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Abstract

Introduction: The lagoon is a component of coastal zones, whose populations of autotrophic picoplankton (APP)
remain largely unstudied. These lagoons display high-nutrient productivity and additionally may also be subjected to
anthropogenic activities. This study selected Laguna Macapule, located on the eastern shore in the mid-region of the
Gulf of California, due to the fact that a drainage network servicing the surrounding agricultural region

(>230,000 hectares under cultivation) directs irrigation runoff, shrimp farm effluents, and urban wastewater containing
large quantities of nutrients to be discharged into this lagoon. We propose to identify the APP's response to various
types of environmental and anthropogenic influence in this highly impacted coastal lagoon.

Methods: Two sites (separated by 2.7 km) were monitored from December 2007 to December 2008. One, located at
the entrance to Laguna Macapule (oceanic influence) and the other a discharge canal (eutrophic conditions) inside the
lagoon at El Tortugén.

Results: APP was the numerically dominant phytoplankton fraction (15 x 10° to 620 x 10° cells L") with coccoidal
cyanobacteria as the dominant fraction throughout the year. Peak levels were reached in spring-early autumn and they
were the second largest contributor

to biomass. Abundance of APP cells corresponds to the lagoon’s eutrophic status. Maximum numbers and a higher
average of APP were recorded at the El Tortugdn channel during the warm season (months with SST higher than

24 °C). The general positive relationship of the APP’s annual cycle at both sites as well as a negative relationship

with heterotrophic nanoflagellates (HNF) abundance, supports the idea that natural forcing, in particular sea surface
temperature (SST) is the predominant influences on APP’s seasonal variability.

Conclusions: Distinguishable significant differences in APP abundances and nutrients were recognizable between the
two sites. The interplay of these variables contributed to lower densities of APP in winter and high densities in spring-
early autumn. N:P = ~4 suggests that spring-early autumn abundance of the APP autotrophic component was
sustained by urea from shrimp farm discharge water. Thus, a total nutrient-based approach is likely the most suitable
tool for establishing nitrogen limitation of biological production in Laguna Macapule and similarly impacted
ecosystems around the world.
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Introduction

Autotrophic picoplankton (APP) is recognized as a ubi-
quitous and abundant component of phytoplanktonic
communities (Marshall 2002) represented primarily by
prokaryotic coccoidal cyanobacteria (Flombaum et al.
2013) and prochlorophytes (Chisholm et al. 1988). There
are also small eukaryotes with a potentially large repre-
sentation (Johnson and Sieburth 1982; Jardillier et al.
2010). In the 1970s, high densities of APP were discov-
ered in low-nutrient, temperate oceanic areas (Johnson
and Sieburth 1979; Waterbury et al. 1979). Since then,
most studies have focused on oligotrophic systems,
which corroborated the contribution of APP to pelagic
food webs and their role in carbon and mineral cycling
(Barber and Hiscock 2006; Flombaum et al. 2013). Thus,
the paradigm that APP was important primarily in
oceanic waters was established. Subsequently, abundant
evidence has shown that APP is a major component of
the phytoplankton community in coastal and continental
shelf areas (e.g., Calvo-Diaz and Moran 2006; Linacre-
Rojas et al. 2010; Gunbua et al. 2012). Within coastal
zones, there remains a specific subclass region where
populations of APP, to a great extent, are unstudied.
These are lagoons that display high-nutrient productiv-
ity, as well as those threatened by anthropogenic activ-
ities. Studies of ecosystems affected by eutrophication
and imbalanced N:P ratios provide evidence of large
abundances of APP (>100 x 10° cells L™") (Badylak and
Phlips 2004; Murrell and Caffrey 2005; Gaulke et al.
2010). In nitrogen-limited environments, APP displays a
distinct competitive advantage (Raven 1998); however,
the APP responses to seasonal changes in coastal sys-
tems remain unclear, mainly because there is limited
documentation of the annual cycle.

In the Gulf of California, with numerous lagoons, the
subtropical climate favors seasonal nutrient enrichment
because rainfall is prevalent mainly in the summer,
which leads to rapid nutrients runoff. Many lagoons re-
ceive nutrient inputs from fertilization of shrimp farms
and crop fields, as well as the load derived from urban
settlements that use streams as waste disposal channels.
These sources of nutrient pollutants affect phytoplank-
ton overall abundance and seasonal variability. Laguna
Macapule is one of over 15 coastal water bodies along
coast of Sinaloa. It was selected for this study because it
is impacted by several nutrient sources of disparate
origins. It receives large quantities of nutrients from
irrigation runoff that are collected in a drainage network
servicing the surrounding agricultural region (>230,000 ha
under cultivation), shrimp farm effluents, and urban
wastewater. These nutrient sources should favor micro-
phytoplankton growth; instead, some studies indicate that
smaller, coccoid cyanobacteria and flagellates are the
dominant groups under conditions typified by high
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concentrations of ammonium and low inorganic N:P nu-
trient ratios of less than 16:1 (Poot-Delgado 2006). This
suggested that APP could make an important contribution
to the base of the trophic web structure. At present, there
are no published annual data on the abundance of APP in
Mexican coastal systems in the Gulf of California.

This study is the first compilation and will serve as a
baseline for future surveys that document abundance
and seasonal variability of APP in the Laguna Macapule,
with the aim of understanding the small-size fraction of
the planktonic food web in coastal systems affected by
anthropogenic pressures.

Methods

Study site

Laguna Macapule is a small lagoon (38 km?) in northwest-
ern Sinaloa (25° 18" N, 108° 42" W; Fig. 1) with an average
depth of 2.3 m, a maximum depth of 8 m, and a water
residence time of approximately 2.2 days (Magafia-Alvarez
2004;). Physical and chemical conditions in this part of the
Gulf of California are mainly influenced by wind forcing,
evaporation in warm months, and occasional heavy rain-
fall (Alvarez-Borrego et al. 1978; Castro et al. 2000).
Persistent northwesterly winds lasting from a few hours to
a week or longer in the winter—spring seasons contribute
to lower water temperature and force the initiation of off-
shore coastal upwelling (Martinez-Lépez et al. 2008). This
entrains nutrient-rich water into the area, which is eventu-
ally dispersed into coastal lagoons through tidal action
(Escobedo-Urias et al. 2007). During summer and autumn,
there is advection of oligotrophic tropical water into the
area forced by prevalent southeastern winds (Bernal et al.
2001). The rainy season, from June through October, typ-
ically contributes more than 90% of the annual rainfall
(Magafa-Alvarez 2004).

Inside the lagoon, two sampling points were selected
because of their contrasting characteristics. One site is
located at the inlet of the lagoon, which exhibits open
ocean water conditions year round. The other (El
Tortugdn) is located at the back of the lagoon in front
of a discharge mouth, one of several drainage channels
that enter the lagoon after passing through mangroves.
This natural tidal channel receives discharge from a
small settlement, two shrimp farms, and agricultural
runoff from the backland. This site is strongly influ-
enced by fresh water runoff during the rainy season,
which carries agricultural effluents. Numerous others
shrimp farms are located along the length of the inner
shore of the lagoon.

Sampling procedures and analyses

Monthly samples were taken from December 2007
through December 2008 at the two sampling stations
(2.7 km far away) at high tide. The tides in this lagoon
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Fig. 1 Sampling stations (black circle) in Laguna Macapule from December 2007 through December 2008

have a strong semi-diurnal component with two unequal
flood and ebb cycles every 24.84 h. Tidal amplitude is
about 1.08 m (Martinez-Lopez et al 2007). Sea surface
temperature (SST) was measured with a multiparameter
analyzer (Model U-10, Horiba, Kyoto, Japan). Water
samples were taken with a segmented pipe sampler
(Sutherland et al. 1992) for integrated profiling of the
upper 3 m of the water column. The samples were
filtered (Whatman GEF/E, pore size 0.7 um) and frozen
for later assays of dissolved nutrients. Dissolved inor-
ganic phosphorus (DIP) and urea were assayed accord-
ing to Strickland and Parsons (1972) and Mulvenna and
Savidge (1992), respectively. Ammonium (NHj) was
assayed according to Solérzano (1969). Wind speed data
were obtained from a meteorological station run by the
federal agency Conagua located in the city of Guasave
(25° 33" 45" N, 108° 27" 40" W), which is approxi-
mately 27 km from the lagoon.

Triplicate samples were collected in sterile glass bottles
to quantify APP (phytoplankton <2 pm), autotrophic
nanoplankton, and heterotrophic nanoplankton (2-20 pm).
These samples were preserved with 1% phosphate-buffered
glutaraldehyde. For APP, unstained subsamples (2—6 mL)
were filtered through 0.2-um polycarbonate membranes
(Maclsaac and Stockner 1993). Autotrophic nanoplankton
and heterotrophic nanoplankton subsamples (10—17 mlL)
were filtered through 0.8-pm polycarbonate filters and
counted after primulin staining (Caron 1983). Both filters
were mounted on microscope slides with non-fluorescent

oil, and abundance was determined by epifluorescence mi-
croscopy equipped with a Hg 100-W lamp, blue-light exci-
tation filter cube (exciter BP460 to 490 nm, dichroic mirror
505 nm, barrier 515 nm) and bright line multiband filter
cube (exciter BP360 to 730 nm, dichroic mirror 400 nm,
barrier 420 nm). At least 200 cells were counted from
random fields at x1000 magnifications in each of three
replicate slides. In the case of blooms of autotrophic
nanoplankton (>1 x 10° cells L™), the organisms were iden-
tified to class level, with additional observations of water
samples preserved with 1% lugol under an inverted micro-
scope (Lund et al. 1958). Data on heterotrophic ciliates and
microzooplanktonic organisms, such as microcrusta-
ceans, were collected to assess their impact on the
APP. Abundance was estimated with the Utermohl
technique (Lund et al. 1958). Samples preserved with
1% lugol (final concentration) were allowed to settle
for at least 24 h in sedimentation chambers (10 cm?),
followed by counts at x200 and x400 magnification
under an inverted microscope (Olympus CKX41,
Olympic America, Center Valley, PA).

Statistical analysis

The combined data from both sites and the data from each
site were tested for normal distribution, using the Kolmo-
gorov—Smirnov test (Smith et al. 1998). Distribution of
many variables differed significantly (p <0.05); therefore,
relationships between biological data (abundance of auto-
trophic nanoplankton, heterotrophic nanoplankton, and
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microzooplankton) and various environmental variables
(water temperature, temperature, NHz, DIP, and urea)
were determined using Spearman’s rank correlations ana-
lysis (Zar 1999). Statistical differences between environ-
mental variables and abundance of plankton at the two
sites were tested with the Wilcoxon method for paired
samples (Zar 1999). Monthly abundances of APP were
compared, using the Kruskal-Wallis test. Significance was
set at p <0.05. Statistical analyses were performed with
Statistica 8.0 computer software (StatSoft, Tulsa, OK,
http://statistica.io/products/).

Results

Sea surface temperature in 2008 increased from 17 °C in
January to remain above 28 °C from June through
October, with a peak in July of 32 °C (Fig. 2a). Significant
temperature differences were noted between months at
both sites (Kruskal-Wallis H=24.11; p=0.019) with
slightly higher temperatures (~1.5 °C) at El Tortugén
than at the entrance (Wilcoxon Z =2.03; p = 0.04). Fluc-
tuations of NH; were greatest at the entrance, but simi-
lar seasonal trends prevailed at both stations (Wilcoxon
Z =0.02; p =0.81), with higher concentrations during the
cold months, while N:P (sum of dissolved inorganic
nitrogen to dissolved inorganic phosphorus) ratio
showed values ~4, during spring and up to 5 in early
autumn 2008 (Fig. 2b). The ratio values were lower than
4 for the remaining months. At the entrance, concentra-
tions of DIP above 1.5 puM were recorded from April
through July, with a peak in May. Low concentrations
(mean = 0.9 pM) prevailed for the remainder of the year.
At El Tortugén, higher concentrations than the entrance
were encountered from May through December, with a
peak in June (Fig. 2c). No statistical differences were
found between monthly concentrations at either station
(Kruskal-Wallis H=18.11; p=0.11). An additional spike
in phosphorus was registered in November at El Tortugén
(Fig. 2c). Overall, large variations in concentrations of urea
occurred at both sites (Wilcoxon Z = 2.20; p = 0.028) and
followed the same trend. Concentrations were gener-
ally higher (<35 pM) at the entrance to the lagoon
from April through November, but with extreme
monthly variability (Fig. 2d).

With the exception of May, >90% of all phytoplankton
abundance belonged to the APP (<2 um). Autotrophic
nanoplankton (2-20 pm) rarely exceeded 10% and
microphytoplankton (20-200 pm) was around 0.34% of
total abundance (Table 1). During most winter months,
the concentration of the APP fraction was smaller than
the other two fractions. The entrance had higher abun-
dances of microphytoplankton than the other station
from February through May (Table 1). Autotrophic
nanoplankton included Raphidophyta, Prasinophyta,
Cryptophyta, Euglenophyta, and small Bacillariophyta
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Fig. 2 Seasonal variations of physical and chemical variables at El
Tortugén and inlet to Laguna Macapule sampling stations: a sea
surface temperature (SST), b ammonium (NHZ) and N:P ratio (average
value for the sampling stations), ¢ DIP (POj), and d urea

(diatoms). Blooms of Raphidophyta and Prasinophyta
appeared in March, July, and October.

The APP was largely composed of coccoidal cyano-
bacteria. Eukaryotic picophytoplankton was occasion-
ally detected in July and October. Abundances of
APP ranged from 15 x 10° to 620 x 10° cells L™". The
trend shows highest densities from April through
November. Abundance of APP at the lagoon en-
trance was lower than at El Tortugén during the
warmer months (Wilcoxon Z=2.48; p =0.013). Vari-
ability of APP at El Tortugén was extreme, with
marked decline during the rainy season from July
through September (Fig. 3a), when the SST ranged
from 30 to 32 °C.
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Table 1 Abundance and biomass contribution of the three phytoplankton size classes at two sampling stations in Laguna Macapule

during cold and warm months

El Tortugén
Cold months Warm months
Phytoplankton size fraction Average abundance, x10° Relative biomass (%) Average abundance, x10° Relative biomass (%)
cells L' (SD) cells L' (SD)
0.2-2 pm 164.26 (207.72) 11.70 374.64 (169.16) 2811
2-20 pm 7.86 (2.94) 10.20 12.0 (9.05) 0.89
20-200 pm 0.21 (0.11) 78.10 0.64 (0.54) 71.00
Macapule entrance
0.2-2 pm 84.06 (50.84) 6.54 14864 (30.48) 792
2-20 um 4.33 (1.85) 417 4.66 (341) 044
20-200 pm 0.96 (0.62) 89.29 060 (0.20) 9162
Total average
0.2-2 um 124.16 (151.12) 9.07 261.65 (16541) 17.98
2-20 um 6.09 (2.99) 10.19 833 (7.57) 067
20-200 pm 0.59 (0.58) 7819 0.62 (0.39) 81.35

Densities of heterotrophic nanoflagellates showed a
distinctly different pattern from December through
March than the other categories of microorganisms.
Their abundance peaked at 7.9x10° cells L™ in
December, declining afterward through June and then
remained low (1.44 x 10° cells L™" and 0.34 x 10°) until
the end of the study (Fig. 3b). Significant statistical
differences (Wilcoxon Z=3.04; p=0.002) in density
occurred between sampling stations.

Microzooplankton included small crustacean nauplii,
copepods, rotifers, and heterotrophic ciliates (HC).
Heterotrophic ciliates, mainly composed of oligotrichs,
were the main component of the microzooplankton
community. There were no statistical differences be-
tween sites (Wilcoxon Z = 0.87; p = 0.38). Average abun-
dance at both sites was 26.7 x 10° cells L™". Abundance
at the entrance spiked to 120 x 10® cells L™ in March.
By June, abundance was less than at El Tortugén and
remained low for the rest of the year (Fig. 3c).

The remaining components of the microzooplankton
were <12.3% of the total microzooplankton and did not
show significant differences between the sites (Wilcoxon
Z=0.38; p=0.70). Seasonal densities were lower and
followed the same trend during the cold months. In
May, their abundance collapsed at both sites, but
rebounded in the warm months. Abundance of micro-
zooplankton peaked in June at the entrance, followed by
a peak in August and September at El Tortugén (Fig. 3d),
which coincided with the highest values of precipitation
and relative biomass of autotrophic microplankton
(Fig. 4a, b). Rough estimates of APP biomass in Maca-
pule lagoon varied from 2 to 63% of the phytoplankton
groups and also showed a similar trend to abundance,

with their highest contribution (>20%) taking place from
March to July. Their maximum value was recorded in
April at El Tortugén (Fig. 4). A minor participation of
APP biomass (<20%) was observed at the Macapule
entrance, while ANF exhibited the highest values (0.1-
20%) from December 2007 to February 2008 at both
sites. The combined data set (Laguna Macapule in
Table 2) revealed significant positive relationships be-
tween the APP and temperature, DIP (p <0.1; Table 2),
and heterotrophic ciliates and microzooplankton (p < 0.1;
Table 2). The data set from each site only showed positive
relationship with SST (Spearman p = 0.59 and 0.66 for the
runoff channel and entrance, respectively; p =0.05) and
there was positive correlation with urea at the entrance to
the lagoon (Spearman p = 0.78; p < 0.05) and negative cor-
relation with heterotrophic nanoflagellates in the runoff
channel (Spearman p = 0.57; p < 0.05).

Discussion

Our results confirmed that APP was numerically the
dominant fraction of phytoplankton in this subtropical
lagoon, paralleling other studies that have detected this
dominance in other subtropical and tropical coastal sys-
tems (e.g., Phlips et al. 1999; Agawin et al. 1998; Chang
et al. 2003) and in eutrophic environments (Murrell and
Caffrey 2005; Cai et al. 2007; Gaulke et al. 2010). Rough
estimates of APP biomass in Laguna Macapule varied
from 0.9 to 63% of the phytoplankton groups, with its
highest contribution (>20%) occurring during March—
July; this places AAP as the second largest contributor
to the total phytoplankton biomass being surpassed only
by the autotrophic microplankton contribution. Esti-
mated abundances levels (15-620 x 10° cells L™') are of
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the same order of magnitude as reported values for
global abundances of marine cyanobacteria with the
maximum value being two times greater than the max-
imum value reported for open waters (Flombaum et al.
2013) and four times greater than those values reported
for open waters in Gulf of California’s northern region
(Diaz-Herndndez and Maske 2000). Considering the
global quantitative distribution of Prochlorococcus and
Synechococcus, the most probable scenario is that the
latter would be dominant in Laguna Macapule (Flom-
baum et al. 2013) similar to results from other marine
systems (e.g., Palenik et al. 2006; Zwirglmaier et al.
2008; Taylor et al. 2012). Noticeable differences in abun-
dance and biomass among phytoplankton size classes
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¢ heterotrophic ciliate (HC), and d microzooplankton (MZ). Errors bars account for the success of APP. Some have assigned
indicate standard error temperature and grazing (Agawin et al. 1998; Chiang et

al. 2002; Chang et al. 2003), while others have assigned
nutrient inputs (Murrel and Lores 2004; Barber and
Hiscock 2006; Barber 2007) as controlling factors. Our
results show that all these mechanisms are important.
We found a positive relationship of APP abundance to
temperature, DIP (at Laguna Macapule) and urea (at
Macapule entrance) and a negative relationship to het-
erotrophic nanoflagellates (HNF) abundance (Table 2),
which suggests that grazing could be a potential regula-
tor. However, the functional relationships are complex
and are not readily explained (e.g., the differences be-
tween December/February 2007 and December 2008).
Thus, a different experimental design is necessary in fu-
ture studies to address these questions. Moreover, gen-
etic analyses should be useful in discerning complex
species compositions and ecological interactions in the
communities.
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Table 2 Spearman rank correlation coefficients between autotrophic picoplankton (APP), environmental components of
temperature, ammonia, dissolved inorganic phosphorus (DIP), N:P ratio, and urea and heterotrophic components of nanoplankton
(HNF), ciliates (HC), and microzooplankton (MZ), based on total data (two sampling locations) from Laguna Macapule (n = 26) and

each sampling location (n=13)

Location Environmental variables Biological variables

SST(°C)  Ammonia (UM) DIP (uM) Urea (uM) NP ratio  HNF (cells L") HC (cells L")  MZ (ind L")
Laguna Macapule (combined data set) 0.67* -0.29 0.38%* 031 -0.44* —0.34** 0.40*% 0.36%*
El Tortugon 0.64* -033 033 0.13 -044 —0.60% 034 044
Macapule entrance 0.68* -0.35 0.24 0.80* —-0.40 -042 0.29 0.24

*Significant at p < 0.05; **significant at p < 0.1

The seasonality of APP, at both sites, presented a simi-
larity in the general tendencies. The natural forcing of
SST is the predominant factor in driving seasonal vari-
ability of APP in the lagoon. However, even if this dom-
inant driver was discounted, clear differences remained
in APP abundance and physicochemical variables
between the two sampling stations utilizing a seasonal
referential time frame. These differences likely are a
consequence of a synergistic mixture of natural and an-
thropogenic forcing, manifesting in a complex mosaic
that is difficult to reduce to independent variables
(Bratbak et al. 2011).

Ecologically, many factors contribute to the growth of
one species or functional group over another, including
biologic interactions. Growth and uptake of nutrients by
APP occurred when temperatures were >12 °C, which
demonstrates the determinative pressure exerted by SST
(Sakamoto and Bryant 1998, Chang et al. 2003; Gaulke
et al. 2010). Winter densities of APP were relatively low,
despite temperatures above 16 °C and high inorganic nu-
trient content. This suggests that other variables, such
as grazing or nutrient competition with other photoau-
totrophs, also regulated the abundance of APP at Laguna
Macapule. Grazing is consistent with the negative correl-
ation between heterotrophic nanoplankton and abun-
dance of APP. Heterotrophic nanoplankton are the main
consumers of heterotrophic prokaryotes (bacteria and
archaea) and APP (Rassoulzadegan et al. 1988; Caron et
al. 1991; Detmer et al. 1993), but the latter likely are
more susceptible to predation due to their larger size
(Christaki et al. 1998).

In summer, microzooplankton exhibits a high growth
rate in coastal environments (Urrutxurtu et al. 2003;
Bojanic et al. 2006; Sakka-Hlaili et al. 2007). In Laguna
Macapule, microzooplankton, including ciliates, and
abundance of APP followed similar trends. These sug-
gest that APP was not regulated by grazing pressure
from this group, which is supported by the positive cor-
relation between most zooplankton components and
APP abundance. Thus, it is probable that this pressure
influenced the heterotrophic nanoplankton, explaining
reduction in their abundance from March until the end

of the year. This is consistent with observations in other
systems (Bojanic et al. 2006; Pagano et al. 2006;
Toshikazu and Chieko 2007). Interestingly, dominance
of heterotrophic ciliate grazers during this period
suggests that they are the principal link that transfers
microbial biomass to higher trophic levels. Their dens-
ities are comparable to maximum numbers found in
other eutrophic coastal systems (e.g., Sanders 1987;
Montagnes et al. 1988; Xu et al. 2011). However, specific
studies on grazing are needed to assess this hypothesis.
Seasonal variability of concentrations of nutrient was
multifaceted, with levels of NHj, DIP, and urea having
similar patterns. The variety of possible natural and an-
thropogenic nutrient sources makes it unusually difficult
to isolate and determine their independent contributions
to water quality. Peak concentrations of NHj occur
during autumn/winter, concurrent with fertilizer input
from regional agricultural activity; this previously was
reported in nearby coastal lagoons, such as the Topolo-
bampo system (Ayala-Rodriguez 2008) and the San
Ignacio—Navachiste—Macapule complex (Escobedo-Urias
et al. 1999; Poot-Delgado 2006). These nutrients are
transported to the lagoon by runoff drains (Magaia-
Alvarez 2004; Poot-Delgado 2006; Martinez-Lépez et
al. 2007; Escobedo-Urias 2010) and by atmospheric
transport (Escobedo-Urfas 2010). Analysis results of
NH; data revealed an unexpected lack of statistical
correlation between APP and ammonia. Absence of
correlation does not exclude the possibility of efficient use
by APP that was not revealed due to data limitations im-
posed by a monthly sampling regime. Additionally, during
autumn/winter, entrainment of enriched-nutrient water
from coastal upwelling occurs (Escobedo-Urias et al.
2007). Thus, high concentrations of nitrate, concurrent
with low concentrations of SiO, and high abundance of
diatoms (up to 1.4 x 10° cell L™1) were recorded at the in-
let to Laguna Macapule (Hakspiel-Segura 2009), which
suggests that upwelling events influenced conditions in-
side the lagoon. Year-to-year climate variability related to
El Nino-La Nifia events can affect this region. During the
2008 La Nifia event, stronger northwest winds intensified
coastal upwelling off Laguna Macapule, augmenting the
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potentially favorable situation for the incursion of
nutrient-rich water into the lagoon system (Martinez-
Lépez et al. 2008). Under these conditions, diatoms may
represent an efficient competitive vector for nutrients, act-
ing (in concert with grazing) to limit the APP.

Abundances of APP began to increase in April at both
sampling stations (temperatures >22 °C). At the El
Tortugdn site, APP was about three times higher than
the highest abundances at the entrance, suggesting a re-
sponse to maximum nutrient loading related to agricul-
tural activity during this period (Escobedo-Urias 2010).
During the summer rainy season, a twofold APP decline
was noted simultaneously with a diatom increase
(Hakspiel-Segura 2009). The decline of APP and an in-
crease of diatoms observed at El Tortugén suggest that
episodic nutrient input provides diatoms with a nutrient
uptake advantage. This agrees with observations in simi-
lar ecosystems, where shifts from picoplankton to
diatoms prevail in phytoplankton communities after an
influx of nutrients (Silovi¢ et al. 2012). Observation of
the effects of heavy rainfall and subsequent runoff,
with resultant nutrient input, utilized by fast-growing
diatoms in domination over other phytoplankton
groups (Martinez-Lépez et al. 2007) support this
concept.

Levels of DIP in the lagoon did not show the same sea-
sonal trend reported in 2002 and 2005 (Magafia-Alvarez
2004; Poot-Delgado 2006), when the highest concentra-
tions were recorded during the autumn/winter season or
were associated with the summer rainy season. The peak
of DIP at the entrance of Laguna Macapule preceded that
at El Tortugdn before the rainy season, suggesting that
diatom blooms controlled phosphorus levels, subse-
quent input of organic matter derived from the dia-
toms, and fast regeneration of phosphorus compounds.
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A similar situation was observed during an intense
bloom of the diatom Asterionella glacialis off the coast
of Kalpakkam, Tamil Nadu, India, with decrease in ni-
trate and silicate and increase in phosphate (Satpathy
and Nair 1996). Higher DIP during warming of the
water column, related to a mineralization process, is
common in estuaries and shallow coastal lagoons
(Morris et al. 1981; Pant and Reddy 2001; van der Zee
and Chou 2004).

The phosphorus peak that occurred at the mouth of El
Tortugén channel may be related to its shallow depth.
Rapid mineralization of phosphorus in the sediment
could account for the magnitude of the peak in June.
Strong winds in June likely lifted phosphorus from the
bottom of the water column, reflected in a reduced
Secchi depth and in positive correlation with phosphor-
ous (Spearman; p<0.05) (Fig. 5). Lower N:P ratios
(Hakspiel-Segura 2009) in May than June support this.
Intense reducing conditions often develop in sediments
during warm months, as well as enhanced phosphatase
activity in the water column (Kobori and Taga 1979;
Hoppe 2003) when temperature and microbial activity
are higher (Lai and Lam 2008). This in turn increased
the content of DIP, stimulating APP growth rates
(Timmermans et al. 2005). Based on this pattern, we
suggest that the subsequent rapid decline in DIP in
Laguna Macapule came from uptake by APP and
small phytoplankton that proliferate in the warm
months (Poot-Delgado 2006).

Whether APP has a preference for a specific type of
nitrogen is not clear. Harrison et al. (1996) found that
picophytoplankton prefer NHj;, whereas Glover et al.
(1988) and Bird and Wyman (2003) demonstrated that
they will consume nitrate and nitrite in the absence of
other nitrogen sources. Other studies showed APP
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uptake of nitrogen and phosphorus from a variety of in-
organic and organic compounds (Bjorkman and Karl
1994; Zubkov et al. 2003). Therefore, when NHj is insuf-
ficient to meet N demand, APP utilizes urea as an
organic nitrogen source after internal biological hydroly-
zation to NHj using urease (Berns et al. 1966; Collier et
al. 1999). This is more readily accomplished than uptake
of oxidized forms of nitrogen (Solomon et al. 2010 and
references therein). In Laguna Macapule, urea was more
prevalent than dissolved inorganic forms of nitrogen
during spring-early autumn, suggesting that it served as
a primary source of nitrogen when inorganic nitrogen
was limited (Poot-Delgado 2006). It seems clear that
urea may be an important player in primary production
of this highly impacted lagoon, under limited inorganic
nitrogen conditions.

Spatial differences in urea distribution defined that APP
was positively correlated with urea only at the entrance to
the lagoon (Spearman; p < 0.05). At this site during spring-
early autumn, higher concentrations of urea also corre-
lated with higher abundances of microzooplankton. This
indicates that zooplankton excretion was the urea source
(U'Helguen et al. 2005). However, urea generally is present
in marine waters at levels below 1 uM-N (Solomon et al.
2010), which is substantially lower than observed (up to
35 uM-N), suggesting that this organic nitrogen derives
from an external source and needs to be accounted for
with seasonal variability of nutrient concentrations.

Urea concentrations at Laguna Macapule were compar-
able to other coastal systems where agricultural (Glibert et
al. 2006) or other organic impacts are present (Gutiérrez-
Mendieta et al. 1998). Higher values from March through
October point to effluent discharge from shrimp farms. Urea
is used as a nitrogen fertilizer (Lyle-Fritch et al. 2006) to
stimulate plankton production in the ponds, as well as being
produced by shrimp excretion. Water exchange is a
dominant factor in shrimp production from March
through October, when discharge from >5000 ha of
ponds (Pdez-Osuna et al. 2007) inputs large volumes of
shrimp excretion and feed waste into the ecosystem
(Paez-Osuna et al. 2003). Other sources could be munici-
pal wastes from the city of Guasave (~80,000 inhabitants)
or agriculture where urea-based herbicides or fertilizers
are used. Shrimp farms occur along the margin of the la-
goon, and the effluent enters the lagoon through several
drains. However, the channel at El Tortugén contains only
a limited discharge related to aquaculture activities. Thus,
lagoon’s internal circulation predominantly concentrates
and transports urea toward the lagoon inlet (Escobedo-
Urfas com. pers.) where lower abundances of APP are
present in comparison to El Tortugdn, explaining the
strong presence of urea at the entrance of the lagoon. This
situation is contrary to the original supposition that this
site was less impacted.
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The paradigm of inorganic N being the limiting nutrient
in marine ecosystems apparently is not applicable in the
Laguna Macapule ecosystem since significantly negative
correlation was observed between APP and N:P (Spearman;
p <0.05). This could be explained by their relatively high af-
finity to low NID concentrations (Agawin et al. 2000) or
more likely because it appears that the APP are using or-
ganic nitrogen to overcome limiting conditions (N:P = ~4)
under dissolved inorganic nitrogen concentrations under
1.5 pM. Here, urea seems to be, at least for APP, a crucial
nitrogen source. Urea is one of the regenerated forms of ni-
trogen, thus nutrient availability (internal biogeochemical
rates), not concentration, is more relevant to limitations of
net ecosystem production (Smith 1984). Further investiga-
tion is needed to assess the relative importance of biogeo-
chemical rates and biological interactions in this impacted
lagoon. From the perspective of this study, our results sug-
gest, in agreement with other research teams (Souchu et al.
2010), that a total nutrient-based approach including
dissolved organic nitrogen likely constitutes the most ap-
propriate approach for future studies in this region and
similar ones around the world.

Conclusions

Autotrophic picoplankton were described and quantified
over a complete annual cycle for the first time in the
Gulf of California. APP was the numerically dominant
and the second greatest contributor to biomass of the
phytoplankton fractions throughout the year, reaching
peak levels in spring—early autumn (up to ~0.6 x 10°
cells L™"). The interplay between natural (temperature
and grazing) and anthropogenic forcing’s contributed to
delineate the seasonality of APP, thereby promoting high
densities in the spring—early autumn. The shift to low
abundances of the APP may also result from zooplankton
grazing or nutrient competition. Therefore, microphyto-
plankton blooms occur in winter when they outcompete
APP for nutrient resources. Statistical relationships be-
tween APP and small-size zooplankton groups suggest
that a considerable part of the pool of organic matter is
retained in the microbial loop, instead of passing through
to the productive herbivorous trophic web. Positive rela-
tionship with urea (bottom-up control) from aquaculture
appears to contribute to maintaining high densities of
APP in spring—early autumn. Increase in abundance of
APP with a N:P = ~4 supports that urea is the sustaining
nutrient source for this small size autotrophic component.
Thus, a total nutrient-based approach likely constitutes
the most suitable tool for establishing nitrogen limitation
of biological production in this ecosystem as well as for
improving criteria for management or restoration. Further
investigation is needed to assess the relative importance of
biogeochemical rates and biological interactions in this
impacted lagoon.
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Abbreviation
APP: Autotrophic picoplankton
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