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Abstract 

Background Treeline ecotones of Mediterranean ecoregions have been affected by the increasing intensity 
and severity of droughts. Even though the effect of droughts on forest dynamics has been widely documented, 
knowledge is relatively scarce of how extreme climate episodes affect the hydraulic structure and, therefore, the phys‑
iology of woody plants. The Mediterranean Andes have experienced an uninterrupted period of drought since 2010, 
including an extremely dry year in 2019 with approximately 80% rainfall deficit. Here, we investigated shifts in wood 
anatomical and physiological traits of Kageneckia angustifolia, an endemic treeline species, in response to this drought 
period.

Methods We evaluated the xylem plasticity of three K. angustifolia populations across their natural distribution 
(31–35° SL) based on anatomical (vessel structure and distribution) and physiological (intrinsic water‑use efficiency) 
variables in the tree rings. We focused on the period 2000–2020 that corresponds to before the megadrought (2000–
2007), (ii) megadrought (2008–2018) and (iii) hyperdrought (2019–2020). The variables were annualized and analyzed 
by linear mixed‑effects models.

Results Our results provide insights to the anatomical and physiological mechanisms underlying the resilience 
of treeline forests to persistent droughts in central Chile. We found that the extreme drought in 2019–2020 triggered 
shifts in vessel size and frequency that increased hydraulic safety. These significant shifts in vessel traits occurred 
in parallel with a decrease in pit aperture area and an increase in water‑use efficiency, further increasing the resilience 
of K. angustifolia to extreme drought stress.

Conclusions Our results revealed coordinated shifts in vessel size and frequency and water‑use efficiency 
in response to the megadrought, thereby reducing vulnerability to hydraulic failure. The apparent resilience of K. 
angustifolia to extreme droughts suggests that this adaptation to drought stress may increase its ability to tolerate 
novel climatic conditions of treeline environments of the Mediterranean Andes, although it is not clear whether these 
adaptations will be sufficient to persist in scenarios that predict intensification of climate stress. Finally, our results 
provide empirical evidence that integrating wood anatomical and physiological traits facilitates the understanding 
of resilience mechanisms that treeline forests develop in the face of increasing drought stress.
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Introduction
Treeline ecotones in upper mountain ecosystems are 
affected by increasing intensity and severity of droughts 
and global warming, especially in Mediterranean ecore-
gions (Garreaud et al. 2020; Cook et al. 2022; González-
Reyes et  al. 2023). Even though the effect of droughts 
on montane ecosystems has been widely documented 
(Granda et  al. 2018; Colangelo et  al. 2021; Matsko-
vsky et  al. 2021; Gazol et  al. 2022), knowledge is rela-
tively scarce of how extreme climate episodes affect the 
hydraulic structure and, therefore, the physiology of 
woody plants. Therefore, it is relevant to understand how 
extreme drought phenomena affect the level of resilience 
of forests in contexts of climate crisis.

Due to the rapid climate changes that Mediterranean 
ecosystems are experiencing and their future predictions 
of intensification (Seager et  al. 2019), upper treelines 
constitute a model system to evaluate resilience capaci-
ties through modifications of xylem anatomical traits 
and physiological processes (Pepin et  al. 2015;  McDow-
ell et  al. 2022). Drought-driven declines in ring growth 
are directly influenced by changes in cellular structure 
of wood, whose xylem structure captures inter-annual 
growth patterns (Fonti et  al. 2010). The xylem anatomi-
cal functional traits provide deeper information than just 
the analysis of the variation in ring widths (Beeckman 
2016; Gennaretti et al. 2022). The size and frequency of 
the vessels (Garcia-Gonzalez et  al. 2016), as well as the 
structure of their interconnections (Mrad et  al. 2018) 
are indicators of the hydraulic conductivity and carbon 
allocation capacities, both at the level of interannual and 
interspecific variations (Cuny et al. 2015; Zwieniecki and 
Secchi 2015). In parallel with temporal changes in vessel 
structure and distribution, intrinsic water-use efficiency 
(iWUE) relates atmospheric carbon uptake through pho-
tosynthesis to water loss through transpiration, reflect-
ing physiological responses to water stress over time 
(Lavergne et  al. 2020; Cherubini et  al. 2021). Therefore, 
by integrating anatomical traits of wood linked to safety 
and hydraulic efficiency with physiological traits of the 
xylem (Pellizzari et al. 2016), it facilitates the understand-
ing of the resilience mechanisms that treeline forests 
develop in the face of extreme climatic events, which is 
the primary purpose of this work (Martínez‐Vilalta et al. 
2023).

In central Chile, treeline ecosystems are susceptible to 
droughts, with incidence in growth, reproduction and 
survival dynamics (Cavieres et al. 2021; Matskovsky et al. 
2021; Tovar et al. 2022). This region, the only one in South 
America with Mediterranean forests, has been experi-
encing increasingly severe and persistent droughts. Since 
2010, precipitation has consistently remained below his-
torical averages (Garreaud et al. 2020), including years of 

extreme drought, such as 2019, where the precipitation 
deficit was approximately 80% (Alvarez-Garreton et  al. 
2021). Forest ecosystems throughout the Mediterra-
nean region of central Chile have been strongly affected 
by these persistent droughts, with significant declines 
in growth (Venegas-González et al. 2023), weakening of 
plant–pollinator interactions (Arroyo et  al. 2020), and 
more extensive areas of forests with symptoms of ‘brown-
ing’ (Miranda et al. 2020). However, the anatomical and 
physiological mechanisms that underpin tree responses 
to persistent and increasingly severe droughts in central 
Chile and other Mediterranean regions are still poorly 
understood.

In this study, we examined shifts in wood anatomical 
and physiological traits of Kageneckia angustifolia, an 
endemic tree species distributed across the treeline in the 
Mediterranean Andes, in response to persistent droughts 
for period 2010–2020. Combining a wide range of ana-
tomical and physiological traits of K. angustifolia wood, 
the following hypotheses were evaluated: the hydraulic 
system of stems is modified by the incidence of persis-
tent droughts, by forming a greater number of vessels but 
with a smaller diameter (e.g.,García-Cervigón et al. 2018; 
Castagneri et  al. 2020) and reducing the inter-vessel 
pit area (e.g., Lens et  al. 2011); and water use efficiency 
(iWUE) increases as the water stress gradient intensi-
fies (e.g.,  Lévesque et  al. 2014; Peñuelas et  al. 2011). To 
explore these hypotheses, we: (i) built tree-ring chronolo-
gies to exactly determine the calendar dating of the ring 
widths and analyze the tree growth rate, (ii) built vessel 
chronologies for the period 2000–2020, and (iii) evalu-
ated temporal variation in vessel features and iWUE pat-
terns in response to droughts of increasing severity.

Materials and methods
Study site and climate
We selected three sites of K. angustifolia across the Med-
iterranean Andes of central Chile (31–35° SL), to cover 
its entire natural distribution. This species, despite hav-
ing a wide distribution ~ 400  km latitude, is limited to 
small forest patches at the treelines of the Mediterra-
nean Andes between 1500 and 2300 m a.s.l. (Piper et al. 
2006). In each site, we took samples of a K. angustifolia 
population, which has the following features: (i) north-
ern population, located in Tulahuen (TUL, −  30.99°S, 
−  70.64°W, 1900  m a.s.l.), with an average annual pre-
cipitation of 100  mm  yr –1 and temperature of 16.5  °C; 
(ii) central population, located in Baños Morales (BM, 
−  33.8° SL, −  70.1° WL, 1800  m a.s.l.), with average 
rainfall of 350 mm  yr–1 and temperature of 14.6  °C; (iii) 
southern population, located in Teno (TEN, −  35.1° SL, 
− 70.5° WL, 1,600 m a.s.l.), has an average annual rainfall 
of 550  mm   yr–1 and a temperature of 12.8  °C (Fig.  1A). 
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The wood anatomy of K. angustifolia populations dem-
onstrates the high dendrochronological potential of the 
species, with semi-porous rings and increasing fiber wall 
thickness in latewood (Fig. 1B).

Sampling and processing of the ring‑width chronologies
We sampled cores from the main stem and lateral branch 
discs closest to the base from 15 to 32 individuals of 
Kageneckia angustifolia at each study site (Table 1). The 
choice of collecting cores or branches of each tree was 
the following criteria: (i) when the main base was larger 
than the lateral branches, collecting with the increment 
borer was preferred, and (ii) when lateral branches were 
of a similar size to the main stem, we collected disks. In 
addition, we avoided selecting trees with damage, pres-
ence of pathogens, or reaction wood. Collections were 
made between February 2021 and April 2022. Wood 

samples were processed according to standard proce-
dures in dendrochronology (Stokes and Smiley 1968). 
Due to the similarity of tree heights within and between 
the study sites (Table 1), it was not necessary to vary the 
sampling point, as recommended by Carrer et al. (2015). 
Tree ring width measurements (RW) were performed 
using a Velmex measuring system with a resolution of 
0.001  mm. The quality of the cross-dating was checked 
with COFECHA software (Grissino-Mayer 2001; Holmes 
et  al. 1986). After building the ring width chronologies, 
we focused on the last two decades (2000–2020) to evalu-
ate the effects of the intense drought that occurred in this 
period on wood anatomy and physiology.

Drought periods
We divided each sample into three periods, which dif-
fer in drought intensity as identified by Garreaud et  al. 

Fig. 1 A Map of three study sites located along gradients of temperature and precipitation in central Chile. Wood sections of K. angustifolia, B 
transversal (10x, bar = 500 µm), C tangential (40x, bar = 100 µm µm), and D radial (40x, bar = 100 µm). E Vessel element (2,200x, bar = 100 µm) 
showing the simple perforation plate and alternate inter‑vessel pits
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(2020) and Alvarez-Garreton et  al. (2021): (i) reference 
period, before the megadrought (BMd: 2000–2007); 
(ii) the megadrought period (Md: 2010–2018), and (iii) 
the hyperdrought period (Hd: 2019–2020) (Fig.  2). We 
restricted the reference period (BMd) to 2000–2007, 
because Cook et al. (2022) showed a significant decline in 
soil moisture starting in 2008.

We further validated the selection of these periods 
by evaluating summer mean maximum temperature 
(Tmax), winter–spring total precipitation (Pp), and the 
Palmer Drought Severity Index (PDSI) (Additional file 1: 
Fig. S1). To evaluate temporal variation in Tmax and Pp, 
we used standardized data from four meteorological sta-
tions close to the three study sites, considering the period 
between 1979 and 2020. We fitted a generalized linear 
model (GLM) to evaluate the effect of the drought period 
on Tmax and Pp using the R function ‘glm’ (Bates et al. 
2015). Comparisons among means for significant effects 
were made using Fisher’s LSD tests (p < 0.05). We found 
statistically significant trends for both variables (Fig.  2). 
PDSI was analyzed using data from the South Ameri-
can Drought Atlas SADA (Morales et  al. 2020). Based 

on percentiles (Px) of PDSI for the period 1901–2020 
for the study region (30.0–35.0° SL, 70.5–71.0° WL), we 
considered the baseline period of 2000–2007, because its 
drought severity was markedly lower than the two subse-
quent periods (Fig. 2C).

Wood anatomical traits
After building ring-width chronologies, we selected a sub-
set of 45 samples (15 per site) to evaluate wood anatomical 
traits (in the case of northern site we included all trees sam-
pled). We choose trees without defects or visible damage 
and without cross-dating problems. Wood samples from 
each individual were softened in a water/glycerin solution 
(4:1) and sectioned along the cross-sectional surface using 
a sliding microtome (Quintilhan et al. 2021). Sections were 
cleared with sodium hypochlorite (20%), dehydrated in 
an alcohol series (30–50%) and then stained with safranin 
(1%) (Santini Jr et al. 2019). We photographed samples with 
a digital camera coupled to an optical microscope (Digi-
tal Microscope Motic, software 2.0) and a magnification 
of 25x. We analyzed wood anatomical traits following the 
International Association of Wood Anatomists (IAWA) 

Table 1 Descriptive statistics for ring width chronologies and wood vessel traits across three populations of K. angustifolia (ring width 
and vessels features) in the Mediterranean Andes of central Chile

*Different letters indicate statistically significant differences between study sites, based on Kruskal–Wallis tests (p < 0.05)

Variables Sites

North Central South

Tree size

DBH ± SD (cm) 13.98 ± 4.56 16.97 ± 5.45 14.11 ± 3.80

Height ± SD (m) 3.75 ± 0.85 4.00 ± 0.55 3.77 ± 0.98

Ring width chronology

Total trees sampled 15 30 32

Total trees in chronology (radii) 15 (24) 26 (43) 26 (49)

Mean ring width ± SD (mm) 1.61 ± 1.01 2.06 ± 1.06 1.40 ± 0.76

Chronology span 1948–2020 1979–2020 1948–2020

Mean age (max–min) 50 (29–73) 28 (24–37) 56 (18–74)

Mean sensitivity 0.564 0.391 0.408

Series intercorrelation 0.568 0.530 0.556

RBar 0.340 0.280 0.305

Expressed population signal 0.941 0.880 0.942

Vessel traits

Total trees studied 15 15 15

Mean vessel area ± SD (µm2) 2650 ± 789a 3144 ± 1007b 3038 ± 978b

Mean vessel frequency ± SD (ind  mm–2) 22.212 ± 6.750a 22.996 ± 7.650a 25.358 ± 8.468b

Mean hydraulic diameter (µm) 61.062 ± 9.264a 67.305 ± 11.270b 66.063 ± 11.274b

Mean Kp (kg m  MPa–1  s–1) 2.814 ± 2.399a 3.817 ± 2.506b 5.738 ± 3.503c

Total vessel measured 18,755 19,644 18,238

Vulnerability index 1.4E−5 ± 1.0E−6a 9.3E−6 ± 1.2E−6b 0.9E−5 ± 2.0E−6b

Chronology span 2000–2020 2000–2020 2000–2020

Mean ring width ± SD (mm) 1.96 ± 1.04b 1.92 ± 1.00b 1.29 ± 0.80a
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standards. Measurements were performed by the ImageJ 
program (version 1.53a for Windows). We focused on ear-
lywood vessels, because they provide better information 
on intra-annual variations of hydraulic traits (Fonti et  al. 
2010). Vessels larger than 40 µm diameter were measured 
in an area of 1.35  mm2. Vessel frequency per  mm2 (VF) and 
mean vessel diameter (VD), were measured for each ring. 
The vulnerability index as the risk of hydraulic failure due 
to vessel characteristics (VI) (Carlquist 1977) was calcu-
lated with the following equation:

Potential hydraulic conductivity (Kp), i.e., potential stem 
conductivity/ratio of stem conductivity, c.f. Hagen–Poi-
seuille law (Sterck et al. 2008), was also calculated with the 
following equation:

(1)VI =
VD

VF

(2)Kp = πρw/128η × VF× DH4

where Kp is the potential specific stem conductiv-
ity (kg m  MPa−1   s−1), η is the viscosity of water at 20 °C 
(1.002 ×  10–3 Pa s at 20 °C), ρw is the density of water at 
20 °C (998.2 kg  m−3 at 20 °C), VF is the vessel frequency 
and  Dh is the hydraulically weighted vessel diameter 
(µm). DH was calculated with the following equation:

where dn is the diameter of each vessel (Sperry et  al. 
1994). According to the Hagen–Poiseuille equation, Dh is 
linked to trade-off of hydraulic safety efficiency, which is 
negatively correlated with cavitation tension and, under 
current dry and hot environmental conditions, has high 
plasticity (Hacke and Sperry 2001).

Inter‑vessel pits
We selected a subset of one wood core for each study 
site to evaluate variations in the inter-vessel pit size. We 

(3)Dh =

N

n=1d
5
n

N

n=1d
4
n

Fig. 2 Climatic variability from 1979 to 2020 in central Chile: A z values of maximum temperature during the austral summer (December 
to February); B z values of precipitation in winter–spring (May–November). In both climatic series, mean values (± SE) across the drought periods 
are showed. C Annual Palmer Drought Severity Index for the study region (30–35°S, 70.5–71.0°W) for the period 2000–2020, with the three drought 
periods highlighted (BMd before megadrought, Md megadrought, Hd hyperdrought). We compared the three periods using percentiles (Px) 
from the period 1901–2020. In addition, we show the spatial variation of the PDSI in exceptional years using data from the South American Drought 
Atlas SADA (Morales et al. 2020)
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selected samples with visibly marked rings and with a 
high correlation with the master series. Each core was 
cut into two small blocks that included the BMd and Hd 
period. We focused the measurements on radial and tan-
gential surfaces (Fig. 1B, C). Samples were dried and fixed 
on aluminum stubs using carbon adhesive tape. Later, 
samples were sputter-coated with a 20-nm-thick gold 
blade using a sputter coater Denton Desk V (Denton Vac-
uum, USA) and analyzed with scanning electron micros-
copy (SEM, JSM 6610-LV, JEOL, Tokyo, Japan). In total, 
we measured 60 randomly selected pits (Fig. 1E), which 
correspond to 20 for each study site and 10 inter-vessel 
pits per period and per study site. The diameter of the 
pits and their elliptical apertures were measured using a 
magnification of 2000–20,000. We divided diameters by 
two to obtain the radius, which we then used to calculate 
the pit area and its aperture area using the ellipse formula 
(π×Li×Wi/4). Finally, we worked on the variables pit total 
area and pit aperture area (Additional file 1: Fig. S1).

Wood intrinsic water‑use efficiency (iWUE)
We selected a subset of 15 cores (5 individuals per study 
site) to analyze the δ13C isotope  composition for the 
period 2000–2020. We cut each core into three wood 
sections, each corresponding to the drought period con-
sidered in this study, e.g., BMd, Md, and Hd. To eliminate 
possible errors in the chemical process due to handling of 
the samples, we removed the upper surface of the wood 
using a sledge microtome (Gärtner and Nievergelt 2010). 
Samples were pooled by period and analyzed with an ele-
mental analyzer–isotope ratio mass spectrometer (Flasha 
EA 112 coupled via Conflo IV to a Delta Plus XP mass 
spectrometer, Thermo Electron, Bremen, Germany). We 
used whole wood instead of cellulose, because previous 
studies on hardwood species showed that material from 
the sapwood is as useful as cellulose for studying environ-
mental effects at a short-term scale (Weigt et  al. 2015). 
Following international standards, we used Vienna Pee 
Dee Belemmnite. The carbon isotope ratio was calculated 
as

We then calculated the wood intrinsic water-use effi-
ciency (iWUE, μmol  CO2  mol–1  H2O), carbon isotope 
discrimination (∆13C, ‰) and intercellular  CO2 con-
centration (Ci, ppm), using the ‘simple’ formulation 
(Lavergne et  al. 2022). We used 25.5‰ as the apparent 
fractionation for wood tissue (Cernusak and Ubierna 
2022). All estimates were calculated using the R package 
‘isocalcR’ (Mathias and Hudiburg 2022) for each period 
and individual, accounting for elevation, mean annual 

δ
13C(‰) =

[(
13C/12Csample

)
/

(
13C/12Cstandard

)
− 1

]
× 1000.

temperature, and ambient  CO2 concentration. Mean 
annual temperature for each period was obtained from 
ERA5 re-analysis (Hersbach et  al. 2020) for each study 
site.

Statistical analysis
To examine variation in wood anatomical and physiologi-
cal characteristics, we fitted linear mixed-effects models 
with drought period (BMd, Md and Hd), DBH (as a proxy 
for tree size), and the two-way interactions between them 
as fixed effects, and individual nested within sites as the 
random effect using the R-package ‘lme4’ (Bates et  al. 
2015)  in software R (R Core Team 2020). We used the 
annualized variables to avoid problems with unbalanced 
data by period (Venegas‐González et  al. 2020), which 
was obtained by dividing the data by 8, 9 and 3 years 
for BMd, Md and Hd, respectively. To meet normal-
ity assumptions, ring width, Kp, and vulnerability index 
were log-transformed prior to analysis; we also log-trans-
formed DBH to linearize its relationships with response 
variables. We assessed model assumptions using the 
‘check_model’ function in the R package “performance” 
(Lüdecke et  al. 2021), which provides visual evaluations 
of the normality of model residuals and random effects. 
Because the full model for wood iWUE and Ci was rank 
deficient, we removed the interaction with study site and 
period. Comparison among means for significant effects 
were evaluated using Fisher’s LSD tests (P < 0.05).

Results
Tree‑ring and vessel trait chronologies
The wood anatomy of K. angustifolia populations dem-
onstrates the high dendrochronological potential of the 
species, with semi-porous rings and increasing fiber wall 
thickness in latewood (Additional file  1: Fig. S2). From 
the 77 trees sampled, 67 were successfully cross-dated 
(87%, r = ∼0.55 and RBar = ∼0.31) and were used to build 
the ring width chronologies for each population (Table 1). 
The northern and southern populations are comprised of 
adult trees with an average age of 53 years with a maxi-
mum age of 74  years, while the central population is 
younger (average age of 22  years). Annual growth, i.e., 
average tree-ring width, is similar across all populations, 
with mean values between 1.40 and 2.06 mm  yr−1.

We built chronologies of wood anatomical traits cov-
ering three periods of increasing drought severity across 
the range of Kageneckia angustifolia in central Chile 
(2000–2020, Fig. 3). In total, we analyzed 56,637 vessels of 
K. angustifolia trees for the period 2000–2020 (Table 1). 
We found smaller vessels, in terms of mean vessel area 
and hydraulic diameter, in the center and southern pop-
ulations. On the other hand, the central and northern 
sites have the highest annual rates of radial growth, but 
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lower vessel frequency, in contrast to what we observed 
in the southern population. The highest value of poten-
tial hydraulic conductivity (Kp) was found in the southern 
population, which was 104% and 50% higher than that of 
the northern and central populations, respectively. Con-
sequently, we found the highest values of the vulnerabil-
ity index in the northern population (Table 1).

Tree responses to drought intensity
We found that wood anatomical and physiological traits 
varied significantly in response to drought severity 
(Additional file 1: Table S1). In general, most of the total 
variation of each wood trait was explained by random 
effects, i.e., variation within study sites and individuals 
(conditional R2: 0.58–0.88; marginal R2: 0.04–0.39). All 
wood traits exhibited a statistically significant response 
to drought intensity. Furthermore, we found that hydrau-
lic diameter (Dh), potential hydraulic conductivity (Kp), 
and ring width (RW) increased with increasing tree size 
(DBH) (Additional file 1: Fig. S3). In addition, the inter-
action between drought period and DBH was statistically 
significant for vessel frequency (VF) and the vulnerability 
index (VI) (Additional file 1: Fig. S4).

With increasing drought severity, radial growth (RW) 
and the vulnerability index (VI) declined significantly 
during the Hd period (Fig. 4A–E). In contrast, vessel fre-
quency (VF) increased in response to drought intensity 
(Fig. 4B). Hydraulic diameter (Dh) and Kp increased dur-
ing the megadrought period (Md), but decreased during 
the hyperdrought period (Hd), reaching values similar to 
those before the start of the megadrought period (BMd) 
(Fig.  4C, E). On other hand, iWUE increased with 
drought severity and was highest in the Hd period 
(Fig.  4F). We found that carbon isotope discrimination 
(∆13C) also declined significantly on both drought peri-
ods, while Ci increased during the Hd period, but not sig-
nificantly (Additional file 1: Table S1, Fig. S5).

We only found significant differences between drought 
periods for inter-vessel pit aperture area, but not inter-
vessel pit total area (Fig.  5, Additional file  1: Fig. S6). 
These differences are attributed to the reduction of the 
pits with respect to their length (19%), width (20.2%), and 
area (37.1%) during the Hd period.

Discussion
In this study, we explored the anatomical and physiologi-
cal mechanisms that underpin the response of a treeline 
forest species of K. angustifolia to increasing drought 
intensity. Our results revealed coordinated shifts in vessel 
size and frequency and water-use efficiency to enhance 
the hydraulic safety. The apparent resilience of K. angus-
tifolia to extreme droughts suggests that this adaptation 
to drought stress may increase its ability to tolerate novel 
climatic conditions at the treeline environments of the 
Mediterranean Andes.

Vessel traits in response to drought intensity
Consistent with previous studies (Barichivich et al. 2009), 
we found that the ring width decreased in response to 
the historic drought of 2019 (Fig. 4). This is likely due to 
the fact that during the formation of tree rings favora-
ble climatic conditions allow for the formation of larger 
diameter vessels, which improves water transport capac-
ity and leads to an increase in tree growth (Garcia-Gon-
zalez et al. 2016; Nola et al. 2020; Gennaretti et al. 2022). 
Our analysis identified evidence of shifts in vessel traits 
in response to drought severity that are consistent with 
greater hydraulic safety, underlying the decrease in ring 
width. Under harsh climate conditions, e.g., low pre-
cipitation and high temperatures, vessel frequency is 
expected to increase and vessel diameter to decrease, 
thereby increasing hydraulic safety as these changes 
reduce the risk of cavitation (Sperry et  al. 2006; Choat 
et  al. 2012; Gea-Izquierdo et  al. 2012; Gleason et  al. 
2016). Particularly after the extreme drought in 2019–
2020, we observed an increase in vessel frequency and 

Fig. 3 Annual variation of A tree ring width (RW, mm  yr−1), B 
hydraulic diameter (Dh, µm) and C vessel frequency (VF, ind  mm−2) 
for the period 2000–2020. The black line is the mean and the shaded 
area is the standard error. Red vertical lines represent the start 
of the megadrought in 2010 and the extreme drought in 2019
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a decrease in hydraulic diameter, both aspects linked to 
increasing hydraulic safety (Fig. 3). These changes in ves-
sel traits likely reduce the vulnerability of K. angustifolia 
to cavitation as evidenced by the decrease in the vulnera-
bility index, which captures vessel diameter to frequency 
ratio (Fig.  3D). However, we also found that during the 
hyperdrougth period (Hd) there was a decrease in poten-
tial hydraulic conductivity, indicating a reduction in 
lumen area, which likely decreases stem (Bryukhanova 
and Fonti 2013). Previous studies focused on conifers 
have shown lower theoretical hydraulic conductivity, 
suggesting a long-lasting process of hydraulic deteriora-
tion in their water transport system, that could be linked 
to crown dieback and a decline in tree vigor (Pellizzari 

et al. 2016; Puchi et al. 2021). Consequently, it is neces-
sary to continue monitoring these populations. Further-
more, we found that the decrease in Dh and Kp observed 
between the Md and Hd periods is not due to ontogeny, 
and rather, could indicate a pre-adaptive response of the 
species to this historical climatic event.

The observed shift towards a greater efficiency of the 
hydraulic safety in response to drought severity could 
be due to the fact that species’ range is restricted to high 
elevations, consistent with the ‘pre-adaptation hypoth-
esis’ (Peñuelas et  al. 2001; De Kort et  al. 2020), where 
tree growth rates are typically lower than species that 
occur at lower elevations (Körner and Hoch 2023). Even 
under normal environmental conditions, tree species of 

Fig. 4 Estimated values of wood anatomical and physiological traits of K. angustifolia populations across drought periods (before megadrought—
BMd: 2000–2007, megadrought period—Md: 2010–2018, hyperdrought period—Hd: 2019–2020. A Ring width (RW, mm  yr−1); B vessel frequency 
(VF, ind  mm−2); C hydraulic diameter (DH, µm); D vulnerability index of the xylem to embolism (VI); E potential hydraulic conductivity (Kp, kg m 
 MPa−1  s−1); F wood intrinsic water‑use efficiency (iWUE; μmol  CO2  mol−1  H2O). Differences between periods for each site were evaluated using 
Fisher’s LSD test (p < 0.05)

Fig. 5 Boxplots of inter‑vessel pit area and inter‑vessel pit aperture area of studied K. angustifolia trees between the periods: A 
before the megadrought (BMd: 2000–2007), and B the hyperdrought period (Hd: 2019–2020). **Indicate significant differences between period 
with p < 0.01
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Mediterranean mountain forests of central Chile have 
exhibited slow radial growth rates, which are lower than 
1.5 mm  yr−1 (Venegas-González et al. 2018; Matskovsky 
et  al. 2021). Moreover, K. angustifolia, as a semi-ring-
porous species, produces earlywood with wider vessels 
(Fig. 1B), which is associated with greater xylem plastic-
ity, which in turn facilitates greater hydraulic efficiency 
(García-González et  al. 2016; Rodríguez-Ramírez et  al. 
2022).

Further supporting the shift towards greater hydraulic 
safety, our results indicate a decrease in pit aperture area 
with increasing drought intensity. The trade-off between 
safe and efficient xylem transport is related to protec-
tion against blockage from cavitation and embolism, and 
low flow resistance for the vascular tissue (von Arx et al. 
2016), which inferred directly changes in pit membranes 
(Wheeler et  al. 2005; Mrad et  al. 2018). Smaller ellipti-
cal pit apertures have been found to be positively cor-
related with enhanced resistance to cavitation (Schmitz 
et al. 2007; Lens et al. 2011; Zhang et al. 2017). Wheeler 
et  al. (2005) found an inverse relationship between the 
pit surface area per vessel and water potential, inducing 
tradeoffs between xylem safety and hydraulic efficiency 
for eleven tree species of the Rosaceae family, the same 
family as that of K. angustifolia (Hacke et al. 2006; Choat 
et  al. 2008; Pittermann et  al. 2010; Lens et  al. 2011). 
Together with the plastic responses of vessel traits to 
increased drought intensity, the decrease in pit aperture 
area supports the idea that K. angustifolia is resilient to 
water stress, which supports the pre-adaptation hypoth-
esis, i.e., that species or populations that evolve in stress-
ful environments have a high capacity to adapt to climate 
change (Li et al. 2018; Xu et al. 2020).

iWUE in response to drought intensity
We found that K. angustifolia increased wood iWUE in 
response to increasing drought intensity. This response 
supports the idea that K. angustifolia exhibits a drought 
avoidance strategy (Martínez-Ferri et  al. 2000), by clos-
ing its stomata to reduce transpiration (Saurer and 
Voelker 2022). In line with our results, declines in tree 
growth and increases in iWUE in other high-elevation 
Mediterranean forests have been observed in recent dec-
ades in response to global change (Andreu‐Hayles et  al. 
2011; Peñuelas et al. 2011; Granda et al. 2014; Wu et al. 
2015). In contrast, forests that have experienced drought-
induced mortality have shown an increase in Δ13C and a 
decrease in iWUE, suggesting higher stomatal conduct-
ance rates (Linares and Camarero 2012; Hentschel et al. 
2014; López et  al. 2021). Therefore, our results suggest 
that K. angustifolia has largely avoided drought induced 
mortality via a reduction in stomatal conductance and 
shift in vessel traits towards greater hydraulic safety. As 

the drought in our study region has continued since 2020, 
it remains unclear the extent to which K. angustifolia will 
be able to continue tolerating water stress.

Conclusions
Our study provides insights to the anatomical and physi-
ological mechanisms underlying the resilience of tree-
line forests to persistent droughts in central Chile. We 
found that the extreme drought in 2019–2020 triggered 
shifts in vessel size and frequency and frequency that 
increased hydraulic safety, thereby reducing vulnerability 
to hydraulic failure. These shifts in vessel traits occurred 
in parallel with a decrease in pit aperture area and an 
increase in water-use efficiency, further increasing the 
resilience of K. angustifolia to drought stress. Therefore, 
our results suggest a high capacity of K. angustifolia to 
tolerate droughts, even though it is not clear whether 
these adaptations will be sufficient to scenarios of greater 
intensification of climate stress in the future. Given 
the extent of the impacts of the megadrought on tree 
growth and productivity of Mediterranean forests in cen-
tral Chile, it is crucial to extend the analysis of drought 
responses to other tree species in these ecosystems, 
which will allow us to test if other high-elevation species 
also exhibit a greater capacity to tolerate droughts. Fur-
thermore, examining non-structural carbohydrate (NSC) 
dynamics during the megadrought may further elucidate 
the capacity of tree species in these ecosystems to endure 
persistent droughts.

Abbreviations
BMd  Before megadrougth
Md  Megadrougth
Hd  Hyperdrought
VF  Frequency of vessels
Dh  Hydraulic diameter
RW  Tree‑ring width
VI  Vulnerability index
Kp  Potential hydraulic conductivity
iWUE  Intrinsic water‑use efficiency

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13717‑ 024‑ 00486‑9.

Additional file 1: Fig. S1. Measurements of length and width of inter‑
vessel pits and their apertures of Kageneckia angustifolia, using different 
zoom x. (A) 3,000x, (B) 9,000x, (C) 11,000x, and (D) 19,000x. The pit total 
area and pit aperture area were calculated as π×Li×Wi/4. Fig. S2. Mean 
index residual chronologies (black series), numbers of series (light gray 
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of Kageneckia angustifolia for (A) North, (B) Central, and (C) South popula‑
tions. All sites had high mean sensitivity (> 0.39) and expressed population 
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indicate statistically significant fits (p < 0.05). Lines and 95% confidence 
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(DH, µm); (D) vulnerability index of the xylem to embolism (VI); (E) 
potential hydraulic conductivity (Kp, kg m  MPa−1  s−1); (F) wood intrinsic 
water‑use efficiency (iWUE; μmol  CO2  mol−1  H2O). Differences between 
periods for each site were evaluated using Fisher’s LSD test (p < 0.05). Fig. 
S4. Estimated values of wood anatomical and physiological traits of K. 
angustifolia populations across study sites and among periods. Lines and 
95% confidence intervals were fitted using linear mixed‑effects models. 
(A) Ring width (mm  yr−1); (B) vessel frequency (VF, ind  mm−2); (C) hydraulic 
diameter (DH, µm); (D) vulnerability index of the xylem to embolism (VI); 
(E) potential hydraulic conductivity (Kp, kg m  MPa−1  s−1); (F) wood intrinsic 
water‑use efficiency (iWUE; μmol  CO2  mol−1  H2O). Differences between 
periods for each site were evaluated using Fisher’s LSD test (p < 0.05). 
Fig. S5. Boxplot of (A) carbon isotope discrimination ∆13C (‰), and (B) 
Ci (ppm) of Kageneckia angustifolia trees. Differences between periods 
for each site were evaluated according to Fisher’s LSD test (p < 0.05). Fig. 
S6. Boxplot of length and width of inter‑vessel pits and their apertures of 
studied Kageneckia angustifolia trees. (A) Pit length, (B) pit width, (C) pit 
aperture length, (D) pit aperture width. * Indicate significant differences 
between period with p < 0.05. Table S1. Parameters of LMMs evaluating 
the effect of drought period, tree size (DBH), and their interaction, on 
wood anatomical and physiological traits of K. angustifolia. Parameters 
are shown for F value (statistic) and P value, marginal R‑squared (Rm

2) and 
conditional R‑squared (Rc

2). Significant P values are shown in * (< 0.05). 
Vessel traits are ring width (RW), vessel frequency (VF), hydraulic diameter 
(DH), vulnerability index (VI) and potential specific stem conductivity (Kp); 
and wood water‑use efficiency (iWUE), carbon isotope discrimination ∆13C 
(‰) and Ci (ppm) of as physiological characteristics. We also included tree 
identity nested in study site as a random effect. RW, Kp, VI, Ci, ∆

13C and DBH 
were log‑transformed prior to analysis to meet assumptions of normality.
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