ing oxygen diffusion outward to the soil. Heavily suber-
ized root tissues limit radial oxygen loss (ROL) from the 
root to the rhizosphere, supporting root growth in oxy-
gen-depleted soils under flooded conditions (Armstrong 
et  al. 2000; De Simone 2003). The content of suberin 
explains, in part, ROL rates from roots of riverine plants, 
and it is strongly species-dependent (Chen et  al. 2022). 
For instance, the roots of wetland monocotyledonous 
species such as Juncus effusus and Carex acuta show 
very low ROL values (< 5 ng  cm−2  min−1; measured 5 cm 
away from the root tip), whereas the dicotyledonous spe-
cies Caltha palustris, Ranunculus sceleratus and Rumex 
palustris have roots relatively permeable to oxygen loss 
(ROL ranging between 20–60 ng  cm−2   min−1; measured 
5  cm away from the root tip) (Laan et  al. 1989; Visser 
et  al. 2000). In general, low ROL rates are linked to the 
presence of non-permeable, ‘strong’ apoplastic barriers, 
whereas higher rates indicate a lower concentration of 
suberin and lignin in the roots, and therefore the pres-
ence of a ‘partial’ apoplastic barrier (Visser et  al. 2000). 
ROL values higher than 60  ng   cm−2   min−1 indicate sig-
nificant oxygen losses from the roots to the soil, and 
such values would correspond to species intolerant to 
flooding.

Taking the above into consideration, we define three 
categories: (1)  presence of strong barriers (i.e., species 
presenting low ROL values, similar to those described for 
Juncus effusus and Carex acuta); (2) presence of  partial 
barriers (i.e., plants showing ROL values similar to those 
described for Caltha palustris, Ranunculus sceleratus 
and Rumex palustris); and (3) absence of barriers aimed 
at preventing ROL from roots (i.e., species presenting 
ROL values superior to 60 ng  cm−2  min−1).
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The stronger the barrier is, the more limited the oxy-
gen loss through the root will be and, therefore, the more 
likely it is for the plant to withstand submergence and 
riverbank inundation derived from hydropeaks.

Below‑ground organs (BGOs) and root mass allocation
Below-ground organs (i.e., rhizomes, tubers, stolons, 
buds and bulbs) constitute carbohydrates stockings 
and provide some plants with the ability to grow clon-
ally and regenerate after disturbance (Klimešová et al. 
2018), which may potentially have positive effects on 
plant survival under peak flow events derived from 
HP. Accumulation of carbohydrates on below-ground 
organs of perennial herbs and shrubs may likely help 
them to restore the above-ground biomass (Klimešová 
and Klimeš 2007; Clarke et  al. 2013) damaged by HP 
mechanical forces. Species relying on below-ground 
organs to propagate will also have an advantage under 
HP regimes because a large portion of their structures 
will remain hidden on the ground, hence minimizing 
exposure to drag and lift forces and to scouring derived 
from HP rapid water-level fluctuations (Bejarano et al. 
2018). Below-ground organs are also involved on a 
number of strategies and mechanisms that should help 
avoid or minimize damages on plants exposed to HP, 
including the geotropic growth, the adoption of multi-
stemmed growth forms, or the presence of contrac-
tile roots under the soil surface (Pütz 2002, 2006). 
Finally, thigmomorphogenetic responses (Goodman 
and Ennos 1997; Mickovski and Ennos 2003) might 
be a key adaptive mechanism to cope with HP stress. 
Specifically, the application of horizontal forces on the 
stem of a plant during up-ramping and peak flow HP 
stages may induce changes in the allocation of below-
ground root biomass, or even change the mechani-
cal properties of roots, contributing to increasing the 
plant´s stability and hence to avoid uprooting during 
the hydropeaks.

Plant species without any of the characteristics and 
mechanisms described above will potentially be much 
more vulnerable to HP disturbance than those that do 
have them.

Plant height (PHE)
Tall plants can avoid flood and HP drag forces from 
reaching green parts and meristems in the canopy, where 
most photosynthesis happens (e.g., Lambers et al. 2008). 
In general, trees will have their green parts and meris-
tems more protected from HP disturbances than shrubs, 
and shrubs slightly more protected than herbaceous 
plants (i.e., grasses and forbs).

Leaf venation network (LVN)
Leaf venation is the distribution and arrangement 
pattern of a leaf vein system (Li et  al. 2013a, b). Plant 
resistance to flooding, drought, and rapid water-level 
fluctuations might vary depending on LVN’s architec-
tural features, including the distribution, density, diam-
eter, length, and loopiness of veins (i.e., vein topology), 
vein tapering, distance between veins, and structures 
supporting LVN’s functioning (i.e., accessory transport 
elements).

LVNs might be classified under three broad groups: (1) 
LVNs  making plants vulnerable to HP (i.e., non-hierar-
chical, non-reticulate LVNs; craspedodromous leaves, 
low vein length per unit area (VLA), large vein diameters 
(VD), absence of vein tapering, presence of bundle sheath 
extensions (BSEs) and accessory transport elements); (2) 
LVNs conferring plants partial-resistance to HP (i.e., evi-
dence of at least one characteristic described in (1)); and 
(3) LVNs conferring plant resistance to HP disturbance: 
hierarchical, reticulate LVNs; brochidodromous leaves, 
high VLA, small VD, low venation density, and presence 
of vein tapering.

Reticulate LVNs tend to increase the length of all vein 
paths (Price and Weitz 2014), including that of major 
veins. It is believed that major veins act as water trans-
port superhighways (Sack and Scoffoni 2013) enabling 
the plant to tolerate hydraulic system disruptions caused 
by drought. Therefore, reticulate systems will likely help 
plants to maintain water supply under water stress condi-
tions, and hence to successfully cope with drought events 
resulting from HP (Brodribb et al. 2016).

Vein topology may also play a role under HP dis-
turbance. Brochidodromous leaves present leaf vein 
topologies that display loops in second order veins. This 
topology may prevent the propagation of embolisms 
that reduce conductance under low water potential 
(Brodribb et  al. 2016). Therefore, the presence of loops 
in the network (Katifori et al. 2010) may help to tolerate 
better hydraulic system disruptions resulting from vein 
mechanical damage or drought, as opposed to craspedo-
dromous leaves, in which second order veins run to the 
leaf´s margin (Sack and Scoffoni 2013). Eucamptodro-
mous leaves (i.e., mix of brochidodromous and craspedo-
dromous patterns) would provide partial resistance to HP 
disturbance.

Length, diameters and density of LVNs can help plants 
to deal with submergence and drought derived from HP 
events. High VLA allows higher rates of gas exchange 
per unit leaf area (Sack and Scoffoni 2013) and may 
provide benefits for biomechanical support. Smaller 
conduits are  also less vulnerable to drought (Sack and 
Scoffoni 2013), while veins with larger diameters provide 
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additional mechanical support to leaves (Niklas 1992; 
Méndez-Alonzo et  al. 2013) exposed to HP drag forces. 
Additionally, large mid-veins allow flexural bending along 
the midrib reducing mechanical load (e.g., Cooley et  al. 
2004), and potentially making leaves more resistant to 
drag forces. Finally, low LVNs densities decelerate water 
flow within the leaf and, consequently, reduce evapora-
tion under conditions of moisture deficiency (Migalina 
et al. 2010) such as those occurring during HP baseflow 
stages.

Vein tapering (i.e., veins’ cross-sections narrow along 
their length, from first to second order veins) can make 
plants more resistant to drought since they reduce the 
spread of embolism bubbles (under drought stress, capil-
lary forces that prevent air from bursting into the xylem 
are exceeded, causing a bubble to invade the water-filled 
lumen that blocks the xylem conduit in the leaf network). 
Susceptibility to embolism increases proportionally with 
the size of veins, with minor veins being the last to lose 
function (Brodribb et al. 2016).

Accessory transport and support tissues (e.g., elements 
such as sclereids, transfusion tracheids, and idioblasts) 
can act as water storage to buffer cell water potentials 
from transiently high transpiration rates likely occurring 
during HP drawdown events. Support tissues may also 
increase the mechanical strength of leaves by providing 
resistance to shrinkage under dehydration conditions 
(see Sack and Scoffoni 2013).

BSEs may allow stomata to respond more quickly to 
changes in xylem water potential, which should be ben-
eficial when soil moisture (and therefore leaf hydraulic 
conductance) changes rapidly (Sack and Scoffoni 2013), 
as it may occur  in riverbanks affected by HP. BSEs may 
also play a role in guiding light inside the leaf favoring 
higher photosynthetic rates under the low light intensi-
ties likely occurring under HP submergence. Addition-
ally, BSEs may increase the mechanical strength of the 
leaf, especially when fibers or scleroids are present.

Presence of chloroplasts in epidermis (PCHE)
Submerged aquatic plant species cope with submergence 
owing to a suite of traits that favor gas exchange, such as 
leaves with epidermal chloroplasts (Maberly and Madsen 
2002; Bailey-Serres and Voesenek 2008). The transfer of 
chloroplasts to the outer epidermal layer of submerged 
and floating plants reduces the distance for  CO2 trans-
port from the medium toward the carboxylation centers 
and improves the illumination conditions in submerged 
leaves (e.g., Pedersen et  al. 2013). Conversely, in terres-
trial plants (e.g., riparian trees), the epidermis exerts 
a protective function, and the epidermal chloroplasts 
are poorly developed in most species (Ronzhina and 

P’yankov 2001). These characteristics do not favor gas 
exchange under HP submergence. We have considered 
PCHE a trait of binary nature, and therefore plants are 
classified as those with chloroplasts in epidermis (1) “pre-
sent” or (2) “absent”.

Location of stomata (LSTO)
Leaf stomata (i.e., small pores responsible for gas 
exchange in vascular plants) can be present (1) on the 
upper surface of the leaf (stomata on adaxial position, or 
epistomatic); (2) on the lower surface of the leaf (stomata 
on abaxial position, or hypostomatic); or (3) on both 
sides of the leaf (amphistomatic).

Aquatic plants have stomata present in adaxial posi-
tion, which helps to reduce the contact of stomata with 
the water and maintain them in contact with air, where 
gas exchange is faster (Maberly and Madsen 2002; Lam-
bers et al. 2008). Riverine plants can experience episodes 
of complete submergence in HP rivers, and therefore 
facilitation of gas exchange via adaxial stomata might be 
critical for them to sustain photosynthetic activity and 
below-ground organs respiration (Pedersen et  al. 2013). 
On the other hand, abaxial stomata are more sensitive 
than adaxial stomata to water-stress signals. Externally 
applied ABA or  Ca2+ has much less of an effect on the 
regulation of adaxial stomatal movement compared with 
their effects on abaxial stomata (Wang 1998). A higher 
sensitivity to water-stress signals might help to close 
stomata guard cells faster during HP drought episodes, 
hence favoring a better control of plant water losses. 
Amphistomaty may optimize both photosynthetic rates 
and plant respiration under HP submergence, and control 
water losses under HP drought. Additionally, there is evi-
dence that amphistomaty may have evolved in response 
to increasing aridity during the Tertiary, as it is consid-
ered to be a highly xeromorphic trait (e.g., Parkhurst 
1978); therefore, amphistomatic stomata will likely help 
plants to cope with water scarcity during HP baseflows.

Presence of trichomes (PTRI)
Trichomes (i.e., appendages present on the surface of 
many plants that originate from the outer epidermal cell 
tissue of the plant; e.g., Johnson 1975) protect plants 
from being damaged by drought stress, and the density 
and types of trichomes are related to plant stress resist-
ance (Sandquist and Ehleringer 2003; Kenzo et al. 2008). 
Based on trichomes characteristics, we propose a clas-
sification of plants structured in three broad categories: 
(1) plants lacking hairs or trichomes; with a smooth sur-
face (i.e., glabrous or glabrate); (2) plants with a “moder-
ate” trichome density (i.e., leaves with sparse, soft hairs, 
puberulent, pulverulent, setose, stellate, hoary leaves, 
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velvety plant tissues); and (3) plants with a high trichome 
density (i.e., leaves with quite hairy leaves; covered in 
coarse, stiff hairs, bristly hairs, woolly hairs (hirsute, his-
pid, lanate, tomentose, velutinous, pilose, downy leaves)). 
It is expected that plants belonging to category (3) will be 
more protected from HP drought episodes than plants 
classified under category (2), and those in category (2) 
may in turn resist drought conditions better than plants 
grouped under category (1).

Leaf persistence (LPER)
LPER describes whether species lose their foliage over 
the year and when it happens. Leaf persistence can be 
divided into three general categories: (1) hibernal (i.e., 
leaves which arise in fall, persist through the winter, and 
die back in the heat and dryness of summer); (2) vernal 
and/or aestival (i.e., green from early spring to the end of 
the summer, or just during the warm period, then usually 
decaying); and (3) evergreen leaves (i.e., leaves that per-
sist throughout the year and last at least two years) (see 
Grime et al. 1988).

Evergreen leaves, usually tougher and endowed 
with thicker mechanical tissues than deciduous leaves 
(Givnish 2002), make a more conservative use of water 
and may tolerate better drought conditions linked to HP 
drawdown. Evergreens might also make a more efficient 
use of nutrients compared to deciduous leaves. Dur-
ing leaf senescence, plants recover nutrients (e.g., N, P, 
K) and leaf proteins from chloroplasts before the leaf is 
shed by the end of the abscission process, and the frac-
tion of nutrients not recovered must be replaced when 
new leaves are produced (Chabot and Hicks 1982). Unex-
pected weather events such as late summer droughts or 
heavy fall rainstorms may disrupt the abscission pro-
cess by accelerating or modifying the timing of abscis-
sion, ultimately affecting nutrient recapture from leaves 
(see Crang et  al. 2018). In a similar fashion, hydrologi-
cal alterations derived from HP (i.e., drought, rapid and 
short-term water-level fluctuations, and  inundation) 
may potentially disrupt the leaf abscission process. Dur-
ing drought, leaves are shed to conserve water and avoid 
damages to plant central organs, which are more costly 
than peripheral organs for plants to replace (Tyree et al. 
1993; Wolfe et al. 2016). During inundation events, as a 
result of slow gas diffusion underwater, submerged plant 
tissues rapidly accumulate ethylene (e.g., Hartman et al. 
2019), a gaseous hormone that triggers a number of 
flood-adaptive responses (Jackson 2008), including leaf 
abscission (Denny 1924). Mechanical forces associated 
to  rapid water-level fluctuations  triggered by HP opera-
tions can cause breakage and removal of plant biomass 
(Bejarano et  al. 2020), including leaves. In short,  unex-
pected drought, submergence and rapid water-level 

fluctuations linked to HP may limit the recovery of nutri-
ents from leaves since these might be shed or mechani-
cally removed before the nutrient recovery takes place. 
Given that the cost of leaf construction in deciduous 
plants is higher than in evergreens, disruptions in nutri-
ent recapturing implies higher metabolic losses for 
deciduous species and therefore, under HP disturbance, 
evergreens might have an advantage over deciduous 
plants.

Whether deciduous hibernal plants are more vulner-
able to HP than vernal or aestival species (or vice versa) 
may depend on annual patterns of electricity demand. 
In principle, peaks of hydropower demand may dic-
tate to which extent leaf nutrient recapture is disrupted. 
For instance, in Northern Europe, nutrient recovery in 
hibernal plants might be more disrupted by HP than in 
aestival species, because higher electricity demands will 
likely occur in winter, when hibernal species´ peak foliage 
occurs. Conversely, in Southern Europe, especially dur-
ing summer periods of record-breaking temperatures, it 
may occur the opposite; aestival species might be more 
vulnerable since peak foliage may coincide with periods 
of increased hydropower production for building cooling.

Resprouting ability (RA)
Resprouting is the capacity of some plants to survive and 
regenerate vegetatively (e.g., Clarke et al. 2013) and per-
mits recovery from disturbance by means of dormant 
buds that consume below-ground reserves even when all 
above-ground biomass has been removed (e.g., Bond and 
Midgley 2001; Paula and Pausas 2006). We established 
three categories to classify plants according to their 
resprouting ability: (1) resprouters (i.e., the plant is effi-
cient at resprouting, or it has the following characteris-
tics: deep-root system, presence of underground storage 
organs (e.g., rhizomes) and non-sclerophylly characters; 
see Paula and Pausas 2006; see Clarke et  al. 2013); (2) 
relative potential to resprout (i.e., the species presents 
some of the characteristics described in (1)); and (3) non-
resprouters (i.e., none of the characteristics described in 
(1) are present in the species).

In theory, resprouters will be capable to regenerate bio-
mass damages derived from anoxia periods, breakage, 
burial, mud coating and desiccation resulting from HP 
(see Bejarano et al. 2018). However, although resprouting 
favors plant regrowth (Pate et al. 1990; Schwilk and Ack-
erly 2005), and this should help plants to thrive under HP, 
this strategy may also present downsides. For instance, 
resprouters tend to be deep-rooted species, whereas non-
resprouters are usually shallow-rooted (e.g., Bell 2001; 
Paula and Pausas 2006). In this regard, resprouters might 
be more exposed than non-resprouters to the nega-
tive effects of frequent waterlogging resulting from HP. 
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Likewise, resprouters usually have lower drought resist-
ance than non-resprouters at leaf level because they have 
lower water use efficiency and lower leaf mass per area 
(i.e., lower sclerophylly). These characteristics may con-
stitute a disadvantage to cope with desiccation derived 
from HP baseflow periods.

Considering all the above, it is likely that resprout-
ers may present full resistance to certain elements of 
HP (e.g., mechanical damages derived from drag and lift 
forces), but only partial resistance to others (e.g., submer-
gence, waterlogging, and desiccation).

CO2 concentrating mechanisms  (CO2‑CM)
Some plants have evolved ATP-dependent mechanisms 
to concentrate  CO2 around Rubisco (i.e., active  CO2 
concentrating mechanisms) as well as other concentra-
tion strategies (i.e.,  CO2-recycling, generation of suberin 
barriers; Lambers and Oliveira 2019) that may be key for 
plant survival in riparian areas affected by HP operations.

Plants preferentially take up the lighter isotope of car-
bon 12C during photosynthesis and 13C accumulates 
(Fogel and Cifuentes 1993; Evans 2001). Submergence 
and drought resulting from HP may constrain  CO2 sup-
ply within plants’ leaves, ultimately forcing plants to fix 
13C during photosynthesis instead of 12C, which implies a 
higher metabolic cost for plants (Farquhar and Richards 
1984). Switching from 12C  to 13C fixation might poten-
tially translate into lower plant morphological perfor-
mance (e.g., reduced leaf, stem, and root biomass) and 
limited energy readily available to maintain plant internal 
processes (Baladrón et al. 2022).

Physical and physiological concentrating mechanisms 
 (CO2-CMs) help to increase and optimize the avail-
able pool of  CO2 within the plants’ leaves. These mecha-
nisms may potentially have an impact in reducing energy 
expenses linked to photosynthesis (Farquhar and Rich-
ards 1984; Lambers and Oliveira 2019) under limited gas 
diffusion conditions likely occurring during HP submer-
gence.  CO2-CMs can be divided as “soft” or “hard”. Com-
mon soft mechanisms are suberin barriers (i.e., apoplastic 
barriers in root outer cortex/exodermis to prevent oxy-
gen diffusion outward to the soil; Manzur et al. 2015) and 
stem recycling photosynthesis (i.e., a syndrome in which 
chlorophyllous cells in the cortex of shrub and tree spe-
cies refix a portion of the  CO2 respired by the underlying 
tissues or carried into the stem segment by the transpi-
ration stream; Avila et al. 2014; Cernusak and Cheesman 
2015; Wittmann and Pfanz 2018). Common hard mecha-
nisms are  C4,  C3-C4 and  C2 (glycine (Gly) shuttling) pho-
tosynthetic pathways (see Sage et  al. 2014). As opposed 
to  C3 photosynthesis (which undergoes the standard 
mechanism of the Calvin cycle),  C4 plants increase pho-
tosynthetic efficiency via compartmentation of  CO2 

assimilation and fixation by increasing PEP carboxylase 
activity (e.g., Schuler et  al. 2016) in the mesophyll cells 
and limiting Rubisco only to bundle sheath chloroplasts 
(Sage et al. 2014); during the dark period,  CO2 is fixed in 
the form of  HCO3

− by PEPC and stored in large vacuoles 
in the form of malate (Poschenrieder et  al. 2018). The 
 CO2 for fixation with Rubisco is obtained by decarboxy-
lation of malate during the following day-light period 
(Lüttge 2004; Poschenrieder et al. 2018). The  C3-C4 pho-
tosynthesis are common to species that are intermediates 
between  C3 and  C4 photosynthesis (Mercado and Studer 
2022). These plants have intermediate leaf anatomies 
that contain bundle sheath cells that are less distinct and 
developed than the  C4 plants (e.g., Moore et  al. 1995). 
Although probably less efficient than  C4 physiology, 
 C3-C4 might help plants to partially cope with limited 
 CO2 supply associated to HP submergence. In  C2 photo-
synthesis, glycine (Gly) produced in photorespiration dif-
fuses from the mesophyll to sheath cells for metabolism, 
and photorespiratory  CO2 is re-assimilated; this mecha-
nism elevates  CO2 levels in the bundle sheath two to 
three times that of the mesophyll cells, thereby improving 
Rubisco efficiency (Sage and Khoshravesh 2016) and the 
chances of plant survival under HP submergence.

Considering all the above, we have established the fol-
lowing trait categories: (1) absence of traits to concen-
trate  CO2 (i.e., plants that perform photosynthesis using 
the  C3 photosynthetic pathway, lacking  CO2-CMs); (2) 
presence of a  "soft"  CO2-CM; (3) species equipped with 
more than one “soft"  CO2-CM (i.e., presence of suberin 
barriers and stem recycling photosynthesis); and (4) pres-
ence of "hard"  CO2-CMs.

Antioxidant mechanisms (AM)
Antioxidant mechanisms allow the removal of reactive 
oxygen species (ROS) that may occur during phases of 
anaerobic energy production (Blokhina et  al. 2003; Tur-
kan 2018). ROS act as secondary messengers when plants 
are exposed to environmental stress (e.g., drought or 
flooding), but they also induce plant cell damages (i.e., 
degradation of biomolecules like pigments, proteins, 
lipids, carbohydrates, DNA) and, ultimately, may cause 
plant cellular death (Das and Roychoudhury 2014; Bhatla 
and Lal 2018). Under flooding, ATP is produced via glyco-
lysis; this metabolic pathway also triggers the production 
of acetaldehyde, a potent toxin that enhances the forma-
tion of ROS (Lambers and Oliveira 2019). There is also 
evidence that ROS in plants can increase as a response 
to drought (e.g., Noctor et  al. 2014) and trigger differ-
ent types of cellular damage, including the oxidation of 
protein sulfhydryl groups, photosystem damage, enzyme 
inhibition, lipid peroxidation, free fatty acid accumula-
tion in membranes and activation of programmed cell 
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death (McKersie 1991; Sharma and Dubey 2005; Sharma 
et  al. 2012). Therefore, it is key for plants to eliminate 
ROS excess derived from exposure to anoxia and drought 
episodes associated to HP operations.

Plants have defense systems (i.e., non-enzymatic and 
enzymatic antioxidant mechanisms) implicated in low-
ering the amount of ROS and overcome their oxidative 
damage, as well as in maintaining redox homeostasis 
(Bhatla and Lal 2018; Das and Roychoudhury 2014). 
Other mechanisms of some plants (e.g., Salix martiana) 
involve building up a several millimeter tick oxygenated 
layer around the roots that help eliminate phytotoxins 
via radial oxygen loss (ROL) (see Haase et  al. 2003). In 
other species, toxic products are transported upward and 
excreted (e.g., through branch lenticels and leaf stomata; 
Kenefick 1962; Chirkova and Gutman 1972; Hook 1984; 
or through well-oxygenated aerenchyma structures; e.g., 
Haase et al. 2003).

According to what is described above, five general anti-
oxidant mechanisms categories can be established: (1) 
enzymatic systems; (2) non-enzymatic systems; (3) trans-
portation of toxic products by excretion; (4) presence of 
enzymatic, non-enzymatic or excretion systems, but of 
limited efficacy to remove ROS; and (5) absence of anti-
oxidant mechanisms.

Presence of coleoptile (PCOL)
Coleoptiles (i.e., the cylindrical, soda straw-like first 
structure that emerges from graminoids; e.g., Parodi 
1987) allow grasses to bend toward the light via photot-
ropism, a mechanism that may potentially help riverine 
plants to adapt their growth and development under 
changing environments (Estelle 1996; Holland et  al. 
2009). Plants in fluvial habitats affected by changing flow 
regimes associated to HP operations can potentially ben-
efit from this mechanism because it can help the plant to 
grow towards the surface and “escape” from light-atten-
uated environments resulting from submergence, where 
photosynthesis might be difficult. Phototropism is trig-
gered by light perception, followed by the synthesis and 
translocation of signal molecules (i.e., auxins) in the tip of 
photo-stimulated grass coleoptiles. Differential accumu-
lation of auxin in response to tropic stimulation, and the 
activity of auxin transport and auxin receptor proteins in 
plants (see Liscum et al. 2014) might in turn potentially 
translate into differences in phototropism performance 
between plant species, therefore affecting its capacity to 
escape from submergence under HP.

In addition, the coleoptile constitutes a tube within 
which the cotyledon grows upward to the surface, poten-
tially offering graminoids some degree of protection 
against physical injury and biomass loss provoked by drag 

and lift forces occurring during phases of rapid rise in 
discharge. The coleoptile may also protect the cotyledon 
from desiccation resulting from HP baseflow periods.

We have considered PCOL a trait of binary nature, and 
therefore plants will be classified under the categories (1) 
“present” or (2) “absent”.

Seed germination (SG)
Seed germination under HP is reduced by constant soil 
waterlogging and riverbank erosion resulting from highly 
fluctuating waters, as well as by soil desiccation result-
ing from fast drawdowns (Stella et al. 2010; Sarneel et al. 
2014; Bejarano et al. 2020). The risk of desiccation during 
HP phases of low water levels is especially high in arid 
regions characterized by long drought periods (Bejarano 
et al. 2018).

Plants that germinate on a yearly basis may present a 
high vulnerability to HP disturbances, as germination is 
required every year and seed exposure will be maximum. 
On the contrary, perennial plants complete a single life 
cycle in three or more growing seasons, and hence par-
ticularly sensitive life stages are not faced every year 
(Bejarano et al. 2018).

In addition, the availability of light for riverine plants 
under HP submergence may be limited to short time 
windows comprised between the end of a hydropeak 
(i.e., down-ramping stage) and the beginning of a new 
hydropeak (i.e., up-ramping stage). Plants capable of ger-
minating under "fleeting time windows" of sunlight (see 
Kettenring et al. 2006) between two hydropeaks may have 
an advantage over species that need "long-lived gaps" of 
multiple days or weeks (‘low-risk’ germination strategy; 
Kettenring et  al. 2006). We foresee that (1) perennial 
plants might display the highest tolerance to HP, followed 
by (2) biennials, (3) annuals capable to germinate under 
short "fleeting time windows" of sunlight, and (4) annual 
plants adopting a ‘low-risk’ germination-based strategy. 
Plants under category 4 may likely experience the great-
est difficulties to germinate under HP submergence.

Stomatal control (STOC)
Stomatal control determines the water use efficiency 
(WUE) of a plant by optimizing water lost against carbon 
gained (Cowan and Farquhar 1977; Yang et al. 2021). The 
effectiveness of stomatal control depends on the regula-
tion of the stomatal aperture (i.e., speed and ‘tightness’ of 
closure). Fast opening and closing allow optimizing  CO2 
influx into the leave and  H2O losses. But in addition, the 
faster the stomatal closure is, the most effective photo-
synthetic induction will be (e.g., Urban et al. 2007), which 
in turn will determine an effective utilization of fluctu-
ating irradiance (Kaiser et  al. 2015; Morales and Kaiser 
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2020), a phenomenon likely occurring under flooding 
and water fluctuations derived from HP (i.e., "fleeting 
time windows" of sunlight; see Kettenring et al. 2006).

Plants can be classified under three stomatal control 
categories (see Shtein et al. 2017; Haworth et al. 2011): (1) 
Type I (i.e., kidney-shaped stomata with passive stomata 
control), which corresponds to the least efficient stomatal 
control, usually present in ferns and gymnosperms; (2) 
Type II (i.e., kidney-shaped stomata with an active sto-
matal control), which corresponds to plants with moder-
ately efficient control, commonly found in angiosperms; 
and (3) Type III (i.e., dumbbell-shaped stomata with an 
active stomata control) are “morphologically innovative” 
stomata highly efficient at opening and closing, and are 
common in grasses (Poaceae). This ‘graminoid’ morphol-
ogy is associated with faster stomatal movements leading 
to more efficient gas exchange in changing environments 
(e.g., Shtein et  al. 2017), for instance, riverine areas 
affected by episodic submergence and drought, constant 
waterlogging and frequent water-level variations derived 
from HP.

Non‑structural carbohydrates and flooding acclimation 
responses (NSC)
The amount of non-structural carbohydrates (NSC, i.e., 
starch) in plant tissues is the result of carbon gain (pho-
tosynthesis) minus consumption (growth and mainte-
nance respiration) (Chapin et al. 1990; Li et al. 2013a, b). 
Plant energy metabolism under HP submergence stress 
can likely be maintained with the degradation of NSC 
reserves, which is used by some plants (e.g., rice) to pro-
duce energy for the maintenance of basic metabolic pro-
cesses (Jackson and Ram 2003; Parolin 2009), including 
plant respiration in anaerobic tissues (Perata et al. 1992; 
Colmer and Greenway 2005). This is known as a quies-
cence strategy (e.g., Bailey-Serres and Voesenek 2008; 
Voesenek and Bailey-Serres 2015), where plants do not 
elongate shoots under flooding to minimize carbohy-
drate consumption. Instead, quiescent plants use their 
reserves to maintain underwater metabolism and to 
regrow after stress (see Manzur et  al. 2009; Zhao et  al. 
2021). Mobilization of NSC reserves differ greatly among 
plant species (e.g., Crawford 1992), allowing them to sur-
vive underwater from several days (e.g., Juncus effusus) 
to nearly 3  months (e.g., Scirpus maritimus) (Manzur 
et al. 2009; see Crawford 1992). Therefore, the larger the 
NSC reserves are, the more chances of survival during 
complete HP submergence. A second flooding-induced 
acclimation response is known as the escape strategy 
(Bailey-Serres and Voesenek 2008; Zhao et al. 2021) use-
ful under relatively shallow submergence. To facilitate the 
escape strategy, starch reserves can be mobilized so the 
plant can rapidly extend their petioles or stems to allow 

leaves to reach the water surface to aerate the remain-
der of the plant (Colmer and Voesenek 2009; Nagai et al. 
2010; Zhao et al. 2021). In theory, the higher is the capac-
ity of the plant to mobilize starch granules, the more 
soluble sugar available will be as an energy source for 
the plant to elongate and “escape” from HP submergence 
(see Striker et al. 2008). Operational HP regimes gener-
ating deep and long-lasting flooding in riverbanks may 
select against species relying on escape strategies because 
elongation growth competes with maintenance processes 
involved in plant survival during complete submergence 
(Ram et al. 2002). Under deep and long-lasting HP flood-
ing, elongation growth may not be sufficient for shoots to 
regain contact with the air, and if that were the case, high 
carbohydrate consumption will likely lead to an energy 
deficit, severe tissue damage, and mortality (see Pierik 
et al. 2009; Chen et al. 2011a, b; 2019).

Based on the aforementioned, four categories can be 
established to classify plants based on their NSC reserves 
and flooding acclimatation responses: (1) plants using 
carbohydrates to enable a quiescence strategy and with 
large carbohydrate reserves (species that will likely toler-
ate deep and long-lasting flooding); (2) plants adopting a 
quiescence strategy with limited carbohydrate reserves 
(species likely capable to thrive under deep (but short-
lasting) HP submergence; (3) plants adopting an escape 
strategy and with large carbohydrate reserves (these 
plants will likely tolerate prolonged (but relatively shal-
low) HP submergence); and (4) plants without the capac-
ity to adopt flooding-induced acclimation responses (i.e., 
quiescence or escape) and without large starch reserves.

Plant ventilation systems (PVS)
Ventilation mechanisms such as aerenchyma (i.e., 
extended system of air canals and intercellular spaces 
aimed at enabling ventilation in roots and plant rhizomes 
anchored in water-saturated soils; e.g., Björn et al. 2022), 
heat pumps (i.e., convections, or ‘internal winds’, gener-
ated across stomata that drive gasses from the atmos-
phere via young natant leaves, petioles to roots and back, 
via older leaves to the atmosphere; Dacey and Klug 1982; 
Armstrong and Armstrong 2011), pneumatophores, knee 
roots, stilt roots (i.e., roots of plants that grow vertically 
above the water level to get oxygen for respiration; e.g., 
McKee 1993; Pallardy 2008), formation of lenticels (i.e., 
large cracks on the surface of stems and roots which 
facilitates  O2 entry into the aerenchyma; Jackson et  al. 
2009), and snorkeling (e.g., Rogers 2021), are crucial 
for plants to thrive in water-saturated soils (Björn et  al. 
2022) such as those located in riverbanks of HP rivers. 
Based on their capacity to maintain optimal conditions 
for photosynthesis and respiration under oxygen-defi-
cient environments, plants may be classified under three 
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categories: (1) those presenting aerenchyma; (2) those 
with alternative ventilation systems (usually less efficient 
than aerenchyma structures); and (3) those without aer-
enchyma or any other alternative ventilation mechanism.

Aerenchyma enables a diffusional pathway from emer-
gent leaves to roots to transport oxygen, nitrogen, and 
various metabolically generated gases such as  CO2 and 
ethylene (Parolin 2012) under flooded and oxygen-defi-
cient conditions (e.g., Steffens and Rasmussen 2016). In 
addition, it  provides buoyancy to floating-leaves  main-
taining them out of the water where gas exchange is 
faster. Different aerenchyma types arise from the com-
bination of four general root structural types. The shape 
of these root types resembles a bicycle wheel (grami-
naceous), a spider web (cyperaceous), a honeycomb 
(Rumex) and a non-organized structure with irregular 
aerenchyma lacunae (Apium) (e.g., Justin and Armstrong 
1987; Striker et al. 2007).

Alternative ventilation systems may also facilitate  O2 
entry from the atmosphere into the plant (see Jackson 
et al. 2009), but they might be slightly less efficient than 
aerenchyma. Plants with reduced aerenchyma produc-
tion and without alternative ventilation mechanisms to 
facilitate oxygen diffusion between shoots and roots will 
likely be vulnerable to soil waterlogging and submergence 
derived from HP.

Presence of adventitious roots (ADV)
Adventitious roots grow from any non-root tissue (Esau 
1953; Lovell and White 1986) and can be produced in 
response to stress conditions (Bannoud and Bellini 2021), 
such as flooding. Emergent adventitious roots grow in 
the oxygenated layer at the surface of the flood-water 
table facilitating the entry of oxygen into the root and the 
stem by the shortest possible pathway (e.g., Parolin 2012), 
therefore helping plants to avoid anoxia under submer-
gence (e.g., Steffens and Rasmussen 2016). While under 
experimental conditions with stable water levels most 
species are able to develop adventitious roots, it is rare 
to find such ability in field plants, probably because their 
adaptive value with rapidly changing water levels is to 
question (Parolin et al. 2004). Regarding HP, this means 
that anoxia avoidance via adventitious roots might be 
achieved by plants located upstream the HP dam, where 
surface water levels may not rise rapidly. Downstream HP 
dams surface water levels will rapidly rise during every 
hydropeak and, in such case, adventitious roots may not 
constitute a strong advantage, especially when HP water-
level fluctuations are high and frequent. Nonetheless, 
while adventitious roots may not offer strong protec-
tion to anoxia under rapidly changing water levels, they 
may help plants tolerate burial effects resulting from fre-
quent and fast water fluctuations (Bejarano et  al. 2018); 

if high sedimentation rates occur during down-ramping 
HP stages, adventitious roots can replace the function of 
the ordinary root system, which often dies under several 
decimetres of sediment (Parolin 2012).

Adventitious roots are produced vigorously and rap-
idly in some species, but much less readily in others, and 
plants can be grouped according to their ease of rooting 
(Jackson 1985). Herbaceous plants  with prostate stems 
such as Veronica filiformis and V. persica (Harris and 
Lovell 1980), species presenting rhizomes or stolons (e.g., 
Agropyron repens (Palmer and Sagar 1963) and Ranun-
culus repens (Ginzo and Lovell 1973)), and climbers are 
often vigorous adventitious root formers (Jackson 1985). 
On the contrary, woody plants, especially older individu-
als, may present limited adventitious root production 
(e.g., Haissig 1974).

Based on the aforementioned, we have considered 
ADV a trait of binary nature, and plants are classified 
under the categories (1) “well-developed” adventitious 
roots (i.e., herbaceous plants, species with rhizomes or 
stolons, climbers) or (2) “poorly developed” adventitious 
roots (i.e., woody plants).

Chloroplasts movement under changing light intensities 
(CHMOV)
Plants can deal with changing light intensities through 
light-induced chloroplast movements (Wada et  al. 
2003). Under low light intensities, such as those likely 
received by plants under HP submergence, chloroplasts 
move toward light-irradiated area (i.e., the “accumula-
tion response”) and situate along the cellular edges per-
pendicular to the incident light to optimize absorption, 
ensuring the capture of the maximum amount of light 
(Zurzycki 1955), and enhancing leaf photosynthesis 
and biomass production (Gotoh et  al. 2018). Two pho-
totropins (phot1 and phot2; e.g., Liscum et  al. 2014) 
drive chloroplast movement during the “accumulation 
response”. By contrast, under high-intensity light, which 
may potentially affect aquatic plants during baseflow 
periods, phot2 activation causes chloroplasts to move 
away from the irradiated edge of the cell in a so-called 
“avoidance response” to prevent photodamage (e.g., 
Kasahara et al. 2002). Leaves of most shade-grown plants 
tend to exhibit stronger chloroplast movement than sun-
grown plants (Davis et  al. 2011; Higa and Wada 2016; 
Gotoh et al. 2018) and therefore should be more efficient 
at enhancing photosynthesis under HP submergence, and 
preventing photodamage under baseflow periods.

According to the aforementioned, two categories can 
be established to classify plants based on CHMOV: (1) 
shade-grown plants (strong chloroplast movement); and 
(2) sun-grown plants (weak chloroplast movement).
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Corticular photosynthesis (COPH)
Chlorophyll-containing bark tissue can be found in stems 
and branches of trees, shrubs and bushes. Several authors 
have demonstrated that the bark chlorenchyme in woody 
trees is able to photosynthetically reduce the flux of res-
piratory  CO2 to the atmosphere, a process that has been 
termed "CO2-refixation" or alternatively "corticular pho-
tosynthesis" (Foote and Schaedle 1976; Berveiller et  al. 
2007; Ávila et  al. 2014; Wittmann and Pfanz 2018). The 
prerequisites necessary for a working reductive  CO2 
assimilation metabolism (e.g., an effective chloroplast 
structure, enzymatic equipment, nutrients, water, light 
and carbon dioxide) are present in sufficient amounts and 
quantities within the chlorenchymal bark tissues of trees 
(Pfanz et  al. 2002). Corticular photosynthesis improves 
plant-scale water-use efficiency due to the low water loss 
from the stems compared with the losses associated with 
foliar photosynthesis (Cernusak and Hutley 2011; Avila 
et  al. 2014; Tarvainen et  al. 2017). This is beneficial for 
trees to cope with water shortages linked to dry HP peri-
ods. Additionally, corticular photosynthesis may provide 
means for maintaining hydraulic function during drought 
(Vandegehuchte et  al. 2015; Bloemen et  al. 2016). Like-
wise, corticular photosynthesis may help avoiding oxy-
gen deficiency in plants (Pfanz et  al. 2002; Wittmann 
and Pfanz 2018) exposed to repeated HP inundations. 
In addition, leaf photosynthesis might be lost or severely 
impaired when mechanical forces resulting from fast HP 
currents break or damage plants’ leaves. In such cases, 
corticular photosynthesis might help the plant to main-
tain a favorable carbon balance (see Ivanov et  al. 2006) 
until it recovers the aerial elements lost.

We have considered COPH a trait of binary nature, and 
therefore plants will be classified under the categories (1) 
“present” or (2) “absent”.

Mycorrhizal symbioses (MS)
Mycorrhizal symbioses refer to the association between 
fungi and plants (e.g., Kirk et al. 2001). The roots of over 
90% of all plant species establish these relationships with 
fungal taxa (Bonfante and Genre 2010). Mycorrhizas can 
be broadly classified as ectomycorrhizas (ECMs), when 
the fungus surrounds the root tip and colonizes the root 
intercellular spaces, and endomycorrhizas (e.g., ericoid 
(ERs) and arbuscular mycorrhizas (AMs)), when the fun-
gus develops inside the root cells (Smith and Read 2008; 
Bonfante and Genre 2010). Four categories have been 
established for this trait: (1) presence of AM; (2) presence 
of ER; (3) presence of ECM; and (4) absence of mycorrhi-
zal symbioses.

AMs (the commonest mycorrhizas) are associated 
with roots of about 80% of plant species, and facili-
tate host plants to grow vigorously under stressful 

conditions by mediating a series of complex communi-
cation events between the plant and the fungus leading 
to enhanced photosynthetic rate (Birhane et al. 2012), as 
well as increased water uptake (Begum et al. 2019); this 
means that AM can help the plant to cope with photo-
synthetic and gas exchange limitations that may occur 
during HP flooding events, as well as to withstand desic-
cation derived from drawdown periods, and waterlogging 
resulting from frequent surface water-level fluctuations.

ERs are mycorrhizas of Erica (heather), Calluna (ling) 
and Vaccinium (bilberry), that is, plants that endure 
moorlands and similar environments where consecutive 
waterlogging and desiccation stages may occur. There-
fore, ER may likely help plants to cope with the repeated 
wetting and drying cycles affecting soil riverbanks in HP 
systems.

ECMs are the most advanced symbiotic association 
between higher plants and fungi, involving the major-
ity of forest trees (Moore 2011), and including common 
riparian species such as Alnus spp., Betula spp. and Salix 
spp. (Iversen et al. 2014; Weemstra et al. 2016; Chen et al. 
2020). ECM symbioses may improve the water status of 
trees under drought conditions, through an increased 
absorbing surface, enhanced hydraulic conductivity at the 
soil–root interface, and hormonal and nutritional effects 
modifying stomatal regulation (Breda et  al. 2006; Brun-
ner et al. 2015). Some ECM fungi have a high resilience 
to drying and, therefore, plants that establish associations 
may increase their tolerance to drought conditions (Jarvis 
et al. 2013) derived from baseflow HP periods.

Main findings, challenges and further research
Plant functional traits can help predict species resistance 
to fluvial alterations derived from HP, and hence to bet-
ter understand the fate of local community structure, 
biodiversity, and ecosystem function in rivers affected by 
the use of this hydropower generation mode. This study 
provides new ideas and hypotheses on how plants may 
respond to HP, and brings together literature items (e.g., 
empirical or theoretical) that were previously discon-
nected. Our effort was to compile data available from 
multiple literature sources on plant functional traits, 
but here synthesized and interpreted to facilitate its use 
in assessing the resistance of riverine plants to common 
HP disturbances (i.e., flooding, water stress, and water 
fluctuations).

The establishment of categories for each functional 
trait has proven to be a challenging task. The type and 
number of categories defined for the traits here pre-
sented are constrained by the information and data 
available in the original sources. For some traits there is 
little data available, while for others the published stud-
ies may be contradictory, making it necessary to establish 
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categories based on expert judgement. Before using the 
information here presented, it is wise to consider if the 
categories as provided here are suitable for the questions 
asked (see Tyler et  al. 2021), or if they should better be 
adjusted or modified. For instance, in our work, three 
categories were defined to classify plants based on their 
resprouting ability: (1) resprouter species; (2) species 
with relative potential to resprout; and (3) non-resprout-
ers. If for research purposes clear cut differences between 
plant species want to be avoided, and rather need to clas-
sify species under a “continuous resprouting spectrum”, 
we may have to switch from qualitative to quantitative-
based categories (e.g., measure species resprouting abil-
ity based on the number, volume, length and/or diameter 
of resprouts). Further improvements in the definition of 
trait categories will benefit any future attempt to rank riv-
erine species based on their resistance to HP disturbance.

Our work addresses a combination of physiological 
(hard) and morpho-anatomical (soft) traits (Hodgson 
et  al. 1999; Zakharova et  al. 2019), and the theoretical 
importance of each of them in helping species to grow 
and survive under HP. In general, the availability of 
data on physiological traits in the literature is substan-
tially lower than for morphological traits. As evidenced 
by Bejarano et  al. (2016), traditionally, information on 
plant traits has focused on morphological characteris-
tics, which were merged into local floras and field guides 
(e.g., Linnaeus 1745; British Ecological Society 1941), 
and much less attention has been paid to physiological 
traits. This fact represents a problem because physiologi-
cal traits are better predictors of species habitat affinities 
than morpho-anatomical traits (see Belluau and Shipley 
2018).

Processes such as the biosynthesis, metabolism, trans-
port, and signal transduction of plant hormones (i.e., 
key regulators of plant growth and development such 
as auxin, cytokinin, brassinolide, gibberellin, ethylene, 
abscisic acid, jasmonate, and salicylic acid; e.g., Li et  al. 
2017; Bhatla and Lal 2018) involved in plant adaption 
to drought, waterlogging and flooding stress have been 
progressively studied (Jia et  al. 2021) in plants. Stud-
ies on signaling pathways linked to plant hydrological 
stress have been conducted in the past using species of 
commercial or scientific interest (e.g., Arabidopsis thali-
ana; Yeung et  al. 2018), but few or none in wild plants, 
including those growing in riparian corridors. The lack 
of these type of experimental studies on riverine plants 
complicates their grouping based on their greater or 
lesser capacity to trigger physiological processes poten-
tially critical to withstand HP. Hence, it still is necessary 
to further clarify how physiological mechanisms operate 
in most riverine plants and, furthermore, how they may 
provide them an advantage in HP environments.

New experiments aimed at understanding stress sign-
aling pathways and hormone synthesis involved in riv-
erine plant resistance to fluvial disturbances would be 
helpful in order to incorporate new physiological traits 
into our analysis framework, and to determine connec-
tions between functional categories and their theoreti-
cal capacity to confer plant resistance to HP. Similarly, 
numerical datasets from such experiments would allow 
shifting from qualitative trait categories to quantitative-
based classification systems.

Due to the reasons stated above, physiological traits 
of interest had to be discarded from our trait set due to 
a lack of information in the scientific literature either to 
define functional trait categories, or to accurately classify 
riverine species under any specific trait  category. Shoot 
growth rate is an example of an understudied trait that 
had to be discarded from this study. Plants that grow fast 
may avoid submergence or at least stay closer to water 
surface to avoid light attenuation, potentially facilitating 
photosynthesis under HP submergence. Plants adopt-
ing the so-called low-O2 escape strategy (Bailey-Serres 
and Voesenek 2008; Voesenek and Bailey-Serres 2015) 
can rapidly produce elongated shoots that emerge out of 
the water functioning as ‘snorkels’. This strategy can help 
plants to restore gas exchange (Voesenek and Sasidharan 
2013; Sasidharan et  al. 2018) when exposed to shallow 
HP inundation, and to avoid erosion, burial, and mud 
coating derived from fast water currents resulting from 
hydropeaks. However, with the exception of some species 
for which submergence‐induced shoot growth responses 
have been studied (e.g., elongation in Rumex palustris 
(Voesenek et al. 2003), there is a lack of information on 
riverine plants’ shoot elongation responses, and there-
fore this trait cannot be currently used for HP assessment 
purposes.

Groups of traits intercorrelated (e.g., He et  al. 2020), 
functionally redundant, and probably common, across 
sets of species within riverine communities should be 
kept in mind when assessing the resistance of species to 
HP. Traits strongly correlated are usually part of major 
plant adaptive strategies (Li et al. 2022), and can be con-
sidered as part of a single spectrum (He et  al. 2020). 
Therefore, having information of part of the traits within 
a spectrum may allow inferring the attributes of the 
remaining traits for which information is not available.

Some of the traits presented in this work are strongly 
correlated. For instance, thick leaf cuticles, dense cover-
ing of trichomes, high leaf mass per area, and reduced 
number of stomata in leaves of xerophytic plants belong 
to the leaf economic spectrum (LES; Reich et  al. 1997; 
Wright et al. 2004), and all of them allow plants to reduce 
water losses under drought conditions (Crang et  al. 
2018). Likewise, the formation of aerenchyma, increased 
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gas exchange through reduced leaf thickness, and chlo-
roplasts that lie directed toward the epidermis are part 
of the low-oxygen escape syndrome (LOES), a strategy 
adopted by some plant species to avoid submergence 
(Bailey-Serres and Voesenek 2008).

Principal components analysis (PCA) and Pearson’s 
correlation coefficients can be used to identify associa-
tions among plant traits (e.g., Bontemps et al. 2017; Fyllas 
et  al. 2020). The application of these methods can pro-
vide a better understanding of trait intercorrelation, and 
improve trait-based index calculations  aimed at deter-
mining riverine plant resistance to HP.

The database here presented can be expanded to cover 
all possible traits related to hydrological and hydrau-
lic processes triggered by HP. Future additions to it may 
include a better understanding of trait–disturbance inter-
actions, as well as additional advantages not reported in 
this work that may likewise confer plants resistance to 
HP disturbance  (Baladrón et al. 2023). Future initiatives 
can also build on our work integrating information on 
traits and species (i.e., filling “(multi-) species by (multi) 
traits” matrices to rank species based on their differential 
tolerance to HP).

Conclusions
Despite its limitations, this study is unique in that it 
comprehensively provides the rationale supporting 
the theoretical resistance of riverine species accord-
ing to the presence/absence of specific functional traits, 
or the expression of a given trait attribute (i.e., value or 
modality taken by each trait). Using trait-based groups 
of species instead of individual species may simplify the 
evaluation of HP impacts on riverine plant communities 
worldwide and guarantee transferability of results across 
regions. Additionally, restoration of river margins suffer-
ing from HP impacts involving revegetation may benefit 
from our study. Revegetation prevents the establishment 
of invasive plant species, reduces the leakage of nutrients 
and sediments from riparian areas, and may increase 
in-stream habitats and stabilize water temperature and 
provide cover for fish and macroinvertebrate communi-
ties (Jowett et  al. 2009; Peng et al. 2014). Consequently, 
correctly selected species for revegetation purposes may 
improve the chances of restoration success (Jowett et al. 
2009; Peng et al. 2014).
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