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Abstract

technique in laboratory.

Introduction: Soil microbial community plays a crucial role in the ecological processes of soil ecosystem. Forest
species introduction often changes profoundly soil ecological processes in the forest. Larix kaempferi (Lam.) was
introduced to China from Japan as a timber tree species in the 1960s. The activity and functional diversity of soil
microorganisms in the L. kaempferi forest in Dalaoling National Forest Park in Hubei Province, China, was studied
to evaluate the effects of this exotic species on the local soil ecosystems.

Methods: Quadrates were set up randomly in the L. kaempferi forests cultivated in 1990 and 1996 and the surrounding
Pinus armandii forest cultivated in 1990. Soil samples were collected using a soil corer at five locations along the
diagonals in each quadrat. The activity and functional diversity of soil microorganisms were tested using the BIOLOG

Results: The diversity, activity, and carbon utilization pattern of soil microorganism community and soil physicochemical
properties were all impacted by the introduced species. The average well color development (AWCD) and Shannon's
richness index (H) of the soil microorganism community in the L. kaempferi forest decreased with the increase in forest
age and were significantly lower than those in the surrounding native P. armandii forest. The carbon source utilization
pattern of soil microorganism community in a 23-year-old L. kaempferi forest differed significantly from a 17-year-old

L. kaemptferi forest and the P. armandiii forest. The introduced species also resulted in the changes of soil physicochemical
properties. The organic material content, total nitrogen, available nitrogen, and total phosphorus in the soil of

L. kaempferi forest were significantly lower than those in the soil of P. armandii forest.

Conclusions: Introduction and long-time cultivation of L. kaempferi significantly altered the soil microbial functional
diversity and activity and the soil physicochemical properties. The alteration increased with the increase of forest age.

Introduction

Soil microbial community is an essential component of
the soil ecosystem. Soil microorganisms participate
directly in the soil ecological processes including litter
decomposition, humus formation, nutrient transform-
ation and recycle, and waste degradation (De Deyn et al.
2004; Maila et al. 2005; Noah and Robert 2006). Soil
microbial diversity and function are considered as im-
portant indicators for the assessment of soil quality as
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the microbial effects on soil ecological processes could
further influence soil physicochemical properties, seed-
ling regeneration, plant community development, and
biodiversity (Onaindiaa et al. 2013; Owen et al. 2013;
Sharma et al. 2011). The change of plant community in
composition and structure often leads to the changes of
soil microbial community in diversity and function.
These changes would have certain impact on the eco-
logical process of soil system that caused the change of
plant community in turn (Mummey and Rillig 2006;
Patrick 2006; Boudiaf et al. 2013). An introduction of
forest species often changes obviously the composition,
structure, species diversity, and productivity of plant
community (Davies 2011; Omoro et al. 2010; Powell et al.
2013). As a result, the biomass, structure, and function of
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soil microorganism community are also influenced
(Kourtev et al. 2002; Ravit et al. 2003; Chen et al.
2013). However, the effects of introduced forest species
on soil microbial diversity and related ecological pro-
cesses displayed inconsistent patterns as the effects
were determined by many factors including plant
growth characteristic, litter quality and quantity, roots
and root secretions, phenology, climate condition, etc.
(Ehrenfeld 2003; Chen et al. 2005; Steinlein 2013).
Determining the effects of specific exotic plants in de-
tail is critical to the sustainable forest management.

The global need for wood production has led to the
increase of forest species introduction on the basis of
their ability to adapt to local conditions and of their
rapid growth. In 2010, planted forests accounted for 264
million hectares (7 % of the total forest area worldwide),
an increase of 5 million hectares per year since 2005. A
quarter of planted forests are composed of introduced
species (Dodet and Collet 2012). A number of forest tree
species, including Pinus elliottii, Acacia mangium, Thuja
occidentalis, Abies firma, and Larix kaempferi, also have
been introduced to China from abroad for forestry
production in the last century. The introduction has
promoted Chinese timber production in general and also
caused a few ecological problems in some ecosystems,
such as diversity loss and soil degradation (Yang et al.
2010). L. kaempferi, a cold-wet temperate tree species
indigenous to Japan, was introduced to China in the
1960s and has become an important timber tree species
distributed in Heilongjiang, Jilin, Liaoning, Hebei, Shan-
dong, Henan, Jiangxi, and Hubei Province. L. kaempferi
was introduced to Dalaoling National Forest Park (longi-
tude 110° 43" 42"-111° 22" 2", latitude 30° 58" 50" -31°
07" 23"), located in the southwestern Hubei Province in
the late 1970s. Currently, there are over 700 hectares of
L. kaempferi forests within the park as a result of its
rapid growth and expansion. However, there is a report
on biodiversity decline and seedling regeneration failure
on local species (Xiao and Zeng 2005). The objectives of
this study were to (1) determine the effect of the intro-
duction and cultivation of L. kaempferi on the functional
diversity and activity of the soil microbial community,
(2) evaluate the changes in physicochemical proprieties
of soil in the L. kaempferi forest, and (3) analyze the
relationship between the functional diversity and activity
of the soil microbial community and the physicochemi-
cal proprieties of soil in the L. kaempferi forest. The
findings from this study may gain important scientific
insights for forest management in the park.

Methods

Study sites and soil sampling

Experimental plots were established in field sites of three
types of forest in the Dalaoling National Forest Park.
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The forests with close altitude, slope, and aspect in-
cluded L. kaempferi forests cultivated in 1990 and 1996
and the surrounding P. armandii forest cultivated in
1990. P. armandii is a native species which has similar
altitude adaptation with L. kaempferi in the Dalaoling
National Forest Park. Soil samples were collected on 5
August 2013. Five quadrats (5x5 m?®) were set up
randomly at each of the four plot corners and in the
center in a plot. Soil within the top 20-cm depth was
collected using a soil corer at five locations along the
diagonals in each quadrat and mixed thoroughly as a
sample within each quadrat. Half an amount of each
sample was placed directly into a sterile bag and sent to
the laboratory, homogenized, sieved through a 2-mm filter,
and stored in an icebox at 4 °C for microbial analysis. The
other half of the sample was dried in air for physicochemi-
cal analysis.

BIOLOG analysis
A BIOLOG Miicrostation System (BIOLOG Inc., Hayward,
CA, USA) was used to study the metabolic function of the
soil microbial community. The BIOLOG technique
proposes a simple and sensitive way to compare potential
metabolic diversity of soil microbial communities and has
been widely used in assessing microbial metabolic diver-
sity in agricultural soils, forest soils, and under various
vegetations as it represents certain metabolic functions in
the microplates; the outcomes reflected the patterns of
carbon source utilization (Grayston et al. 1998; Preston-
Matham et al. 2002; Zheng et al. 2005; Chen et al. 2013).
We used ECO microplates to compare potential metabolic
diversity of soil microbial communities among the three
plantations. One ECO microplate contained three repli-
cates of 31 different substrates to discriminate the hetero-
trophic microbial community. Five grams of fresh soil
from each sample were suspended in 45 mL of sterile
distilled water in a flask and sealed with silver paper. The
flask containing the soil solution was shaken at 190 rpm
for 20 min at 22 °C. Then, the soil suspension was allowed
to settle for 10 min. Five milliliters of supernatant liquid
was transferred to 45 mL of sterile distilled water in a
flask. The procedure was repeated three times. Five millili-
ters of suspension was diluted 1000 times in a tenfold
dilution series, from which 150 pL of the supernatant was
inoculated to each well of the microplate. The microplates
were incubated in the dark at 28 °C for 10 days, during
which period color development in each well was mea-
sured at the wavelengths of 595 and 750 nm, respect-
ively, every 24 h using an automated microplate reader
(BIOLOG, Hayward, USA) (Classen et al. 2003; Chen
et al. 2013).

The number of carbon substrates used by soil micro-
organisms (S), average well color development (AWCD),
Shannon’s richness index (H), Simpson’s dominance
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index (D), and relative use efficiency of carbon resources
(RUE) were evaluated and used as indicators to assess
the soil microbial functional diversity and activity (Chen
et al. 2013; Boudiaf et al. 2013). The average well color
development reflecting the total ability of microorgan-
isms to use carbon resource was determined using the
method reported by Classen et al. (2003):

AWCD =Y (Ci-R)/n

where C; represents the difference of optical density
(OD) of a sample well recorded at the wavelengths of
590 and 750 nm. R is the optical density of the control
well, and 7 is the total number of the sole carbon sub-
strates (ECO plates n=31). AWCD was treated as 0
when its value was below 0.06.

The number of carbon substrates used by soil micro-
organisms was derived by counting the wells with color
development. Biodiversity was evaluated using Shannon’s
richness index (H) and Simpson’s dominance index (D)
(Wei et al. 2008; Chen et al. 2011):

H = ‘pr InP,,

D = 1—21),-2

where P; is the proportional color development of the
ith well over the total color development of all wells in a
plate.

The RUE reflects the degree of microorganisms to use
a carbon resource. RUE was derived from the ratio of
the optical density of one kind of carbon substrate with
the total optical density of all other carbon substrates
among the seven major carbon substrates including
monosaccharides and glycosides, amino acids, alcohols,
amines, polymerization saccharides, lipids, and organic
acids (Wei et al. 2008).

Determination of soil physicochemical properties

Soil water content (SWC) was determined gravimetri-
cally by weighing the soil sample, drying it in an oven at
105 °C for 24 h, and then re-weighing the sample. Soil
organic matter (OM) was measured using the potassium
dichromate melting method, total nitrogen (TN) by the
semi-micro Kjeldahl nitrogen determination apparatus,
total phosphate (TP) by the NaOH alkali melting method,
total potassium (TK) by the flame photometer method,
available nitrogen (AN) by the diffusion method, and pH
by the precision acidity meter, respectively (Bao 2000).
Five replicates were tested for each forest type.

Data analysis

One-way analysis of variance (ANOVA) was performed
to determine the effects of the introduction and cultiva-
tion of L. kaempferi on the soil microbial diversity and
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function. The parameters used in the analysis included
forest type as an independent factor, the average well
color development, Shannon’s richness index, Simpson’s
dominance index, number of carbon substrates used by
soil microorganisms, and indicators for measuring the
physicochemical properties such as soil organic matter,
total nitrogen, total phosphorus, total potassium, avail-
able nitrogen, and pH as dependent factors, respectively.
All values were expressed as mean + SE. The forest types
included the 23-year-old and 17-year-old L. kaempferi
forests and the P. armandii forest. The Duncan test
method was conducted for multiple comparisons to
assess the significance level of each parameter among
treatments when the main effect was significant.

The structure of the bacterial community was charac-
terized by classifying treatments according to their
substrate utilization patterns using the principal com-
ponent analysis (PCA) (Kourtev et al. 2003). The first
and second principal component variances contained
the information of carbon type and their contribution.
The difference in principal component variances was
used to represent the pattern of carbon utilization. The
PCA results were presented as factor loading plots
(Choi and Dobbs 1999). The relationship between
microorganism diversity and function and soil physico-
chemical properties was determined by the correlation
analysis of the average well color development, Shannon’s
richness index, Simpson’s dominance index, number of
carbon substrates used by soil microorganisms with soil
organic matter, total nitrogen, total phosphorus, total po-
tassium, available nitrogen, and pH, respectively. All above
analyses were conducted using SPSS software (13.0).

Results

Functional diversity and activity of soil microorganism
community

The introduction and long-time cultivation of L. kaempferi
caused a significant change of microorganism community
in diversity and activity (Table 1). The average well color
development (AWCD) and richness index (H) used by
microorganisms in soil microorganism community in the
23-year-old L. kaempferi forest decreased by 7.6 and 1.6 %
in contrast with those in the 17-year-old L. kaempferi
forest. Both of these indicators and the number of carbon
substrates (S) in the 23-year-old L. kaempferi forest were
significantly lower than those in the P. armandii forest
(P <0.05). However, the dominance index (D) did not
differ significantly among forests (P > 0.05).

Principal component analysis of carbon source utilization
The principal component analysis indicated that the
introduction and cultivation of L. kaempferi also in-
duced changes in the soil microorganism community
and the pattern of carbon utilization (Fig. 1). The



Chen et al. Ecological Processes (2015) 4:10

Page 4 of 8

Table 1 Changes of function diversity and activity of the soil microbial community

Forest types AWCD H D S

23-year-old L. kaempferi forest 1.10+£002 a 3234002 a 0.96+£0.00 a 2676+032 a
17-year-old L. kaempferi forest 1.19+£001 b 328+001b 096 +0.00 a 2743+029 ab
Pinus armandii forest 1.22+£002b 329001 b 0.96£0.00 a 27.79+028 b

Note: Values are expressed as mean =+ SE. Significance of the statistical test is reported at P < 0.05
AWCD average well color development, H Shannon’s richness index, D Simpson’s dominance index, S the number of carbon substrates used by

soil microorganisms

percent contribution from the first and second principal
component variances were 83.94 and 8.82 %, respectively.
The three plant communities differed significantly in the
principal component 1 (PC1) and principal component 2
(PC2) (F=95.998, P<0.01; F=195998, P<0.001),
respectively. The 23-year-old L. kaempferi forest differed
significantly from the 17-year-old L. kaempferi forest and
the P. armandii forest in the carbon substrate utilization
pattern; meanwhile, the difference was not significant
between the 17-year-old L. kaempferi forest and the
P. armandii forest.

Twelve of the 31 carbon sources in the BIOLOG ECO
microplates contributed to the PCl. These carbon
sources included 6 organic acid, 2 monosaccharides and
glycosides, 2 amino acids, 1 lipid, and 1 polymeric
carbohydrate (Table 2). Seven carbon sources mainly
contributed to the PC2 and included 2 lipids, 2 mono-
saccharides and glycosides, 1 amino acid, 1 amine, and 1
alcohol. The important carbon sources contributing to
both PC1 and PC2 were organic acid, monosaccharide,
and glycoside, respectively (Table 2). The relative use
efficiency of carbon source (RUE) changed with the type
of carbon source and forest. A high relative use effi-
ciency was found for organic acids and amino acids
ranging from 22.78 to 25.41 %. By contrast, the relative
use efficiency for other five carbon sources was relatively

151 W1990 L. kaempferi forest
@1996 L. kaempferi forest
A Pinus armandii forest

+

PC1(83. 94%)

0.0
-0.5q ;

PC2 (8.82%)

Fig. 1 Principal component analysis of the utilization pattern of
substrate carbon sources

low ranging from 6.09 to 13.72 %. There was significant
difference in the use efficiency for monosaccharides and
glycosides, amines, and polymerization saccharides
among the 23-year-old L. kaempferi forest, 17-year-old
L. kaempferi forest, and the P. armandii forest (P < 0.05)
(Fig. 2)

Soil physicochemical properties

Soil physicochemical properties were also influenced
significantly by the introduction of L. kaempferi (Table 3).
The soil organic matter (OM), total nitrogen (TN), total
phosphate (TP), available nitrogen (AN), and soil water
content (SWC) in the P. armandii forest were all sig-
nificantly higher than those in the L. kaempferi forest
(P <0.05). All physicochemical values of these indica-
tors decreased with the increase of cultivation time.
However, the difference of total potassium (TK) did not
reach significant level among the three forests (P > 0.05).

Relationship between activity and diversity of
microorganism community and soil physicochemical
properties

The average well color development (AWCD) had a very
significant positive correlation with available nitrogen
(AN) and pH (P<0.05). However, there was no strong
correlation among other physicochemical properties and
microbial metabolic activity and function (P> 0.05)
(Table 4).

Discussion

Diversity and activity of soil microorganism community
Introduction of exotic plant species not only influenced
plant community structure but also led to the changes
of soil microbial diversity and function and the soil
physicochemical properties (Kourtev et al. 2003;
Mummey and Rillig 2006). Previous reports showed
that the introduction of exotic species displayed two
patterns, either increased or decreased soil microbial
activity and diversity (Saggar et al. 1999; Callaway et al.
2004). Duda et al. (2003) found that the soil bacterial
diversity in the Halogeton glomeratus community, an
invasive species in the western United States, was
significantly higher than that in native community.
However, many other studies supported the decreasing
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Table 2 The loading matrix of principal components
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PC1 PC2

Carbon sources Classification r Carbon sources Classification r
4-Hydroxybenzoic acid Acids 1.00 D-Xylose Monosaccharides and glycosides 097
D-Malic acid Acids 1.00 L-Asparagine Amino acids 097
Pyruvic acid methyl ester Lipids 1.00 Tween 80 Lipids 0.95
B-Methyl-D-glucose Monosaccharides and glycosides 0.98 Tween 40 Lipids 094
L-Serine Amino acids 097 Phenylethylamine Amines 0.86
D-Galactonic acid y-lactone Polymerization saccharides 0.96 D,L-a-Glycerol Alcohols 0.79
a-Ketobutyric acid Acids 093 Glucose-1-phosphate Monosaccharides and glycosides 0.75
2-Hydroxybenzoic acid Acids 0.87

a-D-Lactose Monosaccharides and glycosides 0.86

L-Arginine Amino acids 0.85

[taconic acid Acids 0.83

D-Glucosaminic acid Acids 0.80

Note: r represents for the loading value of principal components

pattern (Lindsay and French 2004; Valéry et al. 2004; Li
et al. 2006). Chen et al. (2011) reported that the intro-
duction and cultivation of Pinus elliottii significantly
reduced the soil microbial diversity and function com-
pared to those in the native Pinus massoniana forest in
the same region. Yang et al. (2008) found that the soil
bacterial diversity in the L. kaempferi forest was signifi-
cantly lower than that in the surrounding native Pinus
tabulaeformis forest. In this study, we found that the
activity and functional diversity of soil microbial com-
munities in the 23-year-old L. kaempferi forest were
significantly lower than the 17-year-old L. kaempferi
forests and the surrounding P. armandii forest. Therefore,
we concluded that the introduction and cultivation of

2% 23-year-old L. kaempferi forest
17-year—old L. kaempferi forest
30 @ Pinus armandii forest
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-
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Carbon source

Fig. 2 Relative use efficiency of the seven carbon sources including
monosaccharides and glycosides, amino acids, alcohols, amines,
polymerization saccharides, lipids, and organic acids

L. kaempferi negatively influenced the local microbial
activity and diversity. Under this circumstance, this type of
impact increased as the forest stand aged.

Carbon source utilization and soil physicochemical
properties
The cultivation of exotic species often affects soil
ecological processes, especially the litter composition
process (Lindsay and French 2004; Standish et al. 2004;
Rodgers et al. 2008). The biochemical composition of
exotic plant litter significantly differed from that of native
species. The change of soil physicochemical properties
resulting from the litter decomposition would affect the
presence and activity of local microorganisms in the soil
ecosystem, which in turn affected the soil ecological
processes and soil physicochemical properties (Bilgo
et al. 2012; Bragazza et al. 2007; Owen et al. 2013).
Compared to the indigenous plants, the presence of
exotic plants typically leads to the increase in net forest
primary productivity or biomass (Ehrenfeld 2003).
However, the influence pattern of exotic plant on soil
ecological processes was not consistent as exotic plants
affected the soil ecosystem processes through a variety
of mechanisms (Hedge and Kriwoken 2000; Yeates and
Williams 2001; Mack and D’Antonio 2003; van der
Putten et al. 2007). The inhibition of exotic plant
species on soil ecological processes depended on litter
quantity, litter degradation, litter biochemical charac-
teristics, and species ecological characteristics (Allison
and Vitousek 2004; Valéry et al. 2004; Scott et al. 2001;
Wolfe et al. 2008).

The introduction of L. kaempferi forest significantly
changed the carbon source utilization pattern of the soil
microorganism community in Dalaoling National Forest
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Table 3 Changes in soil physicochemical properties under different forests
Forests OM N TP TK AN pH SWC

(9/kg) (9/kg) (9/kg) (g/kg) (mg/kg) (%)
23-year-old L. kaempferi forest ~ 6732+1.79 a 376+007 a 074+002a 181+007a 030+001a 496+006a 6606+553a
17-year-old L. kaempferi forest ~ 7238+296ab  395+0.12ab 064+003b 183+011a 032+007Tab 539+005b 6349+464a
Pinus armandii forest 7622+3.14 b 410+£012b 097+003 ¢ 191+012a 036+002b 535+£008b 8503+259b

Note: Values are expressed as mean * SE. Means followed by the same letter(s) within each column are not significant at P > 0.05

Park. The use efficiency of some carbon sources in the
soil microorganism community in the L. kaempferi forest
differed from those in the P. armandii forest and
decreased with the increases in stand age. L. kaempferi
also caused significant changes in soil physicochemical
properties. Therefore, we concluded that the introduc-
tion and cultivation of L. kaempferi in the Dalaoling
National Forest Park resulted in a decline in soil quality
and soil fertility. The significant relationship between
soil pH and AWCD suggested that L. kaempferi influ-
enced soil activity by changing the soil pH. However, the
detailed mechanism of introduction of L. kaempferi on
soil microbial diversity and function is worthwhile for
further research, such as how the litter affects specific-
ally the composition of microbial community and soil
physicochemical properties and the response of compos-
ition and structure of microbial community to the litter
of exotic species.

Conclusions

Soil ecological process is an important part in the ma-
terial cycle and energy flow of terrestrial ecosystem and
is closely related with vegetation development and suc-
cession (Wardle et al. 2004; Noah and Robert 2006).
Most artificial plantations alter soil ecological process
and cause soil fertility decline and soil degradation,
which is more prominent in exotic species forest
because of their significant effect on soil microbial
community diversity and physicochemical properties
(Lorenzo et al. 2010; Patrick 2006). The long-term

Table 4 Pearson correlation analysis of chemical properties and
microbial function

PCP AWCD H S

OM 0.03 (0.84) —0.02 (0.88) —0.10 (0.54)
TN 0.06 (0.72) 0.16 (0.26) 0.21 (0.15)
TP -0.03 (0.85) 0.07 (0.64) 0.06 (0.70)
TK 0.02 (0.89) 0.03 (0.82) 0.05 (0.75)
AN 0.09 (0.05)* —0.01 (0.96) —0.02 (0.93)
pH 0.50 (0.00)** 021 (0.13) —0.03 (0.84)
SWC 0.03 (0.91) —-0.22 (0.37) 0.09 (0.73)

Note: Pearson correlation coefficients and P values in parentheses
* is significant at P<0.05
** is significant at P<0.001

cultivation of L. kaempferi forest decreased the activity
and functional diversity of soil microorganism commu-
nity in Dalaoling National Forest Park. As a result, the
soil physicochemical properties resulted in a decline in
soil quality. The plant diversity and seedling regener-
ation in L. kaempferi forest was further impacted (Xiao
and Zeng 2005). Modifying the negative effects of in-
troduced forest species on soil ecological process is
crucial to the sustainable forest management. Appro-
priate disturbance could reduce the effects of exotic
plants on the local soil microorganism community (Xu
et al. 2008; Carvalho et al. 2010). Zhang (2001) re-
ported that thinning plantation stands increased soil
microbe quantities, strengthened soil enzyme activities,
decreased bulk density, and enhanced soil total porosity
degree and available nutrients. Our primary field inves-
tigation showed that thinning the L. kaempferi for-
est stands increased the diversity of soil microorganism
communities and improved soil texture (Song et al.
2013). The mechanism that thinning improves soil fertility
is that the increased understory biodiversity after thinning
enhances the increase of quantity and diversity of soil
microbe and, therefore, strengthens bioactivity of soil and
accelerates nutrient cycling of soil (Zhang 2001). The
appropriate thinning approach and frequency and the
response of L. kaempferi forest to thinning are going to be
tested in our future research to provide more information
for the sustainable management of the forest.
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