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Abstract

Background: Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action
plan for management of such ecosystems under global climate change and rapid urbanization. This study, therefore,
aims to assess the above- and belowground carbon storage potential of a semi-arid forest ecosystem of Delhi.

Methods: For the study, two forest sites were selected, i.e., north ridge (NRF) and central ridge (CRF). Aboveground
tree biomass was estimated by using growing stock volume equations developed by Forest Survey of India and
specific wood density. Understory biomass was determined by harvest sampling method. Belowground (root) biomass
was determined by using a developed equation. For soil organic carbon (SOC), soil samples were collected at 0–10-cm
and 10–20-cm depth and carbon content was estimated.

Results: The present study estimated 90.51Mg ha−1 biomass and 63.49 Mg C ha−1 carbon in the semi-arid forest of Delhi,
India. The lower diameter classes showed highest tree density, i.e., 240 and 328 individuals ha−1 (11–20 cm), basal area,
i.e., 8.7 (31–40 cm) and 6.08m2 ha−1 (11–20 cm), and biomass, i.e., 24.25 and 23.57Mg ha−1 (11–20 cm) in NRF and CRF,
respectively. Furthermore, a significant contribution of biomass (7.8 Mg ha−1) in DBH class 81–90 cm in NRF suggested the
importance of mature trees in biomass and carbon storage. The forests were predominantly occupied by Prosopis
juliflora (Sw.) DC which also showed the highest contribution to the (approximately 40%) tree biomass.
Carbon allocation was maximum in aboveground (40–49%), followed by soil (29.93–37.7%), belowground or
root (20–22%), and litter (0.27–0.59%).

Conclusion: Our study suggested plant biomass and soils are the potential pools of carbon storage in these
forests. Furthermore, carbon storage in tree biomass was found to be mainly influenced by tree density, basal
area, and species diversity. Trees belonging to lower DBH classes are the major carbon sinks in these forests.
In the study, native trees contributed to the significant amount of carbon stored in their biomass and soils. The
estimated data is important in framing forest management plans and strategies aimed at enhancing carbon
sequestration potential of semi-arid forest ecosystems of India.

Keywords: Semi-arid forest, Carbon pool, Forest management, Species composition, Basal area, Carbon allocation
pattern
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Introduction
Forests play a significant role in the global carbon (C)
cycle and they store large quantities of C in vegetation
and soil (Pan et al. 2011). For example, forests store
638 Gt of C in their ecosystem, with 238 Gt in biomass,
which accounts for 80% of biomass C of terrestrial vege-
tation (FAO 2005). Arid and semi-arid regions cover ap-
proximately 47% of the earth’s surface with an area of
6.5 million km2 and 4357 Mha of global forest cover
(Bastin et al. 2017). The combined effect of climate
change and increase in human population will result in se-
vere droughts, desertification, and land degradations in
these ecosystems (Huang et al. 2012, 2016). This will fur-
ther affect the productivity, biodiversity, soil fertility, and
organic matter composition which in turn reduces their C
storage and sequestration potential. Among the different
abiotic factors, soil water availability is considered as a sig-
nificant variable controlling the soil C storage in arid and
semi-arid ecosystems (Meza et al. 2018). Management
strategies focusing on the C sequestration by restoring the
existing vegetation would be effective in mitigating climate
change and its effects on these ecosystems (Malagnoux et
al. 2007). To date, only a few studies on biomass and C
pools have been carried out in these ecosystems (Bonino
2006; Wagner et al. 2015).
According to good practice guidance developed by the

Intergovernmental Panel on Climate Change (IPCC), the
total C stock in any forest ecosystem is derived from
aboveground biomass (AGB), belowground biomass
(BGB) or roots, forest floor litter biomass (LB) or de-
tritus pool, wood debris, and soil organic matter (SOM).
Therefore, assessment of C stored in these different pools is
crucial to develop a new conservation policy related to C
sequestration and combat climate change. AGB and BGB
are the living pools of C in forests, which contributes
a significant amount of C to the terrestrial ecosystem
(Eggleston et al. 2006). The LB contributes only a
small fraction of C to the terrestrial pool and hence
considered as a minor pool (Ravindranath and Ost-
wald 2008). The largest and very important C pool in
the terrestrial ecosystem is SOM, which contains soil
organic carbon (SOC) and plays a great role in the
cycling of nutrients and C between the lithosphere
and atmosphere (Lal 2005). C pools in various forest
ecosystems are strongly influenced by temperature,
rainfall, topography (Vayreda et al. 2012), forest type
and structure (Wei et al. 2013), tree species compos-
ition (Hu et al. 2015), species diversity (Arasa-Gisbert
et al. 2018), land use changes, and human-induced
disturbances (Canadell et al. 2007). An estimation of
the existing pools of C in different forest types is
hence required in order to make necessary manage-
ment strategies related to C sequestration and storage
(Johnson and Kern 2002).

Around 3.2 million km2, i.e., 12% of the geographical
area, is covered by arid zones of India. In India, biomass
and C stock has been reported for various ecosystems
based on growing stock volume (GSV) data of forest
inventories and appropriate conversion factor related to
both biomass and C (Ravindranath et al. 1997; Lal and
Singh 2000; Chhabra et al. 2002; Manhas et al. 2006;
Sharma et al. 2010; Chaturvedi et al. 2011; Dar and
Sundarapandian 2015; Salunkhe et al. 2018). However,
most of these studies are limited to mainly tropical and
temperate ecosystems of India and a very little infor-
mation is available from semi-arid forests.
Moreover, the urban ecosystem in urban areas plays a

dynamic role in reducing air pollution and sequestration
of atmospheric carbon dioxide (CO2) in their vegetation
biomass and soils. Delhi, considered as one of the most
polluted cities in the world, has a unique forest ecosys-
tem located on ridges. The ridge areas are the extensions
of Aravalli hills in Delhi with a length of 32 km and
serve various ecological, environmental, and social func-
tions. Delhi ridge has been notified as reserved forest,
managed mainly with the objectives of increasing the
forest cover, biodiversity, conservation by public
participation, reduction in monoculture plantations, and
encroachments. Both north and central ridge forests
alone occupied almost 80% of the total forest area of
Delhi. The growing urbanization has led to complete
loss of the vegetation and only a few areas of the forests
have been protected in Delhi. The regeneration of
vegetation is further prevented due to excessive grazing
and encroachments. Since it is very difficult to increase
forest cover in such developed areas, the C sequestration
potential of these forests can be enhanced by
implementing some management strategies focusing on
conservation of forests. However, there is a lack of infor-
mation on biomass and C pools of this unique forest
ecosystem in Delhi. Thus, the main aim of this study
was to assess the above- and belowground pools of C in
a semi-arid forest ecosystem of Delhi. The present
study has the following objectives: (1) to estimate the C
stock in different components (C pools) of a semi-arid
forest ecosystem of Delhi, (2) to estimate the C alloca-
tion pattern in different pools, and (3) to analyze vari-
ous factors influencing the C storage pattern in these
components.

Methods
Study area
The state of Delhi, comprising National Capital Territory
(NCT), lies between 28°24′17“ N and 28° 53′ 00″ N
latitudes and 76° 50′ 24″ E and 77° 24′ 17″ E longitudes
and covers an area of 1483 km2. Physiogeographically, the
area is dominated by river Yamuna, the Aravalli range,
and the plains in between, formed by alluvium deposits of
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recent origin. About 25% of the total area of NCT is in
rural and the remaining 75% is urban. As per Census India
2011, the population of Delhi is 16.8 million with a dec-
adal growth of 21.21%. As per the Land Use Statistics,
Ministry of Agriculture, Government of India (2013–
2014), net sown area, current fallow, and culturable waste-
land is 221.4, 119, and 98.9 km2 covering 15%, 8.07%, and
6.71% of its total geographical area, respectively. Forest’s
land use covers 14.8 km2 with 1% of the total geographical
area. A major chunk of land, i.e., 927 km2 representing
62.85%, is not available for agriculture. With rapid
urbanization in Delhi, there is a continuous decrease in
rural area and agricultural land.
Delhi ridge which is the extension of Aravalli hills is

estimated to be 2.4 billion years old. The ridge recorded
a massive afforestation during nineteenth century and
has been notified as reserved forests under the Indian
Forest Act, 1927. However, due to rapid urbanization,
there was a decrease in ridge forest area between 1920
and 1930. The ridge forest was, then again, declared as re-
serve forest in 1980 in order to limit the anthropogenic ac-
tivities. At present, the recorded forest area of Delhi state is
102 km2, which constitute 6.88% of its geographical area,
with reserve and protected forests comprising 76.48% and
23.52% of total forest area, respectively (FSI 2017). The
forest type is tropical thorny forest (Champion and Seth
1968). The vegetation is mainly dominated by middle
storied thorny trees with open patches having scattered
distribution. The soil type on the ridge has been reported
as sandy loam to loam (Chibbar 1985). Prosopis juliflora
(Sw.) DC, an exotic species, is the dominant tree in the
forest. Acacia nilotica (L.) Delile, Acacia leucophloea
(Roxb.) Willd., Salvadora oleoides Decne, and Cassia fistula
L. are among the commonly found native trees (Sinha
2014; Meena et al. 2016). The commonly growing shrubs in
the forests are Justicia adhatoda L., Capparis sepiaria L.,
Carissa spinarum L., Jatropha gossypifolia L., and Opuntia
dillenii L. Two sites were selected for this study, (1) north
ridge forest (NRF) and (2) central ridge forest (CRF). The
NRF has an area of 87 ha and situated at 28° 36′ latitudes
and 77° 41′ E longitudes. The CRF has an area of 864 ha
and situated at 28° 41′ latitudes and 77° 12′ E longitudes.
The climate of the study area is semi-arid and characterized
by hot-dry summers (April to June), monsoon (July to
October) and cool-dry winters (November to January). The
study area received a total annual precipitation of 720mm
with 31 and 19 °C as mean maximum and minimum air
temperature during 2012 (IMD, 2012). About 87% of the
total rain was received during the monsoon. The soil in the
study sites are dry and sandy in nature.

Phytosociology of the study sites
A total of 15 and 25 plots of 10 × 10m were laid
randomly in NRF and CRF sites respectively. The

phytosociological data of the study sites were collected
during August and September in the year 2012. All the
trees with the diameter ≥ 10 cm DBH (1.37 m above
from the base) occurring in each plot were measured
and identified to the species level. All the trees were
considered as individuals as per Knight (1975) and indi-
viduals with DBH < 10 cm were recorded as seedling/
saplings (Pande et al. 1988). The phytosociological
parameters were evaluated using the standard methods
suggested by Misra (1968). Tree density (TD) was
estimated by dividing the total number of individuals of
a species with a total number of quadrats studied. The
basal area (BA) of each tree was calculated as the ratio
of CBH2 (squared circumference at breast height) to 4π.

Estimation of tree biomass and C stock
To determine the aboveground tree biomass (AGTB), the
GSV (m3 ha−1) of each species was first estimated by using
volume tables or equations (Table 1), determined by For-
est Survey of India (FSI 1996). These equations were
developed using multiple regression methods considering
the DBH along with tree height or form factor. For the
trees where volume equations were not available, the
general or local area-based equations were used. The esti-
mated GSV of the tree was then converted to AGTB (Mg
ha−1) by multiplying GSV with specific wood density (g
cm−3) of the respective species (Rajput et al. 1996). Global
wood density database was used for species-specific wood
density values (Chave et al. 2009; Zanne et al. 2009). The
BGB (fine and coarse roots) was estimated using regres-
sion equations suggested by Cairns et al. (1997) as:

BGB Mg ha−1
� � ¼ exp −1:059þ 0:884� ln AGBð Þ þ 0:284f g

The total tree biomass (TB) (Mg ha−1) is described as
the sum of AGB and BGB.

Understory biomass
The understory biomass, i.e., shrubs (woody species
other than trees with less than 1 m height) and herbs,
was estimated by randomly laying 5 × 5m and 1 × 1m
quadrat for shrubs and herbs, respectively. The shrub
biomass (SB) was estimated by harvesting method,
where 10% of each species of shrub was harvested and
fresh weight of the harvested sample was measured im-
mediately with an electronic balance in the field. For the
herbaceous biomass (HB), all the herbaceous vegetation
falling in 1 × 1m quadrat was harvested and fresh weight
was measured immediately in the field. The representa-
tive samples of both herbs and shrubs were taken to the
laboratory, where they were oven dried at 65 °C for 48 h.
The dry weight of the sample was then estimated.

Meena et al. Ecological Processes             (2019) 8:8 Page 3 of 11



Litter biomass (LB)
The forest LB was estimated by collecting the litter at
quarterly interval using specially designed plastic trays,
laid randomly within 10 × 10m quadrat and pooled for
further analysis. The fresh weight of the litter (leaves
and branches) was taken in the field. The representative
samples were brought to the laboratory where the
samples were oven dried at 65 °C for 48 h and subse-
quently the dry weight was measured.

Soil organic carbon (SOC)
Soil samples were collected during the same period from
each plot at two depths, i.e., 0–10 and 10–20 cm. The
soil samples were collected randomly from three points
from each plot and a composite was made. For SOC
analysis, the soil samples were dried at 50 °C for 24 h
and sieved through a 2-mm sieve. The sieved samples
were further ground in a mortar with pestle and then
analyzed using CHNS Analyzer (Elementar vario).
For bulk density, undisturbed soil samples were collected

with a soil corer of known volume (31.4 cm3) which was
inserted at 0–10 and 10–20-cm depth. The soil samples
were oven dried at 105 °C for 72 h and the dry weight was
measured. The coarse rock fragments if present in the soil
were separated and weighed. SOC stock was calculated for
each layer from 0 to 10 cm and 10–20-cm depth based on
the bulk density and SOC concentration by using the
following equation:

SOC stock Mg C ha−1
� � ¼ Kd � BD� SOC %ð Þ � CF� 10

where Kd is the depth of soil (cm), BD is the bulk den-
sity (g cm− 3), SOC (%) is soil organic carbon, and CF is a
correction factor for coarse fragments (> 2-mm particles)
(Borah et al. 2015).

Estimation of C stock
The C stock of the tree species was determined as:

Carbon MgCha−1
� � ¼ Biomass Mgha−1

� �� C%

where C is the carbon concentration of the corre-
sponding vegetation. Since it was difficult to separate the
different components of the tree for C estimation, a uni-
versal coefficient of 0.475 was used for tree C estimation
(Raghubanshi 1991; Singh and Chand 2012), indicating
approximately 47.5% of C in dry plant biomass (West-
lake 1963). The understory (shrubs and herbs) and forest
LB was estimated to be 50% of the biomass (Dar and
Sundarapandian 2015).
The total ecosystem C was taken as the sum of C con-

tent in all the pools, i.e., AGB, BGB, SB, HB, LB, and SOC.

Statistical analysis
All the statistical analyses were done using the SPSS
software package (SPSS version 16, SPSS Inc., Chicago 1
L, USA). The independent t tests were performed to test

Table 1 Volume equation and wood density of tree species

Tree species Volume equation* Wood density (g cm−3)**

Acacia leucophloea (Roxb.) Willd. sqrt V = − 0.00142 + 2.61911D − 0.54703 × sqrt D 0.9

A. modesta Wall. sqrt V = − 0.00142 + 2.61911D − 0.54703 × sqrt D 0.9

A. nilotica (L.) Delile sqrt V = − 0.00142 + 2.61911D − 0.54703 × sqrt D 0.9

Albizia lebbeck (L.) Bent. V = 0.00471 + 1.79326D2 0.53

Azadirachta indica Juss. V = 0.00471 + 1.79326D2 0.7

Bauhinia purpurea L. V = 0.00471 + 1.79326D2 0.67

Butea monosperma (Lam.) Taub. V = 0.00471 + 1.79326D2 0.48

Cassia fistula L. V = 0.066 + 0.287D2 0.64

Cordia dichotoma G. Forst. V = 0.00471 + 1.79326D2 0.53

Crateva religiosa Forst.f. V = 0.00471 + 1.79326D2 0.53

Ficus drupacea Thunb. sqrt V = 0.03629 + 3.95389 × D − 0.84421sqrt D 0.39

F. racemosa L. sqrt V = 0.03629 + 3.95389 × D − 0.84421sqrt D 0.39

Holoptelea integrifolia Planch. V = 0.00471 + 1.79326D2 0.64

Pithecellobium dulce (Roxb.) Benth. V = 0.00471 + 1.79326D2 0.5

Pongamia pinnata (L.) Pierre V = 0.00471 + 1.79326D2 0.82

Prosopis juliflora (Sw.) DC V = 0.00471 + 1.79326D2 0.73

Salvadora oleoides Decne. V = 0.00471 + 1.79326D2 0.59

Syzygium cumini (L.) Skeels. V = 0.00471 + 1.79326D2 0.69

*(FSI 1996)
**(Zanne et al. 2009)
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the significant differences in TD, BA, AGTB, BGB, SB,
HB, and C content between NRF and CRF. For SOC, the
significance was tested between the two forest sites and
at different depths among a forest. The significance was
tested at p < 0.05.

Results
Forest’s tree stand and biomass
TD and BA in different DBH classes are shown in Fig. 1a
and b, respectively. While the total TD was high in the
CRF (684 individuals ha−1) than NRF (633 individuals
ha−1), most of the trees in CRF are distributed in lower
DBH classes. In NRF, the distribution of the trees on the
basis of the DBH class was wider with comparatively
higher TD in DBH above 60 cm. In both the sites, indi-
viduals within diameter class 11–20 cm were dominated
with TD of 240 and 328 individuals ha−1 in NRF and
CRF, respectively. The maximum BA was contributed by
individuals in DBH class 31–40 cm (8.87 m2 ha−1) in
NRF and 11–20 cm (6.08 m2 ha−1) in CRF site. The dis-
tribution of TB in different DBH classes is shown in
Fig. 2c. The maximum biomass was observed for trees
belonging to DBH class 11–20 cm in both NRF (24.25
Mg ha−1) and CRF (23.57Mg ha−1). The species-wise
contribution to the TB in both forests is given in Table 2.
Highest contribution (~ 40%) was observed by P. juliflora,
having maximum biomass at both sites (44.39 and 28.68
Mg ha−1 in NRF and CRF, respectively). The other associ-
ated tree species also contribute significantly to the total
TB like Acacia leucophloea (18.31 and 11.55Mg ha−1 in
NRF and CRF, respectively), Pongamia pinnata (L.) Pierre
(8.22 and 3.26Mg ha−1 in NRF and CRF, respectively), and
Azadirachta indica Juss. (6.72 and 3.12Mg ha−1 in NRF
and CRF, respectively).

Biomass in different components or pools
The biomass in the different components of the two dif-
ferent study sites is given in Table 3. The AGTB for
NRF and CRF was estimated as 75.24 and 44.95Mg ha−1

and BGB was 32.61 and 24.25Mg ha−1, respectively
(Table 3). The TB, AGTB, and BGB were significantly
different between the two forest sites (p < 0.05). The
understory biomass (shrubs and herbs) was 1.63 and
1.29Mg ha−1 in NRF and CRF, with a mean of 1.46Mg
ha−1. The SB was estimated to be 1.15 and 0.80Mg ha−1

in NRF and CRF, with a mean of 0.98Mg ha−1. The HB
ranged from 0.48 to 0.49Mg ha−1 in NRF and CRF, with
a mean of 0.49Mg ha−1. However, we did not find a
significant difference (p > 0.05) for the biomass of SB
and HB between the two forests. The forest LB was
significantly higher in CRF (0.64Mg ha−1) as compared
to NRF (0.40Mg ha−1), with the mean of 0.52Mg ha−1.
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Fig. 1 Distribution of tree a density, b basal area, and c biomass in
DBH classes. DBH diameter at breast height, NRF north ridge forest,
CRF central ridge forest

Fig. 2 Contribution of carbon in different pools. AGB aboveground
biomass, BGB belowground biomass, LB litter biomass, SOC soil
organic carbon
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Allocation pattern of C in different pools
The C content in different compartments (pools) in both
forests is given in Table 4 and the pattern of allocation is
shown in Fig. 2. Maximum C allocation was observed in
AGB pool (sum of AGTB, SB, and HB) contributing 49.02
and 40.54% in NRF and CRF, respectively, to the total for-
est C stock. This was followed by SOC pool, with an allo-
cation of 29.93 and 37.7% in NRF and CRF, respectively.
BGB contributed 20.77 and 21.26% of C in NRF and CRF,
respectively, followed by LB with an allocation of 0.27 and
0.59% of C in NRF and CRF, respectively. Within the se-
lected forest sites, the C storage was found to be high in
AGB (36.56Mg C ha−1), BGB (15.49Mg C ha−1), and SOC
(74.57Mg C ha−1), pools in NRF than CRF, whereas the C

storage in the LB was high in CRF (0.32Mg C ha−1) as
compared to NRF (0.2Mg C ha−1).
SOC was found to be high in upper (0–10 cm) as com-

pared to lower soil layers (10–20 cm) in both forest sites
(Table 5). The SOC stock at 0–10-cm depth was esti-
mated to be 26.60 and 24.36Mg C ha−1 in NRF and CRF
sites, respectively. The SOC stock at 10–20-cm depth
was estimated to be 18.04 and 16.50Mg C ha−1 in NRF and
CRF sites, respectively. The mean SOC stock from 0 to
20-cm depth was estimated to be 22.32 and 20.43Mg C ha−1

for NRF and CRF sites, respectively. The SOC stock both in

Table 2 Biomass and carbon content in different tree species

Plant species AGTB (Mg ha−1) BGB (Mg ha−1) TC (Mg ha−1)

NRF CRF NRF CRF NRF CRF

Acacia leucophloea (Roxb.) Willd. 13.03 8.03 5.28 3.52 8.7 5.49

A. modesta Wall. 0.17 – 0.10 – 0.13 –

A. nilotica (L.) Delile – 10.25 – 4.58 – 7.04

Albizia lebbeck (L.) Bent. 2.29 – 0.96 – 1.54 –

Azadirachta indica Juss. 4.59 2.09 2.13 1.03 3.19 1.49

Bauhinia purpurea L. 0.14 – 0.09 – 0.11 –

Butea monosperma (Lam.) Taub. 0.12 0.61 0.07 0.36 0.09 0.46

Cassia fistula L. 0.29 0.03 0.18 0.02 0.22 0.02

Cordia dichotoma G. Forst. 0.54 – 0.28 – 0.39 –

Crateva religiosa Forst.f. 0.15 – 0.09 – 0.12 –

Ficus drupacea Thunb. – 3.07 – 1.34 – 2.09

F. racemosa L. 0.90 – 0.46 – 0.65 –

Holoptelea integrifolia Planch. 10 – 3.83 – 5.14 –

Pithecellobium dulce (Roxb.) Benth. 0.21 – 0.12 – 0.16 –

Pongamia pinnata (L.) Pierre 5.70 2.12 2.52 1.14 3.9 1.55

Prosopis juliflora (Sw.) DC 30.22 14.17 13.72 9.98 21.09 13.62

Salvadora oleoides Decne. 0.66 4.58 0.36 2.28 0.49 3.26

Syzygium cumini (L.) Skeels. 6.23 – 2.42 – 4.11 –

NRF north ridge forest, CRF central ridge forest, AGTB aboveground tree biomass, BGB belowground biomass, TC tree carbon

Table 3 Biomass in different ecosystem components

Ecosystem
components

Biomass (Mg ha−1)

NRF CRF

TB 107.85 ± 2.68 a 69.2 ± 2.13 b

AGTB 75.24 ± 2.08 a 44.95 ± 1.84 b

BGB 32.61 ± 0.63 a 24.25 ± 0.6 b

SB 1.15 ± 0.52 a 0.80 ± 0.3a

HB 0.48 ± 0.03 a 0.49 ± 0.06 a

LB 0.40 ± 0.06 a 0.64 ± 0.07 b

Each value represents mean± SE. Letters denotes significant difference at p< 0.05.
NRF north ridge forest, CRF central ridge forest, AGTB aboveground tree biomass,
BGB belowground biomass, SB shrub biomass, HB herb biomass, LB litter biomass

Table 4 Carbon content in different pools of forests

Forest carbon
pools

Carbon content (Mg C ha−1) Mean
(Mg C ha−1)NRF CRF

AGTB 35.74 ± 0.98 a 21.35 ± 0.76 b 28.55

SB 0.57 ± 0.26 a 0.4 ± 0.15 a 0.52

HB 0.25 ± 0.02 a 0.26 ± 0.03 a 0.26

AGB 36.56 22.01 29.28

BGB 15.49 ± 0.30 a 11.52 ± 0.25 b 12.59

LB 0.2 ± 0.03 a 0.32 ± 0.04 b 0.26

SOC 22.32 ± 3.26 a 20.43 ± 1.58 a 21.36

Total carbon stock 74.57 54.28 63.49

Each value represents mean± SE. Letters denotes significant difference at p< 0.05.
NRF north ridge forest, CRF central ridge forest, AGTB aboveground tree biomass,
BGB belowground biomass, SB shrub biomass, HB herb biomass, LB litter biomass,
SOC soil organic carbon
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0–10 and 10–20 cm depth did not vary significantly
(p > 0.05) between the two forest sites. Furthermore,
no significant differences (p > 0.05) were observed in
SOC stock between two depths in NRF forest sites.
However, in CRF site, the SOC stock between two
depths varied significantly (p < 0.05).

Discussion
The estimated total biomass of the forest sites range
between 71.13 and 109.88Mg ha−1, with an average of
90.51Mg ha−1, within the range reported for Indian fo-
rest systems (27.4 to 251.8 Mg ha−1) (Chhabra et al.
2002), but is higher than the average (40Mg ha−1) value
reported for thorn forest system (Ravindranath et al.
1997). This clearly shows that the studied forest system
in Delhi has the potential to store more C in its plant
biomass. The C stored in different pools was estimated
as aboveground (29.28Mg C ha−1), roots or below-
ground (12.59Mg C ha−1), litter (0.26Mg C ha−1), and
SOC (21.36Mg C ha−1). The estimated average forest
standing biomass C (sum of AGB and BGB), i.e.,
41.87 Mg C ha−1, was lower than the values reported for
tropical dry forests of Asia (Gibbs et al. 2007; IPCC
2006) and forests from Mexico (Dai et al. 2014) and
Ethiopia (Solomon et al. 2017, 2018), but higher than
forests from Africa (Gibbs et al. 2007; IPCC 2006) and
Brazil (Júnior et al. 2016). Carbon in AGB was also
lower than that of a semi-arid (Picea crassifolia) forest
in the North Eastern Tibet (Wagner et al. 2015). The
mean standing biomass C for the present forests is within
the range reported for tropical dry deciduous (12.79–62.48
Mg C ha−1) and evergreen forests (18.85–48.58Mg C ha−1)
but higher than tropical thorn forests (4.91–13.3Mg C ha−1)
from India (FSI 2017) (Table 6).
Tree species composition also affects the total biomass

and C stock of forest (Yang et al. 2005; Borah et al. 2015;
Solomon et al. 2017). In the present study, P. juliflora was
found to be the most dominant tree species in both forest
sites, having the highest TD, BA (Meena et al. 2016),

biomass, and C stock. However, the other associated tree
species like Holoptelea integrifolia, Acacia leucophloea,
Acacia nilotica, Azadirachta indica, Syzygium cumini,
Pongamia pinnata, and Albizia lebbeck, though having a
low TD, contribute significantly to the total biomass in
NRF site. High tree species diversity in NRF than CRF fur-
ther indicates its effect on forest productivity, increased
biomass, and C stock. Management interventions and in-
creased soil moisture content in NRF than in CRF pro-
mote the establishment of different species (Meena et al.
2016). Additionally, differences in TD may also contribute
to differences in C density among the forest types (Baker
et al. 2004; Behera et al. 2017). BGB/AGB ratio indicates
the biomass allocation and stability. A high ratio was
observed for species like Bauhinia purpurea (0.64), Cassia
fistula (0.62), Acacia modesta (0.58), and Butea mono-
sperma (0.62) in these forests. Furthermore, a higher ra-
tio for P. juliflora in CRF (0.7) than in NRF (0.45)
suggested a deep rooting system allowing more pene-
tration and establishment in dry areas. The low ratio in
NRF (0.43) than in CRF (0.54) indicated trees with a shal-
low rooting system, which easily uprooted by the wind.
Furthermore, the higher investment to BGB in CRF than
in NRF could be due to lower water tables in CRF.
The significant role of understory pool (shrubs and

herbs) in C sequestration and maintaining the biodiver-
sity of the forest necessitates its estimation in C stock
studies (Hou et al. 2015; Yue et al. 2018). The contribu-
tion of understory (shrubs and herbs) C storage to total
forest C ranges between 1.09–2.02%, which is within the
values (3%) as reported by Brown et al. (1997). However,
the allocation of understory biomass is high when com-
pared to the other forests of India, i.e., 0.13% in temper-
ate forests of Kashmir (Dar and Sundarapandian 2015),
0.15% in the humid tropics in the Northeast (Baishya
and Barik 2011), 0.1–0.3% in spruce forests in Northwest
China (Yue et al. 2018), and also with similar forest
type of Picea crassifolia forests (0.4%) in the Qilian
Mountains (northeastern Tibetan Plateau) (Wagner et
al. 2015). The difference in the understory pool of the
arid zone could be attributed to species composition,
canopy cover, nutrients, and light (Abdallah and Chaieb
2012). As the studied forest is an open forest covering
8.09% of the total forest cover (11.88%), the lower TD
favors the growth of ground vegetation, which subse-
quently increases the biomass and C storage in this
pool.
Forest floor litter represents the detritus C considered

as the most active pool in the forest C cycle (Yanai et al.
2003). The contribution of C in LB pool to the total C
stock is smaller (0.2–1%) as compared to other compo-
nents but is quite significant (FAO 2005). The estimated
litter C is within the range reported for the tropical
thorn forest of India (FSI 2017). The contribution of

Table 5 Soil organic carbon content at different depths

Parameters Soil
depth
(cm)

Sites

NRF CRF

C (g kg−1) 0–10 16.83 ± 2.84 15.20 ± 2.03

10–20 10.93 ± 1.75 9.19 ± 1.17

BD (g cm−3) 0–10 1.58 1.56

10–20 1.65 1.62

SOC stock (Mg ha−1) 0–10 26.6 ± 4.49* a 24.36 ± 2.09*a

10–20 18.04 ± 2.88* a 16.5 ± 1.49*b

Each value represents mean± SE. Letters in parenthesis denotes significant
difference between two depth and * denotes significant difference between forest
sites at p< 0.05. NRF north ridge forest, CRF central ridge forest, SOC soil organic
carbon, BD bulk density
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forest litter pool was similar or close to the values re-
ported for different forest types by Baishya and Barik
(2011) (0.5%); Zhang et al. (2013) (2–4%); Dar and Sun-
darapandian (2015) (2.06%), and from a similar forest
type by Wagner et al. (2015) (0.9%). The amount of litter
C is controlled by various factors like age and density of
trees (Yue et al. 2018), soil nutrient levels (Ovington
1956), species composition, quantity and quality of an-
nual litter input (Zhang and Wang 2010), decomposition
rate (Chaturvedi and Singh 1987; Taylor et al. 2007),
anthropogenic disturbances, and management history.
The average SOC stock for the forest up to 20-cm

depth was estimated as 21.36Mg ha−1. These values were
lower than those reported for tropical dry deciduous
forests (37.5Mg ha−1 for 50 cm, Chhabra et al. 2003), south-
ern thorn forest of India (76.85Mg ha−1, Ramachandran et
al. 2007), forests of Kolli hills of Tamil Nadu (175–
369 Mg ha−1, Mohanraj et al. 2011), tropical dry forest
of Brazil (47.73–61.6 Mg ha−1, Santos et al. 2016), and
a semi-arid thicket of South Africa (168 Mg ha−1, Mills
et al. 2005). However, these estimated SOC values are
comparable to those reported for other tropical dry
forests of India at 0–30-cm depth for Sathnur reserve
forest (16.92–44.65Mg ha−1, Gandhi and Sundarapandian
2017), Uttar Pradesh (21.8Mg ha−1, Chaturvedi et al.
2011), thorn forest of India (19.43–30.17Mg ha−1, FSI
2017), and also with tropical dry forest of Australia (29.98
Mg ha−1, Gray et al. 2015). The amount of SOC content is
determined by the rate of organic matter inputs, accumu-
lation, rate of mineralization in different organic C pools

(Post and Kwon 2000), stand type, and stand age
(Cao et al. 2018). The overall contribution of SOC to
total forest C stock was found to be 29–38%. The re-
duced SOC concentrations in the present forest type
probably result from the high lignin-containing litter
from P. juliflora and other associated semi-arid trees
and low soil moisture content which limits the soil
microbial activity and decomposition of organic mat-
ter (Wagner et al. 2015; Yue et al. 2018). The rate of
litter decomposition also significantly control the
SOC stock in a forest. Exposure to high solar radia-
tions in the semi-arid ecosystems results in loss of
litter mass and C via altering the rate of litter decom-
position (Zhang et al. 2008). UV exposure along with
interannual variability in precipitation changes the
foliar traits and litter chemistry by causing photo-
degradation of lignin and C, hence affecting the over-
all litter decomposition in these ecosystems (Gaxiola
and Armesto 2015).
Over the years, the studied forests are influenced by

anthropogenic disturbances including encroachments,
resource exploitation, construction, deforestation, over-
grazing, exotic plantation, and urbanization which re-
sulted in forest fragmentation and have altered the forest
structure and species composition (Sinha 2014). This
has serious impacts on future biomass and C storage po-
tential of these forests (Pan et al. 2011). A similar study
by Muhati et al. (2018) in a sub-humid disturbed montane
forest of Kenya reported decreased values of AGB than
indigenous dry tropical forests, which was suggested due

Table 6 Comparison of carbon content (Mg C ha−1) in standing biomass, litter, and soil of dry forests

Forest type/region Standing biomass LB SOC Source

Tropical dry forest of Asia 120; 78–96 Gibbs et al. (2007); IPCC (2006)

Tropical dry forests of Africa 17 Gibbs et al. (2007)

Tropical dry forest, Brazil 19.27 2.62 Júnior et al. (2016)

Dry forest Tigray, Ethiopia 58.11 Solomon et al. (2017)

Dry Afromontane forest in Northern Ethiopia 15.59–77.19 1.68–2.25 87.55–102.33 Solomon et al. (2018)

Secondary tropical dry forest in the Yucatan Peninsula, Mexico 56.6 Dai et al. (2014)

Semi-arid (Picea crassifolia) forest in northeastern Tibet 55 3 306 (0–100 cm) Wagner et al. (2015)

Tropical dry forest of Javadi Hills, India 52–116 Naveenkumar et al. (2017)

Tropical dry deciduous forest, India 93.8 Singh (1990)

Tropical thorn forest, India 40 Salunkhe et al. (2018)

Tropical dry forests of Eastern Ghats, India 6.98–257.25 Sahu et al. (2016)

Tropical dry deciduous forest, Eastern Ghats, India 16.92–44.65 Gandhi and Sundarapandian (2017)

Tropical dry deciduous forests in Central India 48.97–214.97 Joshi and Dhyani (2018)

Tropical dry deciduous forest, India 12.79–62.48 0.42–6.49 30–59.23 FSI (2017)

Tropical dry evergreen forest, India 18.85–48.58 0.9–1.91 35.08–89.01 FSI (2017)

Tropical thorny forest, India 4.91–13.30 0.76–2.18 19.43–30.17 FSI (2017)

Semi-arid forest in Delhi, India 41.87 0.26 21.36 (0–20 cm) Present study

LB litter biomass, SOC soil organic carbon
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to the dominance of young trees having low BA and
height, a characteristic of a regenerating forest. In our
study, lower values of C in AGB could be attributed to a
high TD of individuals belonging to lower DBH classes.
However, the presence of more trees in higher DBH classes
has significantly increased the biomass in NRF as compared
to CRF, indicating the importance of mature trees in C stor-
age in a forest. The contribution of large trees (DBH> 70
cm) to AGB in the forest was reported up to 50% in previ-
ous studies (Brown and Lugo 1992; Brown et al. 1996;
Clark and Clark 1996; Baishya et al. 2009). Therefore, the
increased volume of mature trees has made a noteworthy
contribution to total AGB and C sequestration in NRF site
as observed in other studies (Stephenson et al. 2014;
Kauppi et al. 2015; Behera et al. 2017). The C stock of tree
species correlates positively with BA, TD, diversity, and
forest productivity (Baishya et al. 2009; Borah et al. 2015;
Joshi and Dhyani 2018). Furthermore, the age of forest
stand also influences the biomass and correlates positively
with forest C stock in previous studies, indicating an in-
crease in C storage with stand age (Wei et al. 2013; Köhl
et al. 2017). The older stand age of these forests results in
temporal net primary productivity (NPP) accumulation
and increases the overall tree C storage (Chen et al. 2016).
Overall, our study shows that the living portions (AGB +
BGB) of the mature and young trees in the studied forest
ecosystem in Delhi could play a significant role in the stor-
age of more C in their plant biomass than soils. The SOC
pool significantly increases the total C stock in such forest
types and therefore has the potential for C sequestration.
The study also emphasized the minor pools of C in the
forest, i.e., the understory C pool and detritus pool which
although have a small but significant contribution to the
total C stock in the studied forest.

Conclusion
The study estimated the C content in different pools in a
semi-arid forest ecosystem in Delhi, in order to understand
their allocation and C sequestration potential. Our study
estimated maximum storage of C in plant biomass contri-
buting 40–49% of the total forest C stock suggesting it as a
great potential pool of C storage in these forests. Further-
more, it was found that the C storage potential in the for-
ests is influenced by tree basal area, density, and species
composition. Maximum biomass contribution by trees in
lower DBH classes revealed the importance of young trees
as major sinks of C in these forests. However, our results
emphasize the protection of old-growth mature tree
species having low TD but high BA as these are under the
threat of extinction. In the present forest, P. juliflora, being
the most dominant tree species, adapts better to moisture
stress condition and showed highest biomass and C
storage. However, attention should be given for the conser-
vation of other native tree species like Acacia leucophloea,

Acacia nilotica, and Albizia lebbeck showing high storage
of biomass and C. The study also focuses on SOC pool
contributing 29–38% to total C stock of forest, which sug-
gests it as a potential sink in C sequestration. The minor
pools (LB) also contribute significantly to the total C stor-
age in these forests and therefore should be considered in
C stock studies. The studied semi-arid forest is notified as
reserved forest, but over the years, forest destruction for
construction and expansion leads to the loss of indigenous
trees. The C stock studies are difficult in such areas as the
forests have more fragmented patches resulting in greater
uncertainty and difficulty in estimation of tree biomass.
Our study shows the importance of semi-arid areas in C
stock and provides necessary data to the researchers and
forest managers for developing management plans in arid
and semi-arid forests of India.
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