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Abstract

Introduction: Spatially explicit ecological research has increased substantially in the past 20 years. Most spatial
approaches require the definition of a spatial neighbourhood or the region over which spatial relationships are
modelled or assessed. Spatial neighbourhood definitions impact analysis results, and there are benefits in
considering neighbourhood definitions that better capture ecological processes. The goal of this research is to
present a simple and flexible approach in constraining ecological spatial neighbourhoods using terrain data.

Methods: Using watershed boundaries, we can restrict spatial neighbourhoods from combining populations or
processes that should be separated by terrain effects. We demonstrate the need for ecological constraints by way
of a simulation study and highlight our approach with a case study examining mountain pine beetle
(Dendroctonus ponderosae, Coleoptera; Hopkins) infestation hot spots.

Results: Our results demonstrate how failure to constrain neighbourhoods can lead to errors when the spatial
signals from unrelated populations are mixed. Also, unconstrained spatial neighbourhoods can unintentionally
detect spatial relationships across many scales.

Conclusions: There will be benefits to studies that develop new, ecology-based approaches in defining spatial
neighbourhoods that better illuminate ecological function of phenomena under study.
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Introduction
Spatial ecology has developed over the past two decades
as spatial research questions have intersected with
advancing, geographically explicit technology, such as
global positioning systems [GPS], geographic informa-
tion systems [GIS] and remote sensing. Spatial perspec-
tives to ecological research have proven beneficial (e.g.
Liebhold and Gurevitch 2002), but they have also pre-
sented researchers with new methodological challenges
(e.g. Legendre and Fortin 1989; Legendre et al. 2002). In
response, many good references have been written to
guide ecologists as they collect and analyse spatial data
to explore or generate geographically explicit ecological
hypotheses (e.g. Fortin and Dale 2005; Dormann et al.
2007; Nelson and Boots 2008). Most spatial methods
require an a priori definition of a spatial neighbourhood,

also referred to as a spatial weight matrix or kernel
(Bavaud 1998; Getis and Aldstadt 2002), and results of
analyses are dependent on the spatial neighbourhood
definition (e.g. Moilanen and Nieminen 2002). While
ecologists are aware of the importance of spatial neigh-
bourhood selections (see Fortin and Dale 2005, pages
113 to 118, for discussion of standard approaches), few
definitions capture the ecological function.
Spatial neighbourhoods are commonly categorised as

binary or weighted (O’Sullivan and Unwin 2003, pages
44 to 45). If binary, locations are either part of the same
neighbourhood or not. Binary neighbourhoods, which
are computationally simple and require the least a priori
knowledge, are the most common. Weighted neighbour-
hoods allow the amount of interaction between two
locations within the same neighbourhood to vary based
on proximity or some other measure. Weighting is most
often based on linear distance decay (O’Sullivan and
Unwin 2003, pages 44 to 45). Spatial neighbourhoods
can also be fixed or adaptive (e.g. Aldstadt and Getis
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2006). Fixed neighbourhoods have the same definition
regardless of location in the study area, whereas adaptive
neighbourhoods enable the definition of neighbourhood
to vary over the study area. It may be appropriate to use
adaptive neighbourhood definitions when a study area is
known to have fine scale processes in one region and
coarse scale processes in another. Due to ease of use
and interpretability, most spatial studies use fixed
neighbourhoods.
Within the aforementioned categories of spatial neigh-

bourhoods, there are many possible definitions. A com-
plete enumeration of spatial neighbourhoods is beyond
the scope of this paper. Here, we focus on neighbour-
hood definitions that are most commonly used with
point and areal data, and we refer the reader to O’Sulli-
van and Unwin (2003, pages 41 to 52) for more details.
The majority of studies use definitions based on dis-
tance, k neighbours or contiguity (Griffith 1996).

Distance definitions can be employed by buffering each
location in the study with a radius of a specific distance
(Figure 1a). A binary distance neighbourhood would
assign all locations within the buffer to the same neigh-
bourhood. Distance weighting could also be employed,
and distances used to buffer locations may be variable
or fixed in terms of size (Figure 1.1 in O’Sullivan and
Unwin 2003). When distance neighbourhoods are of
fixed size and when densities vary over space, the num-
ber of locations in each neighbourhood will change.
k-Neighbour definitions are used to create neighbour-

hoods with a constant number of locations in each
neighbourhood (Griffith 1996; Figure 1b). k-Neighbour
statistics are used to identify the nearest data locations
or quantify the distance to a specific number of nearest
neighbours (see Bailey and Gatrell 1995 for further dis-
cussion and equations). For instance, k could equal 10,
and all locations would be assigned neighbourhoods that

Figure 1 Examples of commonly defined neighbourhood definitions. (a) Fixed distance band, 1; (b) k-nearest neighbours; and (c) Voronoi
polygon contiguity. The spatial relationships are defined in matrices. Reading across the rows, one can identify all the spatial locations that are
neighbours for each point.
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include the 10 nearest neighbouring locations. If data
locations are close together in one part of the study area
and far apart in another region, the area associated with
each neighbourhood will change. Some statistical, spatial
measures are more stable when k is constant or larger
than a threshold; for instance, the distribution of the
Getis statistics is known when k ≥ 8, and statistical con-
siderations may make k neighbours a useful neighbour-
hood definition (Ord and Getis 1995).
Contiguity- or adjacency-based neighbourhoods are

based on topology (O’Sullivan and Unwin 2003, pages
43 to 44) and are best described in an application to
spatial data represented as uninterrupted polygons (i.e.
satellite, census or forest inventory data; Figure 1c).
Contiguity is defined based on polygon adjacency or
shared boundaries (Dubin 2009). First-order contiguity
assigns to the same neighbourhood all locations that
share a boundary with a single polygon. Higher-order
contiguity can be defined by including polygons that
share boundaries with any first-order polygon. If data
are represented as points, contiguity can be used to
define neighbourhoods if points are first tessellated
using triangulation or Voronoi polygons (O’Sullivan and
Unwin 2003, pages 50 to 52). Voronoi polygons tessel-
late space so that all locations within a polygon are clo-
ser to the point where the polygon is generated from
than all other points (for further details and equations,
we refer the reader to Okabe et al. 2000). Properties of
neighbourhood structures defined by contiguous Voro-
noi polygons can be a link between the point pattern
and the generating spatial process. For example, com-
plete spatial randomness processes will typically produce
neighbourhood structures with six first-order neighbours
(Okabe et al. 2000). For regular lattices, contiguity defi-
nitions can include all neighbours (queen) or can be
directional, using only neighbours in the north, south,
east and west directions (rook) or only in corner loca-
tions (bishop) (Dubin 2009). Contiguity-based weighted
neighbourhoods can also be weighted, for instance, by
length of shared boundaries.
Exploration of spatial neighbourhood definitions is

often insufficiently explored when conducting analysis.
There are many examples where the definition of spatial
neighbourhood is not even stated in spatial literature. In
part, it can be wise to avoid drawing attention to the
selection of spatial neighbourhood, which is inherently
subjective and easy fodder during the review process.
However, and more importantly, the impact of spatial
neighbourhood has not been fully explored in spatial lit-
erature, and relatively little attention has been given to
appropriate selection of spatial neighbourhoods in ecol-
ogy specifically (Fortin and Dale 2005, pages 113 to
118). The absence of spatial neighbourhood selection
discussions is problematic in ecology given that most

standard definitions were developed outside the disci-
pline. Ecology has unique spatial issues to consider in
selecting spatial neighbourhoods. For example, if the
objective of analysis was to model the spatial diffusion
of mountain pine beetle across a heterogeneous land-
scape, a fixed distance definition of spatial neighbour-
hoods may produce misleading results. Mountain pine
beetle populations disperse along valleys, and mountains
are typically a barrier to dispersion (Robertson et al.
2009a). As such, when modelling diffusion or detecting
hot spots, spatial neighbourhoods should be restricted
within valleys or along the sides of mountains and
should not reach across mountain peaks or ridges. The
underlying issue is that the conceptualisation of space in
most spatial analysis methods is in reference to a two-
dimensional plane when, in reality, topographic relief
structures much of the ecological variation in plant and
animal communities. Neighbourhoods defined by dis-
tance will ignore topography and may aggregate the spa-
tial signals from multiple, unrelated sub-populations.
When study areas are small, it is reasonable to modify

spatial neighbourhoods manually. However, as with many
applied areas of spatial analysis, ecological data sets are
increasingly large, and automated approaches are required
for appropriate spatial neighbourhood delineation. The
goal of this research is to present a semi-automated
approach to the delineation of spatial neighbourhoods that
captures impacts of terrain features on ecological function.
To meet this goal, we use terrain data to delineate water-
sheds and demonstrate how watersheds can be used to
constrain spatial neighbourhoods. Watersheds are useful
because they are often divided by mountain peaks and can
be used to partition terrain that separates species’ popula-
tions. Our general approach is demonstrated through the
application of a local measure of spatial autocorrelation,
Moran’s Ii (Anselin 1995), useful for detecting spatially
explicit hot spots or locations where values are similar and
extreme relative to the mean. We apply our topographic
approach in constraining spatial neighbourhoods to simu-
lated data and a case study identifying infestation hot
spots in epidemic mountain pine beetle populations in
British Columbia, Canada. The methods and results for
the simulation and case study are presented separately.
First, however, we will outline our terrain approach to spa-
tial neighbourhood definition and outline the spatial statis-
tic used in our demonstrations.

Approach to spatial neighbourhood delineation
Our approach in modifying spatial neighbourhoods is to
constrain standard definitions of spatial neighbourhoods,
like distance, by watershed boundaries. The topographic
approach to spatial neighbourhood selection will be
most appropriate where sub-populations are separated
by topographic barriers, when dispersal is constrained
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by mountains, valleys or water bodies, or when samples
from different topographic regions are known a priori
to have unique characteristics. Also, for spatial research
of hydrological applications, a watershed approach has
been shown to be beneficial (Laffan 2002). Our method’s
simplicity is its strength, in which creating more ecolo-
gically meaningful weight matrices is a relatively
straightforward extension to standard techniques, and
constraints are easily implemented in standard GIS soft-
ware packages. Using an elevation model, watershed
boundaries can be delineated. It may be necessary to
remove watershed boundaries in low-lying areas that do
not have terrain high enough to constrain ecological
function. Spatial neighbourhoods can then be defined by
distance, k neighbours or contiguity, but the watersheds
provide a barrier forcing neighbours to be selected from
only within watersheds. More specific steps will be
provided.
There are many good textbooks that outline how to

delineate watersheds using elevation data, and it is not
our aim to replicate these (see Chang 2006, Chapter
15). Briefly, there are four conceptual steps. First, the
direction that water will flow out of each location
(cell) in a digital elevation model [DEM] is calculated
(flow direction). Second, flow accumulation is tabu-
lated as the number of cells that water will flow
through to accumulate in each cell. Third, a stream
network is defined by applying a threshold to the flow
accumulation layer. Selecting the accumulation thresh-
old value is largely subjective. Larger thresholds will
generate smaller watersheds, and threshold selection
enables users to control the scale of watershed delinea-
tion. The accumulation threshold should be set to
ensure that ‘impassable’ terrain is separated by the
watershed boundaries. Also, it is important that each
watershed is large enough to have a sufficient number
of data points to ensure the spatial analysis or that sta-
tistic is robust. In our study, we set the accumulation
threshold to ensure that large terrain features such as
mountain ridges were spatially separated. For further
discussion of the impact of watershed accumulation
threshold selection, we refer to Band (1993). Fourth,
using inputs generated on flow, watersheds are defined
around each stream.
Once watersheds are defined, it is best to assess the

characteristics of the terrain within each watershed. If
the watershed has low variability or maximum elevation,
variation or height of terrain may be insufficient to
impact ecological function, and watershed boundaries
should be dissolved. The remaining watershed bound-
aries may be used to constrain the definition of spatial
neighbourhood in combination with any standard
approach in assigning spatial neighbours.

Moran’s Ii
To show the impact of spatial neighbourhood definition
on spatial analysis and the benefit of the terrain
approach to neighbourhood definition, we undertake
hot spot detection using local Moran’s Ii, a measure of
spatial autocorrelation. Spatial autocorrelation is the
first law of geography which states that all things are
related and that near things more so than far (Tobler
1965). Positive spatial autocorrelation exists when
nearby events are similar. Negative spatial autocorrela-
tion exists when nearby events are dissimilar. Local
Moran’s Ii quantifies spatial autocorrelation for every
location in the study region, differing from its global
counterpart, which generates one summary value for an
entire study area (Anselin 1995).
If the observed values x, i Î {1, ..., n} of a random

variable x are recorded at a set of n data sites, then local
measures of spatial autocorrelation take the general
form of a cross-product statistic:

(1)

where wij is a measure of the spatial relationships of
data sites i and j at a given time, and yij is a measure of
their relationship in attribute space (Getis and Ord
1992; Boots 2002).
For local Moran’s Ii, the attribute relationship in the

cross-product statistic is defined as yij = (xi − x)
(
xj − x

)
and
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where zij = (xi − x) . Positive values of Moran’s Ii indi-
cate positive spatial autocorrelation in values that are
extreme relative to the mean. Negative Moran’s Ii values
indicate a negative spatial autocorrelation in values that
are extreme relative to the mean. When Moran’s Ii
approaches 0, it could be that there is no spatial auto-
correlation or that spatial autocorrelation is present in
values near the mean.
For hot spot detection, a Moran’s scatter plot is useful to

categorise positive and negative spatial autocorrelations
based on the attribute value of a location in relation to the
attribute value of its neighbours. On a Moran’s scatter
plot, the x axis is the attribute value in deviation form and
the y axis is a standardized average of the neighbour values
also in deviation form (Anselin 1995). The upper right
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quadrant indicates high values surrounded by high values
(high-high); the upper left quadrant indicates low values
surrounded by high values (low-high). The lower right
quadrant indicates high values surrounded by low values
(high-low), and the lower left quadrant indicates low
values surrounded by low values (low-low) (see Nelson
and Boots 2008 for details and figure of scatter plot). Mor-
an’s scatter plot can be combined with statistical testing to
determine the significance of spatial autocorrelation.
Expected values of Ii can be derived under the hypothesis
of no local spatial autocorrelation (Sokal et al. 1998); how-
ever, the distribution does not follow a known distribution
(Boots and Tiefelsdorf 2000), and a randomization
approach must be adopted for statistical testing. It should
be mentioned that all local spatial statistics are compli-
cated by the presence of global spatial autocorrelation and
multiple and correlated tests (Boots 2002). As such, statis-
tical significance is usually considered exploratory rather
than confirmatory. In our study, hot spots are defined as
high-high values that are statistically different from config-
urations of data expected by chance.

Methods
Simulation
A simulation study was conducted to examine the theo-
retical impacts of using spatial neighbourhoods con-
strained by terrain. When a broad phenomenon, such as
terrain, influences the mean of a spatial process, land-
scapes exhibit first-order non-stationarity and violate
the assumption of most spatial statistics (Kabos and
Csillag 2002). The aim of the simulation is to examine
the impact of accounting for terrain constraints when
doing spatial analysis on point patterns that exhibit
first-order non-stationarity.
To create a simulated landscape with first-order non-

stationarity, a spatially autocorrelated process was gener-
ated onto a 30 × 30-km grid. Each grid cell value was
drawn from a normal distribution with a mean of 0 and a
spatially structured standard deviation. Standard devia-
tions were estimated with the spatial covariance function
(Ripley 1981) up to a maximum distance of 10 km (i.e.
range parameter) with a standard error of 1 km. The spa-
tially correlated surface was categorised into 5 quantiles
(Figure 2a), representing distinct theoretical landscape
types whereby ecological processes of interest within each
landscape were functionally independent. A 3 × 3 modal-
spatial filter was run over the surface to remove unrealisti-
cally small landscape polygons. Separate autocorrelation
processes were simulated for grid cells in each of the land-
scape polygons, thereby creating first-order homogeneity
within each polygon and non-stationarity across polygon
boundaries (Figure 2b). Points (n = 1,000) were randomly

Figure 2 Simulated point pattern data or landscapes,
geographic regions, and locations of points. This figure shows
(a) the simulated point pattern data or landscapes, (b) the
geographic regions associated with each spatial process within each
polygon type 1, and (c) the locations of points randomized and
attributed with values based on the unique spatial processes.
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allocated to the study area (Figure 2c), and assigned values
were extracted from the grid cells. This process was repli-
cated 99 times to create a total of 99 simulated point pat-
terns with different realisations of the non-stationary
process. These point patterns were used for subsequent
hot spot analysis.
Hot spots were quantified for the simulated data using

local Moran’s Ii. Pseudo-significance was determined via
randomisation using 999 permutations. The spatial
neighbourhoods defined were binary, fixed and based on
distance. Neighbourhoods were defined using constraints
similar to topographic barriers (i.e. only using points
within a landscape polygon to calculate local Moran’s Ii)
and also a standard unconstrained definition (using all
points within the spatial neighbourhood). For both con-
strained and unconstrained neighbourhoods, several dis-
tances were used to explore the impact of the
neighbourhood scale on analysis results. Distances of 2,
5, 10, 15, and 20 km were examined, and the number of
hot spots was tabulated for each of the 99 point patterns.

Case study
Beginning in the mid 1990s, British Columbia became
home to the largest recorded infestation of mountain
pine beetle (Robertson et al. 2009a). The infestation
continues to have substantial impact on pine (Pinus
spp.) forests. Due to infestation severity, many spatial
studies of mountain pine beetle have been conducted,
and standard spatial neighbourhood definitions are typi-
cally employed. Given that mountain pine beetle tends
to spread via valleys and that mountains and large water
bodies can be barriers to dispersal (Robertson et al.
2009b), standard neighbourhood definitions are not
always appropriate. Ideally, neighbourhood relationships
are defined based on knowledge of the ecosystem func-
tioning in the study area. However, landscape scale stu-
dies require large data sets, making manual definition of
spatial neighbourhoods problematic. We hypothesize
that watershed boundaries are ideal for restricting spa-
tial neighbourhoods to represent the ecological charac-
teristics of mountain pine beetle spatial processes as
terrain impediments to dispersal can be captured.
Study area and data
The case study area is the southern portion of the Van-
derhoof Forest District located in central British Colum-
bia. This area of Vanderhoof was chosen due to its
topographic variability, ranging from being flat in the
north to being mountainous in the south. The Vander-
hoof Forest District has experienced epidemic levels of
mountain pine beetle over the last decade (Nelson et al.
2006a).
Vanderhoof Forest District monitors the mountain pine

beetle infestation using point-based, GPS-based aerial
surveys (Nelson et al. 2006a). Aerial surveys of mountain

pine beetle infestations use indicators of pine mortality,
mainly changes in crown foliage colour, to monitor
mountain pine beetle activity. During aerial surveys, clus-
ters of visually infested trees are identified, typically those
with yellow and red crowns, indicating mortality 1 to
2 years prior to infestation, and a GPS is used to map
cluster centres with a point. For each cluster, the number
of infested trees is estimated and the infesting insect spe-
cies, recorded. Attributes have been shown to be accurate
to ± 10 trees for 92.6% of points (Nelson et al. 2006b). In
the current study, there are a total of 14,117 GPS points
representing 170,639 infested trees.
A DEM was used to derive watershed boundaries. The

elevation model had 25-m2 grid cells and was created
from the 1:20,000 scale of Terrain Research Information
Management data (Province of British Columbia 1996).
The data were interpolated using a linear interpolation
process, and the DEM is reported to be accurate within
10 m (Province of British Columbia 1996).
Methods
For the mountain pine beetle example, the first step was
to delineate the watersheds. The elevation model was
clipped to an area that extended 50 km beyond the study
area boundary to ensure watershed boundaries were
defined without edge effects. Watersheds were defined in
both the flat and mountainous terrain throughout the
study area. However, to adequately represent ecological
function, spatial neighbourhoods only need to be con-
strained in mountainous regions; low-lying terrain will
not impact the spatial processes of mountain pine bee-
tles. To select mountainous watersheds, each watershed
was attributed with a maximum elevation. All watersheds
with a maximum elevation ≥ 1,800 m were identified as
regions where the neighbourhood should be adjusted.
The maximum elevation threshold is also subjective, but
in this case, it was based on mountain pine beetle biology
(Safranyik and Carroll 2006).
Binary, fixed spatial neighbourhoods were calculated

using unconstrained and watershed-constrained distance
neighbours. Spatial neighbourhoods were generated
using distances of 1, 5, 10, 15, and 20 km. Using all spa-
tial neighbourhood definitions, local Moran’s Ii statistics
were calculated, and the number of hot spots identified
compared across neighbourhood definitions.

Results and discussion
Simulation
At all distance lags, the number of hot spots detected is
higher for constrained compared with unconstrained
neighbourhoods (Figure 3). A lower number of hot spots
for unconstrained neighbourhoods are the result of
including multiple processes within the same neighbour-
hood. When processes from multiple landscapes are
included in the same neighbourhood and simultaneously
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considered by Moran’s Ii statistic, spatial patterns from
two processes are mixed, and the spatial pattern signal,
masked. This simulation represents an extreme case,
where processes change markedly across polygon bound-
aries. In real landscapes, ecological boundaries are gener-
ally fuzzy, and measurements taken in separate landscape
types may still be correlated. Spatial patterns are always
generated from a mixture of processes. However, even
when patterns generated from multiple processes exhibit
correlation, results of analysis that have inadvertently
mixed processes, for instance multiple dispersal pro-
cesses, may be misleading and lead to an erroneous
hypothesis generation.

Case study
In the mountain pine beetle example, more hot spots
are detected with unconstrained neighbourhoods for all

spatial neighbours defined by distances larger than 1 km
(Figure 4). Figure 5 shows how the locations of hot
spots change when neighbourhoods are constrained. Of
particular note are the linear features along the moun-
tain sides which are identified as hot spots when uncon-
strained and becoming insignificant when constrained.
These results reflect the unique biology of the mountain
pine beetle. Beetles are generally poor fliers and will
only disperse locally up from 1 to 5 km (Barclay et al.
2005). As such, if local dispersal was the single mechan-
ism for beetle movement, only locations within 5 km
from one another that are in the same valley should be
related. However, a small portion of mountain pine bee-
tles are also dispersed over longer distances by wind,
which may cause autocorrelation at longer distances. In
addition, while the mechanism is not fully understood,
mountain pine beetle populations, as well as other

Figure 3 The number of hot spots detected for constrained (light grey) and unconstrained (dark grey) neighbourhoods.
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insects, exhibit spatial synchrony at very large distances
(Aukema et al. 2006). In the case of the mountain pine
beetle, synchronous populations are likely linked to
regional weather patterns as the mountain pine beetle
life cycle is largely temperature dependent. Thus, while
constrained hot spots likely represent local interactions
associated with below-canopy dispersal, unconstrained
hot spots reflect synchronous population fluctuations
due to environmental factors and potentially some
longer-range dispersal (Robertson et al. 2007). From a
management perspective, identifying dispersal hot spots
is likely of most interest in mitigating the spread of bee-
tles. Careful selection of spatial neighbourhoods enables
different aspects and scales of beetle spatial dynamics to
be investigated in the case study.

Conclusions
Neighbourhood definitions will impact results of spatial
analyses. There is an opportunity to develop spatial
neighbourhoods that better consider ecological pro-
cesses. We present an approach to semi-automated spa-
tial neighbourhood definition, which is appropriate
when terrain, particularly mountains and valleys, influ-
ence ecological spatial processes. Once again, the
strength of the terrain-based approach is its simplicity
as it requires only a DEM to implement.
In a simulated environment, we demonstrate that mul-

tiple uncorrelated processes and spatial correlations will
be fewer if spatial neighbourhoods are defined across pro-
cess boundaries. Perhaps even more concerning would be
a less extreme scenario than what we present in our

Figure 4 Hot spot detection using beetle data. The number of hot spots detected for constrained (light grey) and unconstrained (dark grey)
neighbourhood definitions using beetle data.
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simulation. If processes are distinct but spatial patterns
happen to be correlated, the spatial patterns identified as
significant may generate misleading hypotheses. Given
that there are usually a diverse range of processes
impacting the generation of spatial patterns, correlated
data across landscapes with different processes are
expected. The case study provides a more realistic exam-
ple of the importance of spatial neighbourhood selection.
In the mountain pine beetle example, patterns are corre-
lated across topographic barriers. Given multiple disper-
sal processes, the spatial neighbourhood definition
influences the scale of spatial processes that are

investigated. Spatial neighbourhoods constrained by
topography are best used for investigating a local scale
within stand dispersal. Larger unconstrained neighbour-
hoods explore patterns associated with long-distance dis-
persal and spatial synchrony.
Edge effects are another challenge impacting most

spatial analyses. Edge effects that arise as data locations
near the centre of the study area can have neighbour-
hoods defined in all directions, whereas data sites near
the study area extent will only have neighbours towards
the study area centre (O’Sullivan and Unwin 2003, pages
40 to 41). Unless additional data are collected to create

Figure 5 Changes of hot spots. This figure illustrates how hot spots identified in the mountain pine beetle example change when spatial
neighbourhoods are constrained by watershed boundaries.
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a buffer of data outside the study area, edge effects
occur. A few methods (k-function) have sophisticated
edge corrections, but many do not. Edge effects are
beyond the scope of this paper. However, it is important
to point out that creating internal boundaries, as we do
with topographic constraints, creates internal edge
effects.
Further research on appropriate spatial neighbour-

hoods for spatial ecological research will be beneficial.
We hope we have illuminated the issue and provided an
example solution that is flexible. The approach we have
presented to spatial neighbourhoods is primarily appro-
priate when analysing point or areal data. We have not
dealt explicitly with networks or spatial neighbourhoods
for assessing connectivity (i.e. Moilanen and Nieminen
2002).
Thoughtful neighbourhood selection is imperative to

ensuring robust results. Perhaps the most unnerving
result of our research is that regardless of the spatial
neighbourhood used, we were able to describe a spatial
pattern; yet, we have shown how easily one might exam-
ine a process operating at a different scale than the study
or hypothesis is designed to test. At a minimum, explicit
statement and justification of spatial neighbourhood
selection should be standard in peer-reviewed ecological
literature using spatial approaches.
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