Li et al. Ecological Processes (2020) 9:28

https://doi.org/10.1186/513717-020-00234-9 E co | Og ICa | P rocesses

RESEARCH Open Access

An improved urban cellular automata

model by using the trend-adjusted
neighborhood
Xuecao Li, Yuyu Zhou'® and Wei Chen

Abstract

Background: Cellular automata (CA)-based models have been extensively used in urban sprawl modeling.
Presently, most studies focused on the improvement of spatial representation in the modeling, with limited efforts
for considering the temporal context of urban sprawl. In this paper, we developed a Logistic-Trend-CA model by
proposing a trend-adjusted neighborhood as a weighting factor using the information of historical urban sprawl
and integrating this factor in the commonly used Logistic-CA model. We applied the developed model in the
Beijing-Tianjin-Hebei region of China and analyzed the model performance to the start year, the suitability surface,
and the neighborhood size.

Results: Our results indicate the proposed Logistic-Trend-CA model outperforms the traditional Logistic-CA model
significantly, resulting in about 18% and 14% improvements in modeling urban sprawl at medium (1 km) and fine

(30 m) resolutions, respectively. The proposed Logistic-Trend-CA model is more suitable for urban sprawl modeling
over a long temporal interval than the traditional Logistic-CA model. In addition, this new model is not sensitive to
the suitability surface calibrated from different periods and spaces, and its performance decreases with the increase

of the neighborhood size.

regional and global scales.

Conclusion: The proposed model shows potential for modeling future urban sprawl spanning a long period at

Keywords: Cellular automata (CA) model, Temporal context, Urban sprawl, Logistic regression, Neighborhood

Introduction

Urban sprawl modeling is crucial for evaluating potential
ecological and environmental risks caused by global
urbanization in the future. By 2050, it is expected that
the global urban population will reach ~ 70% of the
world’s population (United Nations 2019). Such an ex-
plosive growth of urban population would result in the
rapid expansion of urban extent, particularly in the fast-
developing areas such as Asia and Africa. The rapid
urban sprawl has many adverse effects on sustainable
development, such as air pollution, agriculture land loss,
deforestation, and public health (DeFries et al. 2010;
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Foley et al. 2005; Gong et al. 2012; Li et al. 2019b; Zhang
et al. 2012). Therefore, to evaluate and minimize these
risks and pursue cities’ ecological and environmental
sustainability, modeling future urban sprawl under dif-
ferent scenarios is highly required for policymakers and
scientists to analyze the urban dynamics in complex
resource-constrained environments and then make good
decisions for city planning and management (Huang
et al. 2019; Li and Gong 2016).

Cellular automata (CA)-based models have been
widely explored in urban sprawl modeling for simplicity,
transparency, and flexibility (Santé et al. 2010). The key
of the CA-based urban sprawl model (i.e., urban CA
model) is the self-evolution of the urban cell that is
driven by its neighbors (Batty and Xie 1994). Thus far, a
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number of CA-based urban sprawl models have been de-
veloped and continuously improved through extensive
studies, such as the SLEUTH (Slope, Land use, Exclu-
sion, Urban, Transportation, and Hillshade) model
(Clarke et al. 1997), the Logistic-CA model (Wu 2002),
the Constrained CA (Li and Yeh 2000), the Fuzzy CA
(Liu and Phinn 2003), and the Markov CA (Shafizadeh
Moghadam and Helbich 2013). By virtue of different ap-
proaches to represent the driving factor of urban devel-
opment by transition rules and neighborhoods, these
CA-based urban sprawl models can produce an urban
morphology that is close to actual urban lands (Li et al.
2017b; Liao et al. 2019). Among these models, the
Logistic-CA model is popular because of its easy imple-
mentation and explanation.

Transition rules and neighborhoods are two critical
components in urban CA models. The original transition
rules of urban CA models are explicit “if-then” regula-
tions. These rules were later developed as probability-
based rules (or called suitability surface) that integrate
multiple spatial proxies (Li and Gong 2016; Santé et al.
2010). Different approaches and models, including em-
pirical methods such as regressions and multi-criterion
estimation (Hu and Lo 2007; Wu 1998, 2002) and non-
linear models such as decision tree or artificial neural
networks (Li and Yeh 2004), have been widely explored
to obtain the suitability surface. Although non-linear
models (e.g., machine learning approaches) can achieve
a better performance than the empirical regression ap-
proach, the resulting suitability surface is difficult to ex-
plain. For the neighborhood of urban CA models, most
studies focus on its spatial configuration (Kocabas and
Dragicevic 2006). The shape and size are two common
indicators used to form the configuration of the neigh-
borhood. Additional information within the neighbor-
hood, such as the distance to the central cell (van Vliet
et al. 2009) and the land use/cover composition (Wu
et al. 2012), was also widely studied in the urban CA
modeling.

At present, limited efforts have been made to explore
the temporal trend of urban sprawl, although many
urban CA models have been developed. These developed
urban CA models mostly focused on improving the
model capacity regarding the spatial information, e.g.,
the distance of the central cell to surrounding urban in-
frastructures (Santé et al. 2010; van Vliet et al. 2009).
Despite the growth of cities generally follows its histor-
ical pathway, the temporal context of urban develop-
ment was seldom included in the urban CA models.
That is, compared with regions developed at early years,
the more recently developed regions have a higher likeli-
hood to be developed in the near future (Liu et al. 2017).
Satellite observations also confirmed this trend from a
long temporal perspective at national and global scales
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(Gong et al. 2019; Huang et al. 2020; Li et al. 2015a;
Zhou et al. 2018; Zhou et al. 2014; Zhou et al. 2015).
Thus, the information of the temporal context of urban
development shows a great potential to improve the per-
formance of urban CA models.

Motivated by this idea, in this paper, we firstly devel-
oped an improved urban CA model using a trend-
adjusted neighborhood, of which the historical pathway
of urban sprawl was considered. We applied this newly
developed urban CA model in the Beijing-Tianjin-Hebei
region, a rapidly developing region in the North Plain of
China.

Methods

Study area

The Beijing-Tianjin-Hebei region, in the north of North
China Plain, is the largest urban metropolitan areas of
China (Fig. 1). This region occupies an administrative
area of 216,600 km? (Dong et al. 2008), with more than
100 million people. During the past decades, this region
experienced rapid growth of population and economy,
resulting in a notable sprawl of urban extent. As two pri-
mary engines of this region, Beijing and Tianjin lead the
development in this area with almost an exponential
growth of urban areas over past decades (Chai and Li
2018; Li et al. 2015a). This rapid urbanization is raising
public concerns on water scarcity (Li et al. 2018a), en-
ergy consumption (Wang and Chen 2016), and air pollu-
tion (Liu et al. 2018). Therefore, modeling of historical
urban sprawl and predicting of future growth are ur-
gently needed in this region.

Data collection

We collected seven spatial proxies in the Beijing-
Tianjin-Hebei region in the urban sprawl modeling
(Table S1). These proxies consist of spatial features and
images such as terrain, land cover, traffic, and location.
Except for proxies in the category of terrain (i.e., eleva-
tion and slope), all other proxies were processed as the
distance to city centers, roads, and specific land cover
types (Fig. 2). These spatial proxies were used to deter-
mine the suitability of urban sprawl of each pixel, ac-
cording to their biophysical and socioeconomic
conditions (Li et al. 2014).

We used the annual urban extent data derived from
nighttime light (NTL) and Landsat satellite data in the
model calibration and evaluation. These two annual
urban extent datasets were used not only for providing
the temporal trend of urban sprawl but also for evaluat-
ing the robustness of the improved urban CA model
The NTL-derived urban extent maps (Fig. 2h) span from
1992 to 2013, with a medium resolution of 1km. The
mean accuracy of this developed dataset is about 89% in
China (Zhou et al. 2018). The Landsat-derived urban
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Fig. 2 Spatial proxies and urban extent dynamics in the Beijing-Tianjin-Hebei region. Elevation (a), slope (b), distance to city centers (c), distance
to highways (d), distance to major roads (e), distance to local roads (f), land cover (g), and urban extent dynamics from NTL observations (h)
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extent maps (Fig. S1) have a longer temporal interval
(1985-2015) than the NTL-derived results, with a fine
spatial resolution of 30 m. Based on the long-term Land-
sat time series data, this Landsat-derived dataset was
generated by a temporal segmentation approach (Li
et al. 2018b). The overall accuracy of the detected ur-
banized year in this dataset is around 83% in the Beijing-
Tianjin-Hebei region. Besides, both of these two urban
dynamic datasets follow the logic of urban development.
That is, this development is a monotonic conversion
from non-urban to urban (Li et al. 2015a).

Framework

We developed a Logistic-Trend-CA model and assessed
its performance to relevant factors in urban CA model
(Fig. 3). First, we proposed a trend-adjusted neighbor-
hood with the consideration of the historical pathway of
urban sprawl and developed a Logistic-Trend-CA model.
Second, we analyzed the performance of the proposed
model to key elements in the urban CA model, including
the start year of modeling, the suitability surface, and
the neighborhood size. The improved urban CA model
was applied at 1-km and 30-m spatial resolutions to ex-
plore its capability in cross-scale modeling. Details of
each step are given in the following sections.

The logistic-trend-CA model
The urban CA model is a grid-based self-evolution sys-
tem to simulate the dynamics of urban land (Batty and
Xie 1999). In this system, the status (i.e., urban and non-
urban) of each grid is determined by its surrounding
neighbors. A non-urban grid is more likely to change to
urban in the near future if there are more urban grids
surrounded. Evolution of massive grids using this rule
simultaneously can simulate the change of complex
urban landscapes. With the consideration of additional
spatial factors such as traffic networks and land covers,
the urban CA model can be used to simulate the dy-
namic of urban land with a high degree of reliability.

We built our Logistic-Trend-CA model on the
Logistic-CA model as it has been widely used in urban
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sprawl modeling due to its clear explanation of spatial
proxies and ease of implementation (Hu and Lo 2007;
Wu 2002). The logistic regression function is the key of
the Logistic-CA model. Its output is a spatially explicit
suitability surface, which indicates the suitability for de-
velopment under considerations of different spatial
proxies. Assuming there are n spatial proxies [x1, x>, ...
x,], the logistic regression function can be expressed as
Egs. (1 and 2).

(1)
(2)

where Py, is the obtained suitability of development
from the biophysical and socioeconomic conditions and
b; and x; are the ith coefficient and spatial proxy,
respectively.

We improved the neighborhood of the Logistic-CA
model by considering the historical pathway of urban
sprawl. The neighborhood is a crucial component in the
urban CA model because it is a basic driver of urban dy-
namics modeling (Kocabas and Dragicevic 2006). The
configuration of the neighborhood is closely related to
its size, shape, and surrounding land cover types. Here,
we developed the trend-adjusted neighborhood by in-
corporating the historical pathway of urban sprawl as a
weighting factor, based on the widely used Moore con-
figuration (Egs. (3 and 4)).

z=Dbixi + - + bux,

Py = 1/(1+ exp™)
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where Q is the influence of neighborhood that considers
the historical pathway of urban sprawl using a weighting
factor of Wji. Ny is the accumulated year of cell (i, )
with the status as urban from the annual urban time
series data with a temporal interval of N. As a result, for
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Fig. 3 The framework of the Logistic-Trend-CA model (a) and the validation of model performance to key factors (b)

(b) Validation of model performance
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a potential cell, urban neighbors that were developed in
more recent years have larger impacts than those devel-
oped in earlier years. m is the window size, and Con() is
a conditional function, which returns 1 when the status
of cell (i, j) is urban.

Compared with traditional neighborhoods, the devel-
oped trend-adjusted neighborhood can result in a sprawl
pattern following the historical pathway, as illustrated in
Fig. 4. Urban sprawl has an inertia of development as it
generally follows the temporal trend of historical devel-
opment (Liu et al. 2017), i.e., there is a relatively higher
development probability around those newly developed
urban areas. As a result, the weighting factors of W of
urban pixels developed in more recent years are higher
than those developed in earlier years. Assuming the
weighting factors of urbanized pixels across years are
different as illustrated in Fig. 4 (a), thus, pixels 1 and 2
have the same neighborhood influence if using the trad-
itional neighborhood. However, if taking into account of
the historical pathway of urban sprawl, pixel 2 has a
higher neighborhood influence because its surrounding
pixels were developed more recent compared to pixel 1
(Fig. 4 (b)), although they have the same number of
urban neighbors for pixels 1 and 2. Such smaller
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difference regarding the neighborhood influence would
result in a notable different sprawl pattern after several
iterations (Fig. 4 (c)), as most urbanized pixels were de-
veloped following the historical pathway if the neighbor-
hood was adjusted by the temporal trend.

We also included land constraint and stochastic per-
turbation in the developed Logistic-Trend-CA model.
Restricted lands, such as water and protected areas, were
not considered for development in our model; thus, they
were represented as a land constraint term as Land =0
(Li et al. 2014). In addition, we used the stochastic per-
turbation SP to represent unconsidered factors (e.g., pol-
icy) in the modeling (White and Engelen 1993), as
expressed in Eq. (5).

SP =1+ (-1nA)® (5)

where SP is the stochastic perturbation, A is a random
value [0,1], and « is a parameter to determine the de-
gree of perturbation.

The development probability was calculated based on
the suitability surface, neighborhood, land constrain, and
stochastic perturbation. For urban time series data de-
rived from NTL and Landsat, we determined their
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Fig. 4 lllustration of the trend-adjusted neighborhood in the urban CA model. Urban pixels with different developing years and weights (a),
calculation of neighborhood impacts for pixels 1 and 2 (b), and modeled urban sprawl using different neighborhoods (c). This illustrative figure
shows the results of allocating three urban pixels per iteration, with a total of nine urban pixels. Trend weights in (a) were calculated using Eq. (3)
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development probabilities using Egs. (6) and (7), respect-
ively. The SP is not considered in the modeling with NTL-
derived urban extent maps, due to the homogeneity of
urban land within the boundary (Zhou et al. 2018).

Pyey = Pguit X Q x Land (6)
Pgey = Poyit X Q X Land x SP (7)

Model validation

We assessed the performance of the developed Logistic-
Trend-CA model to key factors in urban CA model.
Two quantitative metrics were used for the assessment,
namely the overall accuracy (OA) and the figure of merit
(FOM). The OA was directly calculated as the percent-
age of consistent pixels to all pixels in the entire map,
while the FOM indicates the consistency between mod-
eled and observed maps on those changed pixels. The
FOM has been widely used in many studies of urban CA
models since it can provide a relatively comprehensive
evaluation of the model performance (Chen et al. 2014;
Li et al. 2014; Pontius et al. 2007). The FOM can be
expressed as Eq. (8) (Pontius et al. 2008).

FOM = B/(A + B + C) x 100% (8)

where FOM is the figure of merit, B is the number of
observed urban pixels that were simulated as urban, A is
the number of observed urban pixels that were simu-
lated as non-urban, and C is the number of observed
non-urban pixels that were simulated as urban.

We evaluated the model performance by exploring
sensitivities of three key factors in our urban CA model:
the start year of modeling, the suitability surface, and
the neighborhood size. The influences of these three key
factors can be quantitatively evaluated with clear phys-
ical meanings in the CA model. Although there are
other factors that may also influence the model perform-
ance, they are considered in the selected elements in the
model. For example, the urban spatial configuration can
be captured by the neighborhood and stochastic disturb-
ance in the CA model. Other factors (e.g., the degree of
urban development) are more related to regional urban
demand compared to the spatial allocation of increased
urban demand (Li et al. 2019a). First, we examined the
modeling capability of the Logistic-Trend-CA model
over a long temporal span through changing the start
year of modeling, which is closely related to the itera-
tions and error propagation in the modeling (Li et al.
2014). Second, we investigated the model performance
to suitability surfaces using calibrated results from differ-
ent periods. The suitability surface characterizes the like-
lihood of urban development from the biogeophysical
(e.g., terrain and land cover) and socioeconomic (e.g.,
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traffic networks) aspects. In addition, we evaluated the
derived suitability surface using the receiver operating
characteristic (ROC) approach (Liu et al. 2017; Pontius
Jr et al. 2001; Wu et al. 2009). The ROC curve was cal-
culated by dividing the continuous suitability surface
into binary maps using different thresholds and then com-
paring the derived binary map with the reference map. Fi-
nally, we compared the model performance by varying
neighborhood sizes. The neighborhood is a crucial com-
ponent to drive the self-evolution of urban land system,
and the neighborhood size reflects the degree of local im-
pact from neighbors (Kocabas and Dragicevic 2006). Many
urban CA models have been developed for particular ap-
plications with different structures, functions, and data re-
quirements (Li and Gong 2016). Quantitative indicators
such as the FOM have been used for comparing urban
CA models. We evaluated our model performance based
on the FOM and compared it with previous studies. In
addition, we compared our model with the similar
Logistic-CA model, which has been widely used in previ-
ous urban CA studies and can serve as a benchmarking
model, for several key factors. The Logistic-CA model also
has the same structure as our proposed model except for
the consideration of the neighborhood.

Setting of the urban CA model

The inputs of urban CA model are the urban extent
map in the beginning year associated with a variety of
spatial proxies (Fig. 2) and a set of parameters (Li et al.
2017a), and the output of our model is the urban extent
map in the target year. In our study, the neighborhood
size (m) was set as 3 and 5 in calculating the influence
of neighborhood (Q) using Eq. (4), for urban sprawl
modeling with medium (1 km) and fine (30 m) resolu-
tions, respectively. The degree of stochastic perturbation
() was set as 3 as suggested for modeling at a 30-m
resolution using Eq. (5) (Li et al., 2014). Also, we set the
restricted conversion type as water in our study to avoid
the conversion from water to urban. Finally, the modeled
results were compared with the observed urban extent
map from remote sensing observations in the same year.

Results and discussion

Performance of the logistic-trend-CA model

The developed Logistic-Trend-CA model using the
trend-adjusted neighborhood outperformed the trad-
itional Logistic-CA model. Improvements of FOM
are about 18% and 14% for urban sprawl modeling
at medium (1km) and fine (30m) resolutions, re-
spectively (Figs. 5 and 6). The OA increases by
around 2-3% using the Logistic-Trend-CA model.
This suggests the developed model is robust regard-
ing the model performance at different resolutions.
Specifically, the omission (i.e., pixels observed as
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urban but simulated as non-urban) and commission
(i.e., pixels observed as non-urban but simulated as
urban) errors were considerably reduced when the
historical pathway of urban sprawl was considered
(Figs. 5 and 6). That is, the trend-adjusted neighbor-
hood improves the urban sprawl pathway during the
modeling, which further reduces the error generation
and propagation (Li et al. 2014; Yeh and Li 2006),
particularly for modeling over a relatively long tem-
poral interval. As a result, the developed Logistic-
Trend-CA model can simulate more realistic urban
forms (or landscapes) compared to the traditional
Logistic-Trend-CA model. However, it is worth to
note that the improvement of Logistic-Trend-CA
model is related to the time span of the used tem-
poral information in the neighborhood. The im-
provement of FOM in Fig. 5 would decrease to 10%
and 6% when the time span reduces to 10 and 5
years, respectively. If using a very limited time span
(e.g., 1-2years), outputs from Logistic-Trend-CA and
Logistic-CA models are almost the same.

Validation of model performance to key factors

The start year of modeling

A shorter modeling period with the start year of 2002
can increase the OA but decrease the FOM of the
modeled result compared to a longer modeling period
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with the start year of 1992. Since the time step of
our modeling is annual, the impact of start year on
the model performance is mainly determined by the
number of iterations, which further affect the error
generation and propagation in the modeling (Li et al.
2014). The comparison of model performance using
different temporal intervals indicates an opposite
trend of OA and FOM (Fig. 7 and Fig. S2). That is,
the OA is slightly increased from 97 to 98% while the
FOM is decreased from 52 to 44% when using a rela-
tively shorter modeling period at a medium resolution
(1km). Similarly, for urban extent maps with a fine
resolution (30 m), the improvement of OA is about
2% while the decrease of FOM is about 8-9%. Such a
contrastive trend of OA and FOM is related to the
consistency of urban extent maps between the start
and end years. For example, although the FOM of
modeling with a start year of 2002 (Fig. 7b) is lower
than that with a start year of 1992 (Fig. 7a), the ini-
tial urban extent in 2002 has excluded errors gener-
ated and propagated from 1992 to 2002, resulting in
a higher overall agreement.

The improvement of the Logistic-Trend-CA model
relative to the Logistic-CA model decreases when
modeling with a relatively short period (Fig. 8). Intro-
ducing the historical pathway of urban sprawl im-
proves the performance using the Logistic-Trend-CA
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model in areas with similar neighborhood influences
and development suitability. Our results indicate the
FOM is improved from 34 to 44% in the Beijing-
Tianjin-Hebei region at a medium resolution (1km),
when the modeling period is shortened from 1992-
2013 to 2002-2013 (Fig. 8a). Similar conclusions are
also confirmed in modeling cases of Beijing and
Tianjin at the 30-m spatial resolution during the
modeling period of 2005-2015, i.e., the FOM is in-
creased from 53 to 54% in Beijing and from 32 to
39% in Tianjin (Fig. 8b, c). Although the improve-
ment of FOM is reduced by about 8% when the
modeling period is shortened from 1992-2013 (Fig.
5) to 2002-2013 (Fig. 8a) in the Beijing-Tianjin-
Hebei region, the Logistic-Trend-CA model remains a
good performance compared to the Logistic-CA
model, particularly for modeling cases with relatively
worse performances of the suitability surface (i.e.,

Tianjin) (Fig. 9¢). Also, it should be noted that the
performance of the proposed model is related to
urban expansion patterns in cities, and the improve-
ment of the Logistic-Trend-CA model for a concen-
tric growth across different directions around the
urban center is not significant (e.g., Fig. 8b).

The suitability surface

Our Logistic-Trend-CA model is not sensitive to suit-
ability surfaces that are derived during different pe-
riods. These suitability surfaces were calibrated using
the logistic regression model, based on training sam-
ples collected from urbanized and persistent regions
in different periods. We found the temporal effect of
training samples collected from different periods on
the derived suitability surface is limited (Fig. 9), i.e.,
their ROC curves are close. The impact of different
suitability surfaces on wurban sprawl modeling is
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considerably reduced with the increase of iterations
during the simulation (Table 1), i.e., the FOMs are
similar in these experiments. Modeled results at both
the 1-km and 30-m spatial resolutions are almost the
same using suitability surfaces in different periods.
This is because the development probability of urban
sprawl in each iteration is jointly determined by the
neighborhood and the suitability surface. The suitabil-
ity surface is assumed to be persistent, and its contri-
bution is reduced as errors propagated during the
modeling (Li et al. 2015b; Santé et al. 2010), whereas
the trend-adjusted neighborhood is updated iteratively
and plays a dominant role in the modeling. It should
be noted that suitability surfaces used in our study
were mainly derived from the logistic regression
model, which is a statistical model and is more robust
for training samples compared with data mining-
based approaches such as random forest and neural
networks (Li et al. 2014).

The neighborhood size

The performance of Logistic-Trend-CA decreases
with the increase of the neighborhood size (Fig. 10).
This finding is consistent for urban sprawl modeling
at different spatial resolutions (i.e., 1km and 30 m).
The FOM is highest when the neighborhood size is
3; thereafter, it decreases with the increase of the

neighborhood size. This relationship is more dis-
tinctive when the window size is small (e.g., lower
than 7), suggesting the contribution of included
weighting factors from the historical pathway of
urban sprawl decreased when increasing the neigh-
borhood size (Eq. 4). Accordingly, the improvement
of the Logistic-Trend-CA model relative to the
Logistic-CA model was reduced. In addition, urban
sprawl modeling is more sensitive to the neighbor-
hood size with a relatively coarse spatial resolution,
comparing modeled results at the 1-km (Fig. 10a)
and 30-m (Fig. 10b, c) spatial resolutions. The im-
pact of local neighbors on the model performance
decreases due to the decrease of neighborhood in-
tensity of the central pixel, with the increase of
neighborhood size.

Conclusions

In this study, we developed a Logistic-Trend-CA model
with the consideration of the historical pathway of urban
sprawl and tested it in the Beijing-Tianjin-Hebei region
of China. In this model, we proposed a trend-adjusted
neighborhood as a weighting factor using the historical
pathway of urban sprawl. This improved neighborhood
was integrated with the widely used logistic regression
function to simulate urban sprawl. We applied this
model in the Beijing-Tianjin-Hebei region using the time
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Table 1 Assessment of the urban sprawl modeling using suitability surfaces derived from different periods

Beijing-Tianjin-Hebei (1 km) Beijing (30 m) Tianjin (30 m)
Suitability surface 1992-2002 1992-2013 1985-1995 1985-2015 1985-1995 1985-2015
OA (%) 974 974 954 95.5 933 933
FOM (%) 52.1 520 62.7 62.7 46.7 471

series data of urban extent from NTL and Landsat ob-
servations. Model performance was evaluated and com-
pared with the traditional Logistic-CA model. The
robustness was explored through analyzing the model
performance to key factors in urban CA model.

We found our Logistic-Trend-CA model notably
outperforms the traditional Logistic-CA model. The
improvement of FOM is around 18% and 14% using
the Logistic-Trend-CA model at the 1-km and 30-m
spatial resolutions, respectively, compared to the trad-
itional Logistic-CA model. The Logistic-Trend-CA
model performs well for modeling studies with a long
temporal span. In addition, it is not sensitive to suit-
ability surfaces derived from the logistic regression
model in different periods, and the trend-adjusted
neighborhood plays an important role in the model-
ing. Finally, the performance of the Logistic-Trend-
CA model decreases with the increase of neighbor-
hood size.

This study opens a new research avenue to incorp-
orate the temporal context information in urban CA
models. Through using the temporal context infor-
mation of historical urban sprawl, the Logistic-
Trend-CA model shows a good performance in
simulating future urban sprawl with a long interval
(e.g., decades). Also, the developed urban CA model
in this study performs well at the 1-km spatial reso-
lution, showing its capabilities in global urban sprawl
modeling using the time series data of urban extent

from NTL observations (Zhou et al. 2018). Thus, our
developed urban CA model can be used for urban
expansion modeling with a long temporal span be-
cause historical growth of urban extent can be incor-
porated into the modeling. Such improvement can
mitigate the uncertainty in modeling urban growth
using the information of temporal contexts. How-
ever, it is worth to note that the temporal effect of
suitability surface (e.g., road expansion and land
cover change during the modeling period) is not
considered in our model, although we included the
dynamics of urban extent in the neighborhood com-
ponent. Also, our model needs improvement for
simulating policy-induced changes in urbanized areas
without neighboring urban pixels (Liu et al. 2010),
which could occur in rapidly developing regions in
China. The corresponding improvements for these
common limitations in CA models are needed for
our Logistic-Trend-CA model in future studies.
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