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Abstract

Background: The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq
(KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops
forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal,
and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation,
land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase
as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical
distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and
future habitat suitability distributions of the species in relation to environmental variables and future climate
change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the
most important environmental variables controlling the distribution of the species in the KRI. The objectives were
achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental
variables.

Results: The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the
distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By
contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution
of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of
the distribution would shift toward higher altitudes.

Conclusions: The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to
climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual
precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks
and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the
future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability
maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and
Iraq as a whole.

Keywords: Predictive modeling, Quercus aegilops, Species distribution, Climate change

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: khwarahm21302@alumni.itc.nl
Department of Biology, College of Education, University of Sulaimani,
Sulaimani, Kurdistan Region, Iraq

Khwarahm Ecological Processes            (2020) 9:56 
https://doi.org/10.1186/s13717-020-00259-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13717-020-00259-0&domain=pdf
https://orcid.org/0000-0002-0183-8388
http://creativecommons.org/licenses/by/4.0/
mailto:khwarahm21302@alumni.itc.nl


Background
In Iraq, the natural forests, except for some riverine for-
ests alongside the Euphrates and Tigris, are limited to
the highlands of the northeast of the country known as
the Kurdistan Region of Iraq (KRI) (Chapman 1950;
Nasser 1984). The highlands comprise a chain of moun-
tains extending from neighboring east (Iran) to the north
(Turkey). Oak forests make up ~ 90% of the total forest
cover in the KRI, and the remaining 10% comprises
plantation, pine forest, riverine, and others (e.g., Pistacia
khinjuk, Crataegus azaro), often mixed with the oak for-
ests (Guest and Al-Rawi 1966; Nasser 1984). The pre-
dominant oak species is Q. aegilops, followed by Q.
libani, Q. infectoria, and Q. macranthera. Except for Q.
macranthera, the remainder is considered native to the
region (Nasser 1984; Zohary 1973). Q. aegilops alone
comprises ~ 70% of the oak forests (Shahbaz 2010). Be-
ing the dominant species, the trunk diameter, height,
and crown width of the tree may reach 1 m, 20 m, and 7
m, respectively (Shahbaz 2010; Younis and Hassan
2019). Q. aegilops, apart from its ecological importance
(e.g., as shelter and food for mammals and birds), also
has economic and cultural importance—for example, as
firewood, charcoal, timber, building material, and fodder
for livestock (Chapman 1950; Mosa 2016; Nasser 1984;
Nixon 2006; Van den Bergh and Kappelle 2006). Oak
forests, specifically Q. aegilops, like the rest of the nat-
ural resources, have been degrading due to several fac-
tors by shifting cultivation and land use/land cover
changes, population increase, civil war, and inadequate
forest management policy (Nasser 1984). Wildfires (nat-
ural or man-made) during the scorching hot summer
has also been reported (Chapman 1948; Rahimi et al.
2020). Furthermore, the economic sanctions by the
United Nations Security Council between 1990 and 2000
significantly affected the oak forests in the KRI. Poverty
and unemployment from the 10-year embargo
(Alnasrawi 2001) obliged people to overexploit the for-
ests mainly for firewood.
In Iraq and the KRI, studies on geographical distribu-

tion of oak trees are limited or not existent and often fo-
cused on examining the pedological characteristics
(Abdullah et al. 2019), anatomical (Shahbaz et al. 2015),
medicinal (Ghafour et al. 2010), and nutritional (e.g.,
acorn) (Rashid et al. 2014) components of the Quercus
spp. Recently, Obeyed et al. (2020) used allometric equa-
tions to estimate the carbon sequestration capability of
Q. aegilops in Duhok province. Similarly, using allomet-
ric equations, the total volume (i.e., trunk and branch
volumes) of Q. aegilops trees was assessed (Younis and
Hassan 2019). In Iran, El-Moslimany (1986) investigated
the historical distribution and ecology of the Quercus
forest using a pollen diagram. Others have investigated
pollen and foliar morphology (Panahi et al. 2012), the

influence of fire on oak forests (Heydari et al. 2017;
Pourreza et al. 2014), regeneration factors of Quercus
(Salehi et al. 2019), and genetic variation among the
Quercus genus (Ardi et al. 2012). Climate variability and
Q. cerris dieback relationship were investigated in
Turkey and the Mediterranean regions (Di Filippo et al.
2010). The link between oak decline and pathogenic
plant-damaging oomycetes (mold) in Turkey was investi-
gated by Balci and Halmschlager (2003). Globally, nu-
merous studies have been reported on various aspects of
oak woodlands. Environmental gradient and morpho-
logical variations of Q. elliptica in Mexico and central
America were evaluated by Maya-García et al. (2020). In
the USA, the effects of global warming on the potential
distribution and future status of six Quercus species was
modeled (Ramírez-Preciado and Gasca-Pineda 2019).
The decline of Quercus species in the southwest
Germany is related to insufficient soil aeration and ex-
cessive CO2 concentration (Gaertig et al. 2002). In
central-western Spain Quercus, geographical distribution
scenarios relative to land use and abiotic stress-factors
were modeled (Hernández-Lambraño et al. 2019). Phylo-
geographic and climatic indicators for the past and
current status of the Quercus in China was assessed
(Song et al. 2019; Xu et al. 2020).
Tree species distribution is known to depend mainly

on climate variables (Woodward and Williams 1987),
particularly temperature and water availability (e.g., pre-
cipitation) (Körner et al. 2016). The quantity and relative
importance of these predictors vary over space and time
for plant communities. For example, rain is the main cli-
matic factor limiting the distribution of Q. aegilops and
oak forests in the KRI (Guest and Al-Rawi 1966; Nasser
1984; Zohary 1973).
Under future climate change scenarios—for example,

the Representative Concentration Pathway (RCP)
adopted by the Intergovernmental Panel on Climate
Change (IPCC) for its Fifth Assessment Report 5 (AR5),
the quantity and pattern of the climate variables will
change in the future due to greenhouse gases (e.g., CO2).
This change, in turn, will influence the species distribu-
tion pattern, phenology, and forest ecosystems (Aitken
et al. 2008; Jewitt et al. 2015; Trumbore et al. 2015;
Urban 2015).
Species distribution models (SDMs) provide a unique

opportunity to quantify and predict the relationship be-
tween species occurrence (records) and environmental
variables (e.g., climate) (Hernández-Lambraño et al.
2019; Maya-García et al. 2020; Zhang et al. 2018). Over
the last two decades, various statistical models (e.g., gen-
eralized linear models (GLM; McCullagh 1984), general-
ized additive models (GAM; Hastie and Tibshirani
1990)), multivariate approach (e.g., ecological-niche fac-
tor analysis (ENFA; Hirzel et al. 2002), and machine-
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learning (e.g., maximum entropy (MaxEnt; Phillips et al.
2006) and random forest (RF; Breiman 2001)) ap-
proaches have been employed to understand the pattern
of the link between species occurrence and environmen-
tal predictors. MaxEnt has strong prediction power in
defining the geographical range of species, and it is
dependent on presence-only data (Pearson et al. 2007;
Phillips and Dudík 2008; Tsoar et al. 2007).
In the KRI Q. aegilops has been degrading by ongoing

human-caused threats (e.g., cutting and clearing, land
use/land cover change, and war-related operations), and
these threats could increase as climate changes. Limited
information exists on the current and potential distribu-
tion of the species in the KRI. Therefore, the objectives
of this study were to (i) predict the current and future
habitat suitability distributions of the species in relation
to environmental variables and future climate change
scenarios (Representative Concentration Pathway (RCP)

2.6 2070 and RCP8.5 2070); and (ii) determine the most
important environmental variables controlling the distri-
bution of the species in the KRI. Addressing these objec-
tives could provide invaluable information for
conservation and management actions, not only for the
oak but also for the associated biodiversity of the forests
in the KRI and Iraq. This study by using MaxEnt, pres-
ence records of Q. aegilops, and current and future cli-
mate datasets aimed at achieving these objectives. This
study was the first attempt investigating the spatial dis-
tribution of the species in the KRI and Iraq as a whole.

Materials and methods
Study area
The study was conducted in Kurdistan Regional of Iraq
(37°38′ N 46°35′ E) located in the northeast of the Re-
public of Iraq. KRI is made up of Sulaimani, Erbil, and
Duhok (including Shekhan and Akre towns) provinces

Fig. 1 Extent of the study site and administrative boundaries analyzed (1 = Sulaimani Province; 2 = Erbil Province; 3, 4 = Duhok Province
(including Shexan and Akre towns)
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with an area of ~ 51520.76 km2 (Fig. 1). Iraq has four
distinct geographical regions stretching gradually from
the northeast to southeast: the highlands in the north-
east (i.e., the KRI), the uplands (hilly and undulating
areas; a transitional layer between the mountain ranges
and desert), the desert, and alluvial plain (marshlands)
(Bor and Guest 1968; Malinowski 2002). Anticlinal and
synclinal features in the highlands created elevated
peaks, valleys, cliffs, gorges, and rocky slopes. The alti-
tude of the highlands, mostly inaccessible and remote,
ranges between ~ 800 and 3544 m.a.s.l. (Sissakian et al.
2015). The annual precipitation ranges from 375 to 1200
mm, with an average temperature of ~ 35–40 °C and a
minimum temperature ~ − 1 °C, indicating a very hot/
dry summer and a wet and cool winter (https://gov.krd/
english/).
Thus far, in Iraq and the KRI, only four distinct spe-

cies of oak have been reported, namely, Q. aegilops , Q.
libani, Q. infectoria, and Q. macranthera (Nasser 1984;
Zohary 1973). The four species are found only in the
mountain ranges of the KRI (Fig. 1).

Q. aegilops presence records data
The available records (i.e., geographic coordinates) of Q.
aegilops were obtained from survey efforts in July 2017
and 2019, the Global Biodiversity Information Facility
(GBIF) (https://www.gbif.org/), and the literature
(Abdullah et al. 2019; Shahbaz 2010; Younis and Hassan
2019). These data were collated and checked for quality
(e.g., positional accuracy using both the survey efforts
and Google Earth) and spatial representativeness
(Morales et al. 2017). The original number of sample
points (records) from the multiple sources was 57; after
applying spatial filtering and removing duplicates, the
number of points was reduced to 33. Spatial filtering of
at least a 5-km distance was applied to reduce spatial
auto-correlation (Boakes et al. 2010). Spatial filtering has
the advantage of reducing sampling bias and accounts
for the variability (or heterogeneity) of the terrain or
study site (Radosavljevic and Anderson 2014). The filter-
ing, in turn, results in producing more reliable models
(i.e., reduce model over-fitting and may enhance trans-
ferability) (Boria et al. 2014; Kramer-Schadt et al. 2013;
Townsend Peterson et al. 2007). Spatial filtering and
quality checking were performed using ArcGIS 10.3.
(ESRI, Redland, CA, USA) and extended using
SDMtoolbox 2.4. (Brown 2014).

Environmental variables
The extent of the available records of Q. aegilops data
was within the highland boundary (i.e., KRI), which
mainly encompasses three provinces in the northeast of
Iraq—Sulaimani, Erbil, and Duhok (Fig. 1). Besides the
highlands, the oak naturally does not occur in other

parts of Iraq. Similarly, the climate variables were also
extracted according to the spatial extent of the presence
records distribution and the KRI boundary as the poten-
tial extent of the target species. Previous studies have
emphasized on training models based on the geograph-
ical extent of the distribution of the species (Elith et al.
2010; Soberon and Peterson 2005).
Model building in this study was based on selected cli-

matic, edaphic, and topographic predictors (Table 2).
These variables are key drivers influencing the distribu-
tion of plant species (Yi et al. 2018). This study acknowl-
edges the importance of landscape variables—for
example, edge density, total core area, and human foot-
print in model building. Unfortunately, due to lack of re-
liable data, these were not considered in the current
work. The initial climatic variables included 19 biocli-
matic variables for each the current (i.e., average for the
years 1970–2000) and for the future scenarios (i.e.,
2070s). Those datasets were obtained from the World
Climate database (Hijmans et al. 2005) (www.worldclim.
org). For the future climate scenario, the widely used
(Ebrahimi et al. 2017; Zhang et al. 2018) global circula-
tion model of the Beijing Climate Centre-Climate Sys-
tem Modelling 1.1 (BCC-CSM1.1) was employed. This
dataset comprise the Representative Concentration
Pathway (RCP) 2.6 (Van Vuuren et al. 2011) and 8.5
(Riahi et al. 2011) for the time window 2070, released by
the Intergovernmental Panel on Climate Change (IPCC)
Assessment Report 5 (AR5). The RCP 2.6 and RCP 2.8
indicate the lowest and highest greenhouse gas concen-
tration scenarios for 2070, respectively. The initial ed-
aphic variables (e.g., soil pH, soil moisture, and soil
carbon) were obtained from the Center for Sustainability
and the Global Environment (SAGE) (http://www.sage.
wisc.edu/atlas/index.php). The edaphic parameters are
indirect measurement from global and/or regional in-
ventories (i.e., they are model-based) and the scale of the
original dataset is 0.5° × 0.5° (Task 2000; Willmott and
Matsuura 2001). Topographic variables were derived
from the Shuttle Radar Topography Mission (SRTM)
from the Consultative Group for International Agricul-
tural Research (CGIAR) Consortium for Spatial Informa-
tion (http://srtm.csi.cgiar.org/srtmdata/). From the
SRTM, the DEM (digital elevation model), slope and as-
pect were derived. Preprocessing and variable spatial re-
scaling to ~ 1 km (Hu et al. 2015) were accomplished
within the ArcGIS 10.3 platform. The slope and aspect
in degree units were calculated from the DEM.
The original number of environmental variables was

25; of these, only 10 variables (Table 1) were used in
model building due to high spatial correlation (collinear-
ity) between the variables. High correlation variables in-
flate (or over-fit) the model outputs, thus providing
misleading conclusions (Dormann et al. 2013; Graham
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2003). Nevertheless, predictor selection requires careful
thought and local knowledge of the climatic conditions
and probably the physiology of the target species (Elith
and Leathwick 2009). To address the issue of collinear-
ity, a conditional threshold approach was used
(Dormann et al. 2013) that retained only predictors with
Pearson’s pairwise correlation, where Pearson’s |r | ≤ 0.8
(Dormann et al. 2013; Syfert et al. 2013) was used for
model building (Tables 1 and 2). Pearson’s pairwise correl-
ation analysis for the predictors was performed using Arc-
GIS 10.3 and SDMtoolbox extension (Brown et al. 2017).

Model building
Model choice in this study was based on the Q. aegilops
presence records and predictive capability of the model.
MaxEnt (Phillips et al. 2006) has been reported to have
adequate predictive power, and it is one of the few

presence-only-dependent models producing results com-
parable to presence-absence models (Aguirre-Gutiérrez
et al. 2013; Duan et al. 2014; Dudík et al. 2007; Elith
et al. 2006; Wisz et al. 2008). MaxEnt is a machine learn-
ing algorithm that could address various ecological ques-
tions (Merow et al. 2013). For example, it can map
(interpolate) the potential habitat suitability distribution
of a target species as the function of certain, often pre-
selected, environmental conditions (Phillips et al. 2006).
Model building was initiated by randomly partitioning

Q. aegilops presence data-points into 70% and 30% to
validate and test the model, respectively. Model replicate
choice was set to 10 with 500 iterations of the algorithm
(maximum entropy). The 10 model-replicate choices
produced an average suitability map of the probability of
occurrence of the target species. The selected background
points were set to 500, which was necessary to adjust for

Table 1 Correlation matrix for the variables using in modeling

Slope Aspect Bio1 Bio2 Bio4 Bio12 Bio14 Bio15 Soil PH Soil carbon

Slope 1.0 0.0 − 0.3 − 0.3 0.2 0.3 0.1 − 0.1 − 0.3 0.2

Aspect 0.0 1.0 0.1 0.1 0.0 − 0.1 0.0 0.0 0.0 − 0.1

Bio1 − 0.3 0.1 1.0 0.7 0.1 − 0.6 − 0.6 0.7 0.6 − 0.4

Bio2 − 0.3 0.1 0.7 1.0 0.2 − 0.4 − 0.4 0.5 0.4 − 0.3

Bio4 0.2 0.0 0.1 0.2 1.0 0.1 − 0.1 0.1 − 0.1 0.2

Bio12 0.3 − 0.1 − 0.6 − 0.4 0.1 1.0 0.1 − 0.2 − 0.7 0.8

Bio14 0.1 0.0 − 0.6 − 0.4 − 0.1 0.1 1.0 − 0.7 − 0.1 − 0.1

Bio15 − 0.1 0.0 0.7 0.5 0.1 − 0.2 − 0.7 1.0 0.4 0.0

Soil PH − 0.3 0.0 0.6 0.4 − 0.1 − 0.7 − 0.1 0.4 1.0 − 0.6

Soil carbon 0.2 − 0.1 − 0.4 − 0.3 0.2 0.8 − 0.1 0.0 − 0.6 1.0

Table 2 Environmental predictors selected and eliminated in model building after correlation analysis. Eliminated predictors are
highly correlated variables (Pearson’s |r| > 0.8)

Selected predictors (code) (units) Eliminated predictors (code) (units)

Slope (degree) DEM (m)

Aspect (degree) Isothermality (Bio2/Bio7) (Bio3) (× 100)

Annual mean temperature (Bio1) (°C) Max temperature of warmest month (Bio5) (°C)

Mean diurnal range (mean of monthly (max temp-min temp)) (Bio2) (°C) Min temperature of coldest month (Bio6) (°C)

Temperature seasonality (Bio4) (standard deviation × 100) Temperature annual range (Bio5-Bio6) (Bio7) (°C)

Annual precipitation (Bio12) (mm) Mean temperature of wettest quarter (Bio8) (°C)

Precipitation of driest month (Bio14) (mm) Mean temperature of driest quarter (Bio9) (°C)

Precipitation seasonality (coefficient of variation) (Bio15) (mm) Mean temperature of warmest quarter (Bio10) (°C)

Soil pH (parts Hydrogen) Mean temperature of coldest quarter (Bio11) (°C)

Soil carbon (kg-C/m2 to 1 m depth) Precipitation of wettest month (Bio13) (mm)

Precipitation of wettest quarter (Bio16) (mm)

Precipitation of driest quarter (Bio17) (mm)

Precipitation of warmest quarter (Bio18) (mm)

Precipitation of coldest quarter (Bio19) (mm)

Soil moisture (mm)
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the presence records (Elith and Leathwick 2009) of Q.
aegilops (n = 33). Additionally, a bias file, generated in
ArcGIS 10.3, was also used to account for the distribution
of the target species rather than the sampling effort distri-
bution (Kramer-Schadt et al. 2013). The MaxEnt default
settings for the regularization multiplier (β), which is 1,
was selected in the model building, following Phillips et al.
(2006) and Merow et al. (2013). The regularization multi-
plier fine tunes the model complexity and simplicity—for
example, decreasing the number to below 1 increases the
model complexity and increasing the number to above 1
simplifies the model (Merow et al. 2013). To assess the
predictor’s relative importance and contribution to the
probability of the habitat distribution of Q. aegilops, the
Jackknife test was selected (Phillips 2005). Furthermore,
the logistic output format with the ‘maximum test sensi-
tivity plus specificity Logistic threshold’ for delineating the
continuous map was applied (Liu et al. 2013). The thresh-
old dependent value of 0.39 was used for delineating the
probability of habitat suitability (i.e., ≥ 0.39) and unsuit-
ability (i.e., < 0.39) distribution of Q. aegilops (i.e., prob-
ability of occurrence) (Jiménez-Valverde and Lobo 2007).
The threshold value was based on the average of the 10
models (10 replicates). The delineation was achieved by

reclassifying the continuous map into four classes, accord-
ing to the following categories: 0–0.39 (unsuitable); 0.39–
0.49 (lowly suitable); 0.49–0.74 (moderately suitable);
0.74–0.99 (highly suitable). This procedure was performed
by using spatial analyst tools in ArcGIS 10.3.

Model evaluation
To test the efficiency of the model, two widely ac-
ceptable evaluation metrics were used: (i) the area
under the receiver operating curve (AUC) (Hanley
and McNeil 1982; Phillips et al. 2017) and (ii) the
True Skill Statistics (TSS) (Allouche et al. 2006). A
high AUC value (e.g., 0.7–1.0) represents very good
discriminatory power of the model in predicting a
better than random guess. By contrast, the perform-
ance of the model reduces with a decreasing AUC
value (e.g., an AUC value < 0.5–0.0 represents poor
performance) (Fielding and Bell 1997; Phillips et al.
2017). The same argument is valid for the TSS value,
which ranges between − 1 and 1 (Allouche et al.
2006). The metrics were calculated using both the
MaxEnt model outputs and equations defined by
Allouche et al. (2006) as (TSS = sensitivity (true
positive rate) + specificity (true negative rate) – 1).

Table 3 Relative contribution and permutation importance of the environmental predictors influencing the probability of
distribution of Q. aegilops in the KRI

Predictors Contribution (%) Permutation importance

Aspect 19.9 18.2

Bio1 13.5 10.4

Bio12 45.4 42.7

Bio14 2.7 0.9

Bio15 1.2 0.8

Bio2 0.3 0.8

Bio4 0.5 1.4

Slope 15.1 20.5

Soil carbon 0.1 0.3

Soil pH 1.3 4.0

Table 4 Model outputs indicating the probability of habitat suitability and unsuitability areas (percentage) for the current and future
distributions under two climate changes scenarios (RCP 2.6 2070 and RCP 8.5 2070) for Q. aegilops in the KRI

Category Current distribution
(km2 )

RCP2.6 2070
(km2 )

RCP8.5 2070
(km2 )

Area % Area % Area %

Unsuitable 42868.6 83.2 43932.2 85.3 43627.5 84.7

Suitable

Lowly suitable 5249.2 10.2 4522.0 8.8 4764.3 9.3

Moderately suitable 2653.8 5.2 2175.9 4.2 2197.5 4.3

Highly suitable 749.2 1.5 889.7 1.7 931.4 1.8

Total 51520.8 100 51520.8 100 51520.8 100
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Change detection analysis between current and future
habitat distributions
The habitat suitability maps were then used to quantify
current and future distribution changes predicted from the
model. The distribution changes for Q. aegilops in the KRI
were quantified as follows: (i) Range expansion (i.e., the
probability of new areas that would be suitable for Q. aegi-
lops in 2070); (ii) Unsuitable (i.e., areas that are unsuitable
under current environmental factors and would stay unsuit-
able in the future (2070); (iii) No change (i.e., areas already
occupied by Q. aegilops and will stay occupied in the future);
(iv) Range contraction (areas of Q. aegilops that would shift
or shrink in the future). All the analyses were performed
with a spatial toolbox available within the ArcGIS 10.3
environment.

Magnitude and direction of distributional changes
To provide a clear picture of the distributional changes
(shifts) between the current and future scenarios, the
centroid (i.e., ‘arithmetic mean’ of the species records
(latitude and longitude) across its range (spatial extent)),
was calculated across time. This analysis was performed

using a GIS tool developed by Brown et al. (2017) to
identify the centroid of the distribution changes of the
suitable areas. This tool deciphers the core distributional
shifts of the target species by reducing the spatial re-
cords into a single point (centroid) together with attri-
butes of the magnitude and direction by creating a
vector shape file (Brown et al. 2017).

Results
Predictor’s relative contribution and importance to the
probability of distribution
The relative contribution (%) of the annual precipitation
(Bio12) was 45.4%, suggesting Bio12 alone contributed
significantly to the distribution probability of Q. aegilops
in the KRI. Similarly, aspect, annual mean temperature
(Bio1), and slope significantly contributed to the distri-
bution by 19.9%, 13.5%, 15.1%, respectively. These four
predictors collectively contributed to nearly 94% of the
total number of predictors (Table 3). By contrast, mean
diurnal range temperature (Bio2), temperature seasonal-
ity (Bio4), and soil pH demonstrated the lowest contri-
bution to the distribution of Q. aegilops in the KRI

Fig. 2 Current habitat suitability distribution of Q. aegilops modeled using the selected environmental predictors and presence records
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(Table 3). Moreover, the Jackknife test to regularize
training gain demonstrated that Bio12, slope, aspect, and
Bio1 contained more information in determining the
distributional pattern of Q. aegilops in the KRI than
other predictors (Fig. 9 in Appendix).
Permutation importance indicates the subsequent

roles of variable values, which permute randomly on
the training portion of the presence data and the
background points. For each turn (i.e., for each vari-
able), this process is repeated and in turn the model
is reevaluated using the AUC predictor gain (Phillips
et al. 2006).

Model performance and current habitat suitability
distribution
Model performance was evaluated using both AUC and
TSS Metrics (methodology section). The model demon-
strated very good discriminatory power of AUC = 0.8 ±
0.1 and TSS = 0.8 ± 0.2. In other words, the models were
successful in predicting the suitable habitat distribution
of Q. aegilops in the KRI under the selected

environmental predictors. The model predicted that ~
8652.2 km2 (16.7%) of the total study area of 51520.8
km2 was a suitable habitat of Q. aegilops. The remaining
portion of ~ 42868.6 km2 (83.2%) was predicted as un-
suitable (Table 4; Fig. 2). The suitable habitat area (i.e.,
8652.2 km2), as predicted by the model, was divided into
lowly suitable (area 5249.2 km2 (10.2%)), moderately
suitable (area 2653.8 km2 (5.2%)), and highly suitable
(area 749.2 km2 (1.5%)). This level of detail could assist
conservation efforts more realistic and plausible (Table
4; Fig. 2).

Future habitat suitability distribution
Future results demonstrated that the spatial distribu-
tion of Q. aegilops would be reduced under both RCP
scenarios in 2070. Thus, the proportion of the habitat
suitability categories would be reduced and, instead,
the unsuitability category would increase in 2070. For
example, the total suitable areas (all categories) would
be reduced by 2% (8652.2 to 7588.6 km2) and 1.5%
(8652.2 to 7893.3 km2) in 2070 for the RCP2.6 and

Fig. 3 Future (2070) habitat suitability distribution of Q. aegilops modeled with the selected environmental predictors and presence records
under the RCP 2.6 2070 climate change scenario
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RCP8.5, respectively (Table 4; Figs. 3 and 4). Lowly
suitable and moderately suitable categories would be
reduced by 1.4% and 0.9% under the RCP2.6 and
RCP8.5 scenarios, respectively. Surprisingly, the highly
suitable category would be increased by 0.3% and 0.4%
under the 2070 scenarios, respectively. By contrast, the
unsuitable category area, under both RCP scenarios,
would increase by 2.0% and 1.5%, respectively, in 2070,
suggesting a spatial shift in the distribution of Q. aegilops
in the KRI (Table 4; Figs. 3 and 4).

Change detection analysis between current and future
habitat distribution
The distributional change analysis over space and time
under the climate change scenarios (RCP2.6 2070 and
RCP8.5 2070) indicated that Q. aegilops would expand
and contract spatially. The contraction magnitude was
demonstrated to be higher than the expansion magni-
tude. For example, under RCP2.6 2070 and RCP8.5
2070, the Q. aegilops ranges contracted by 3.6% (1849.7
km2) and 3.2% (1627.1 km2), respectively. However, the

Fig. 4 Future (2070) habitat suitability distribution of Q. aegilops modeled with the selected environmental predictors and presence records
under the RCP 8.5 2070 climate change scenario

Table 5 Difference between the current and future distribution of Q. aegilops under two different climate change scenarios for 2070
(RCP 2.6 2070 and RCP 8.5 2070)

Change status Current_RCP2.6 2070 Current_RCP8.5 2070

Area Area % Area Area %

Range expansion 777.0 1.5 848.0 1.7

Unsuitable 42146.5 81.8 42075.6 81.7

No change 6747.6 13.1 6970.2 13.5

Range contraction 1849.7 3.6 1627.1 3.2

Total 51520.8 100 51520.8 100
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ranges expanded only by 1.5% (777.0 km2) and 1.65%
(848.0 km2), respectively (Table 5; Figs. 5 and 6).

Magnitude and direction of distributional changes
The current habitat suitability distribution centroid of Q.
aegilops stands at the 44°38′28.503′′ E and 36°14′
39.922′′ N geographical position. Under the RCP8.5
2070 and RCP2.6 2070 climate change scenarios (i.e., 50
years from now), the current distribution centroid pos-
ition would shift to new distribution centroids, 44°34′
26.321′′ E; 36°17′48.471′′ N and 44°39′0.877′′ E;36°14′
2.435′′ N, respectively. The magnitude and direction of
the centroid shift under RCP8.5 2070 were stronger and
demonstrated distributional change direction toward
northwest (Fig. 10 in Appendix).

Discussion
The most important predictor relatively (by 45.4%) con-
trolling the distribution of Q. aegilops in the KRI, as dem-
onstrated by the model, was annual precipitation (Bio12).
The optimal annual precipitation between 850 and 1042
mm determines the current habitat suitability of the

species in the KRI. This amount of precipitation in KRI is
often associated with high altitude (mountain areas) (Nas-
ser 1984). These results concur with previous studies, sug-
gesting rain as the key ecological factor limiting the
distribution of the oak forests in the northeast of Iraq
(KRI) (Guest and Al-Rawi 1966; Nasser 1984; Zohary
1973). However, the amount of rain and optimal range
was not determined by these studies. Intuitively, this result
was not supersizing because, in the arid and semi-arid
eco-regions, the availability of water could be the key lim-
iting factor for plant growth and development. However,
in the temperate regions, temperature (sun light) could be
the limiting factor for plant distribution and growth (Junt-
tila and Nilsen 1993). The physiological and biochemical
processes of plants are highly associated with water avail-
ability, particularly in semi-dry areas (Wang et al. 1998).
Soil moisture and leaf anatomy during the dry season
might also play a significant role in the widespread distri-
bution and development of Q. aegilops in the KRI. For ex-
ample, in the KRI, including in the mountains, the rate of
rainfall is close to 0 from June to September (El-Moslimany
1986). However, the Quercus species, particularly Q.

Fig. 5 Difference between the current distribution and future distribution under the RCP 2.6 2070 climate change scenario
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aegilops, thrived. The heat tolerance factor could be one of
the reasons for its dominance compared with other Quer-
cus species (Shahbaz et al. 2015). The mountains in the KRI
receive a significant amount of precipitation during Sep-
tember onwards compared with the low lands. However,
this finding does not necessarily infer the relative import-
ance of other factors, such as biological interactions (in-
cluding human factors), geology, and dispersal, which do
not participate in the distribution of Q. aegilops. For ex-
ample, villagers in the mountain ranges depend mainly on
Q. aegilops fodders for livestock, and harvesting firewood
during winter seasons. Apart from that pollarding and har-
vesting non-wood forest products—for example, oak acorns
are common practices (Ghahramany et al. 2018). These
traditional practices may influence the distribution of the
species in the KRI. Moreover, the role of various mammal
and bird species (e.g., squirrels, ravens, jays and magpies
available in the KRI (Hatt 1959; Salim et al. 2010)) should
be considered as biological factors in the dispersal of the
species. In addition, the anticlinal and synclinal features in
the highlands created elevated peaks, valleys, cliffs, gorges,
and rocky slopes, which, in turn, create a network of

natural water lines, could play a role in the species
distribution.
The distributional change analysis under the climate

change scenarios (i.e., RCP2.6 2070 and RCP8.5 2070)
demonstrated the probability of the distribution of Q.
aegilops in the KRI would reduce by 3.6% (1849.7 km2)
and 3.16% (1627.1 km2) respectively. By contrast, the
model demonstrated the species expand in range only by
1.5% (777.0 km2) and 1.7% (848.0 km2) respectively (Table
5; Figs. 5 and 6). More specifically, the highly suitable cat-
egory areas would expand from current 749.2 km2 (1.5%)
to 889.7 (1.7%) and 931.4 km2 (1.8%) under the climate
change scenarios, respectively (Table 4). In contrast, lowly
and moderately suitable categories would contract. This
increasing and decreasing trend suggests a spatial shift in
the distribution of Q. aegilops. Therefore, conservation
plans and actions should focus on the areas where the spe-
cies is most vulnerable (i.e., lowly and moderately
suitable categories).
Future climate change scenarios (i.e., RCP2.6 2070 and

RCP8.5 2070) indicated the best and worst-case
anthropogenic-caused greenhouse gases (concentration),

Fig. 6 Difference between the current distribution and future distribution under the RCP 8.5 2070 climate change scenario
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respectively. Under both scenarios, the amount of
precipitation in the KRI in 2070 would decrease over
space. For example, annual precipitation would be re-
duced from a maximum of 1042 mm (current) to
1031 mm (RCP2.6) and 843 mm (RCP8.5). The re-
duction in the precipitation would influence the
spatial distributional change of Q. aegilops. The direc-
tion of the distributional change would move towards
northwest (i.e., Erbil and Duhok). However, the
amount of precipitation would decrease relatively in
the southeast (i.e., in Sulaimani) and, conversely, it
would stay stable or within the optimal range in the
northeast. This argument is also valid for
temperature-related variables—for example, the annual
mean temperature, which also contributes significantly
to the distribution probability of Q. aegilops, increased
by around 3.7 °C in 2070 under the CRP2.8 scenario.
The spatial increase in the temperature in some areas
would mean less rain and more drought. The core
distributional shift (expansion) of Q. aegilops in the
KRI towards the northeast indicates that the species
prefer cooler areas with higher annual precipitation.
The Erbil and Duhok mountain areas receive more
annual rainfall (i.e., more elevated peaks and, thus,
more mountainous) than that of the Sulaimani areas
(Nasser 1984). Other studies also reported that the
mountain forest ecosystems in the northern hemi-
sphere would migrate toward higher elevations under
climate change warming scenarios (Bertrand et al.
2011; Braunisch et al. 2014; Walther et al. 2005).
The model also showed a significant contribution of the

annual mean temperature (13.5%), slope (15.1%), and as-
pect (19.9%) to the distribution probability of Q. aegilops
in the KRI. Including the annual precipitation, these four
predictors collectively contributed 94% in the distribution
of the species. The model indicated an optimal annual
mean temperature between 13.5 and 16.5 °C, which is the
preferred range for the distribution of the species in the
KRI. The growth and development of forest plant species
are related to various site factors—for example, soil, air
temperature, nutrient, light, symbiosis, and disturbances
(Desta et al. 2004). The variability of these factors prob-
ably depend on the local topography—for example, aspect
and slope. Desta et al. (2004) reported that aspect and
slope influence the quantity of solar radiation received by
the mountain forest during a day cycle. Furthermore, they
also affect microclimate of forest plants—for example, hu-
midity, soil moisture, and air temperature (Fekedulegn
et al. 2003; Rosenberg et al. 1983). In the KRI, Q. aegilops
shows a distribution probability within the optimal range
of 10° and 40° aspect (i.e., north and northeast aspects).
This result concurs with the study of Desta et al. (2004) in
which they showed the north and northeast aspect was
more suitable for thriving some mountain tree species—

for example Q. prinus and Q. alba. This result does not
imply that Q. aegilops would not occur in the southwest
and flat surfaces in the KRI.
This study acknowledges that Q. aegilops, despite on-

going degradation, is widely distributed and is the dominant
oak species in the KRI. However, climate change and other
ongoing human-caused threats (e.g., war, cutting and clear-
ing) are still serious. Therefore, this study suggests the fol-
lowing: (i) introducing oak seed (acorn) into areas with
high elevations to test the adaptability of the species; (ii) in-
corporating climate change adaptation strategic plans into
forest management guidelines for conservation efforts—for
example, Q. aegilops plantation (assisted migration) at high
altitude areas; (iii) and establishment of national parks and
protective areas for the oak forests.

Conclusions
Correlation-based modeling of the species available re-
cords and environmental predictors provide a useful op-
portunity to map and predict the current and future
distributions of Q. aegilops in the KRI. The output of the
modeling (i.e., categorical current and potential habitat
suitability maps) can effectively be used to improve con-
servation actions and plans, not only for the study site,
but also for areas with similar climatic conditions—for
example, semi-arid regions of the globe where the spe-
cies is distributed.
The distribution of Q. aegilops was mainly controlled by

annual precipitation. Under future climate change scenarios
(i.e., RCP2.6 2070 and RCP8.5 2070), the centroid of the
distribution would shift toward higher altitude, suggesting
its preference for cooler areas with high annual precipita-
tion. Conservation actions should focus on the mountain-
ous areas (e.g., by establishment of national parks and
protected areas) of the KRI as climate changes. The moun-
tains hold the future for Q. aegilops in the KRI. Because of
its trunk and branch volumes, Q. aegilops forests provide
remarkable ecological services for the society. Furthermore,
under the two future climate change scenarios, the distribu-
tion range of Q. aegilops in the KRI would reduce by 3.6%
(1849.7 km2) and 3.2% (1627.1 km2), respectively. By con-
trast, the species range would expand by 1.5% (777.0 km2)
and 1.7% (848.0 km2), respectively. These findings indicate
that a significant suitable habitat range of the species will
be lost in the KRI due to climate change by 2070. In the
KRI, the forest sector, particularly, Q. aegilops forest areas
that are vulnerable to climate change were revealed, despite
some marginal opportunity for expansion, conservation
and management actions should focus on the areas
(depicted in Figs. 5 and 6) where the species is most vulner-
able. For example, by practicing land allocation and zoning
strategies at specific mountain sites where climatic and en-
vironmental predictors are in favor of the species.
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Appendix

Fig. 8 The Jackknife test for the species for predictor gains (AUC metric)

Fig. 7 Model performance, mean AUC and standard deviations

Fig. 9 Relative importance (%) of the predictors from the Jackknife test to regularize the training gains. The gain (%) with all predictors= Red bar;
the gain (%) with only predictor= Blue bar; the gain (%) without the corresponding predictor = Green bar

Khwarahm Ecological Processes            (2020) 9:56 Page 13 of 16



Abbreviations
AR5: Assessment Report 5; AUC: Area under the receiver operating curve;
BCC-CSM1.1: Beijing Climate Centre - Climate System Modelling 1.1; CGIA
R: Consultative Group for International Agricultural Research; DEM: Digital
elevation model; GBIF: Global Biodiversity Information Facility;
GLM: Generalized linear models; GAM: Generalized additive models;
IPCC: Intergovernmental Panel on Climate Change; KRI: Kurdistan Region of
Iraq; MaxEnt: Maximum entropy; RF: Random forest; RCP: Representative
Concentration Pathway; SRTM: Shuttle Radar Topography Mission;
SDMs: Species distribution models; SAGE: Center for Sustainability and the
Global Environment; TSS: True Skill Statistics

Acknowledgements
I would like to thank Dr. Sara Kamal Othman for reviewing and proofreading
the manuscript. The support and assistance of the University of Sulaimani, in
particular, Department of Biology is highly appreciated.

Author’s contributions
The author(s) read and approved the final manuscript.

Funding
Not applicable

Availability of data and materials
Applicable on request

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The author declares no competing interests.

Received: 12 August 2020 Accepted: 9 September 2020

References
Abdullah A, Esmail A, Ali O (2019) Mineralogical properties of oak forest soils in

Iraqi Kurdistan Region. Iraqi J Agric Sci 50:1501–1511
Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, van Loon EE, Raes N, Reemer M,

Biesmeijer JC (2013) Fit-for-purpose: species distribution model performance
depends on evaluation criteria – Dutch hoverflies as a case study. PLoS One
8:e63708

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation,
migration or extirpation: climate change outcomes for tree populations. Evol
Appl 1:95–111

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species
distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl
Ecol 43:1223–1232

Alnasrawi A (2001) Iraq: economic sanctions and consequences, 1990–2000. Third
World Q 22:205–218

Ardi M, Rahmani F, Siami A (2012) Genetic variation among Iranian oaks (Quercus
spp.) using random amplified polymorphic DNA (RAPD) markers. Afr J
Biotechnol 11:10291–10296

Balci Y, Halmschlager E (2003) Phytophthora species in oak ecosystems in Turkey
and their association with declining oak trees. Plant Pathol 52:694–702

Bertrand R et al (2011) Changes in plant community composition lag behind
climate warming in lowland forests. Nature 479:517–520

Boakes EH, McGowan PJK, Fuller RA, Ding CQ, Clark NE, O’Connor K, Mace GM
(2010) Distorted views of biodiversity: spatial and temporal bias in species
occurrence data. PLoS Biol 8:e1000385

Bor N, Guest E (1968) Flora of Iraq, vol 9. Ministry of Agriculture, Baghdad
Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce

sampling bias can improve the performance of ecological niche models. Ecol
Model 275:73–77

Braunisch V, Coppes J, Arlettaz R, Suchant R, Zellweger F, Bollmann K (2014)
Temperate mountain forest biodiversity under climate change: compensating
negative effects by increasing structural complexity. PLoS One 9:e97718

Breiman L (2001) Random forests. Mach Learn 45:5–32
Brown JL (2014) SDM toolbox: a python-based GIS toolkit for landscape genetic,

biogeographic and species distribution model analyses. Methods Ecol Evol 5:
694–700

Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next generation
Python-based GIS toolkit for landscape genetic, biogeographic and species
distribution model analyses. PeerJ 5:e4095

Chapman G (1948) Forestry in Iraq. Unasylva 2:251–253
Chapman G (1950) Notes on forestry in Iraq. Empire Forestry Rev:132–135
Desta F, Colbert J, Rentch JS, Gottschalk KW (2004) Aspect induced differences in

vegetation, soil, and microclimatic characteristics of an Appalachian
watershed. Castanea 69:92–108

Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G (2010)
Climate change and oak growth decline: Dendroecology and stand
productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central
Italy. Ann For Sci 67:706

Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a
simulation study evaluating their performance. Ecography 36:27–46

Duan R-Y, Kong X-Q, Huang M-Y, Fan W-Y, Wang Z-G (2014) The predictive
performance and stability of six species distribution models. PLoS One 9:
e112764

Dudík M, Phillips SJ, Schapire RE (2007) Maximum entropy density estimation
with generalized regularization and an application to species distribution
modeling. J Mach Learn Res 8:1217–1260

Ebrahimi A, Farashi A, Rashki A (2017) Habitat suitability of Persian leopard
(Panthera pardus saxicolor) in Iran in future. Environ Earth Sci 76:697

Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species.
Methods Ecol Evol 1:330–342

Fig. 10 Current centroid distribution of Q. aegilops and distributional centroid changes under RCP2.6 2070 and RCP8.5 2070.

Khwarahm Ecological Processes            (2020) 9:56 Page 14 of 16



Elith J, Leathwick JR (2009) Species distribution models: ecological explanation
and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

Elith J et al (2006) Novel methods improve prediction of species’ distributions
from occurrence data. Ecography 29:129–151

El-Moslimany AP (1986) Ecology and late-Quaternary history of the Kurdo-
Zagrosian oak forest near Lake Zeribar, western Iran. Vegetatio 68:55–63

Fekedulegn D, Hicks RR Jr, Colbert J (2003) Influence of topographic aspect,
precipitation and drought on radial growth of four major tree species in an
Appalachian watershed. For Ecol Manag 177:409–425

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction
errors in conservation presence/absence models. Environ Conserv 24:38–49

Gaertig T, Schack-Kirchner H, Hildebrand EE, Wilpert KV (2002) The impact of soil
aeration on oak decline in southwestern Germany. For Ecol Manag 159:15–25

Ghafour NH, Aziz HA, Almolla RAM (2010) Determination of some chemical
constitutes of oak plants (Quercus spp.) in the mountain oak forest of
Sulaimani Governorate. J Zankoy Sulaimani 13:129–142

Ghahramany L, Ghazanfari H, Fatehi P, Valipour A (2018) Structure of pollarded
oak forest in relation to aspect in Northern Zagros, Iran. Agrofor Syst 92:
1567–1577

Graham MH (2003) Confronting multicollinearity in ecological multiple
regression. Ecology 84:2809–2815

Guest E, Al-Rawi A (1966) Flora of Iraq. Vol. 1: Introduction. Ministry of Agriculture.
University Press, Glasgow

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143:29–36

Hastie TJ, Tibshirani RJ (1990) Generalized additive models vol 43. CRC Press
Hatt RT (1959) The mammals of Iraq
Hernández-Lambraño RE, de la Cruz DR, Sánchez-Agudo JÁ (2019) Spatial oak

decline models to inform conservation planning in the Central-Western
Iberian Peninsula. For Ecol Manag 441:115–126

Heydari M, Rostamy A, Najafi F, Dey D (2017) Effect of fire severity on physical
and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests
in Iran. J For Res 28:95–104

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution
interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis:
how to compute habitat-suitability maps without absence data? Ecology 83:
2027–2036

Hu X-G, Jin Y, Wang X-R, Mao J-F, Li Y (2015) Predicting impacts of future climate
change on the distribution of the widespread conifer Platycladus orientalis.
PLoS One 10:e0132326

Jewitt D, Erasmus BF, Goodman PS, O'Connor TG, Hargrove WW, Maddalena DM,
Witkowski ET (2015) Climate-induced change of environmentally defined
floristic domains: A conservation based vulnerability framework. Appl Geogr
63:33–42

Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of
probability of species presence to either–or presence–absence. Acta Oecol
31:361–369

Junttila O, Nilsen J (1993) Growth and development of northern forest trees as
affected by temperature and light. In: Alden J, Mastrantonio JL, Ødum S
(eds), Forest development in cold climates. Plenum Press, New York, pp 43–
57

Körner C et al (2016) Where, why and how? Explaining the low-temperature
range limits of temperate tree species. J Ecol 104:1076–1088

Kramer-Schadt S et al (2013) The importance of correcting for sampling bias in
MaxEnt species distribution models. Divers Distrib 19:1366–1379

Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species
occurrence with presence-only data. J Biogeogr 40:778–789

Malinowski JC (2002) Iraq: A Geography
Maya-García R, Torres-Miranda CA, Cuevas-Reyes P, Oyama K (2020)

Morphological differentiation among populations of Quercus elliptica Neé
(Fagaceae) along an environmental gradient in Mexico and Central America.
Botanical Sci 98:50–65

McCullagh P (1984) Generalized linear models. Eur J Oper Res 16:285–292.
https://doi.org/10.1016/0377-2217(84)90282-0

Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for
modeling species’ distributions: what it does, and why inputs and settings
matter. Ecography 36:1058–1069

Morales NS, Fernández IC, Baca-González V (2017) MaxEnt’s parameter
configuration and small samples: are we paying attention to
recommendations? A systematic review. PeerJ 5:e3093

Mosa WL (2016) Forest Cover Change and Migration in Iraqi Kurdistan: A Case
Study from Zawita Sub-district. Michigan State University. Forestry.

Nasser M (1984) Forests and forestry in Iraq: prospects and limitations.
Commonwealth Forestry Rev:299–304

Nixon K (2006) Global and neotropical distribution and diversity of oak (genus
Quercus) and oak forests. In: Ecology and conservation of neotropical
montane oak forests. Springer, pp 3–13

Obeyed M, Akrawee Z, Mustafa Y (2020) Estimating aboveground biomass and
carbon sequestration for natural stands of Quercus aegilops in Duhok
province, Iraqi. J Agric Sci 51. https://doi.org/10.36103/ijas.v51i1.936

Panahi P, Jamzad Z, Pourmajidian M, Fallah A, Pourhashemi M (2012) Foliar
epidermis morphology in Quercus (subgenus Quercus, section Quercus) in
Iran. Acta Botanica Croatica 71:95–113

Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species
distributions from small numbers of occurrence records: a test case using
cryptic geckos in Madagascar. J Biogeogr 34:102–117

Phillips SJ (2005) A brief tutorial on Maxent. AT&T Res 190:231–259
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black

box: An open-source release of Maxent. Ecography 40:887–893
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecol Model 190:231–259
Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new

extensions and a comprehensive evaluation. Ecography 31:161–175
Pourreza M, Hosseini SM, Sinegani AAS, Matinizadeh M, Dick WA (2014) Soil

microbial activity in response to fire severity in Zagros oak (Quercus brantii
Lindl.) forests, Iran, after one year. Geoderma 213:95–102

Radosavljevic A, Anderson RP (2014) Making better Maxent models of species
distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

Rahimi I, Azeez SN, Ahmed IH (2020) Mapping forest-fire potentiality using
remote sensing and GIS, case study: Kurdistan Region-Iraq. In: Environmental
Remote Sensing and GIS in Iraq. Springer, pp 499–513

Ramírez-Preciado RP, Gasca-Pineda J, Arteaga MC (2019) Effects of global
warming on the potential distribution ranges of six Quercus species
(Fagaceae). Flora 251:32–38

Rashid RMS, Sabir DA, Hawramee OK (2014) Effect of sweet acorn flour of
common oak (Quercus aegilops L.) on locally Iraqi pastry (kulicha) products. J
Zankoy Sulaimani 16:244–249

Riahi K et al (2011) RCP 8.5—A scenario of comparatively high greenhouse gas
emissions. Clim Change 109:33–57

Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate: the biological
environment. Wiley, New York

Salehi A, Farzin M, Alizadeh S (2019) Determination of effective factors on natural
regeneration of Persian Oak in Kohgiluyeh and Boyer-Ahmad, Sothern
Zagros, Iran. Arid Ecosyst 9:193–201

Salim M, Ararat K, Abdulrahman OF (2010) A provisional checklist of the Birds of
Iraq. RF Porter, M Salim, K Ararat and O Fadhel on behalf of Nature. Iraq
Marsh Bull 5:56–95

Shahbaz S (2010) Trees and shrubs: A field guide to the trees and shrubs of
Kurdistan region of Iraq. J Univ Duhok

Shahbaz SE, Abdulrahman SS, Abdulrahman HA (2015) Use of leaf anatomy for
identification of Quercus L. species native to Kurdistan-Iraq. Science J Univ
Zakho 3:222–232

Sissakian V, Jabbar MA, Al-Ansari N, Knutsson S (2015) Development of Gulley Ali
Beg Gorge in Rawandooz Area, Northern Iraq. Engineering 7:16–30

Soberon J, Peterson AT (2005) Interpretation of models of fundamental
ecological niches and species’ distributional areas. Biodiversity Informatics 2:
1–10

Song Y-G, Petitpierre B, Deng M, Wu J-P, Kozlowski G (2019) Predicting climate
change impacts on the threatened Quercus arbutifolia in montane cloud
forests in southern China and Vietnam: Conservation implications. For Ecol
Manag 444:269–279

Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model
complexity on the predictive performance of MaxEnt species distribution
models. PLoS One 8:e55158

Task GSD (2000) Global soil data products CD-ROM (IGBP-DIS), CD-ROM
International Geosphere-Biosphere Programme, Data and Information
System, Potsdam, Germany. Available from Oak Ridge National Laboratory
Distributed Active Archive Center, Oak Ridge, Tennessee, USA

Townsend Peterson A, Papeş M, Eaton M (2007) Transferability and model
evaluation in ecological niche modeling: a comparison of GARP and Maxent.
Ecography 30:550–560

Khwarahm Ecological Processes            (2020) 9:56 Page 15 of 16

https://doi.org/10.1016/0377-2217(84)90282-0
https://doi.org/10.36103/ijas.v51i1.936


Trumbore S, Brando P, Hartmann H (2015) Forest health and global change.
Science 349:814–818

Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative
evaluation of presence-only methods for modelling species distribution.
Divers Distrib 13:397–405

Urban MC (2015) Accelerating extinction risk from climate change. Science 348:
571–573

Van den Bergh M, Kappelle M (2006) Small terrestrial rodents in disturbed and
old-growth montane oak forest in Costa Rica. In: Ecology and Conservation
of Neotropical Montane Oak Forests. Springer, pp 337–345

Van Vuuren DP et al (2011) RCP2.6: exploring the possibility to keep global mean
temperature increase below 2 oC. Clim Change 109:95–116

Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine
plants. J Veg Sci 16:541–548

Wang JR, Hawkins C, Letchford T (1998) Photosynthesis, water and nitrogen use
efficiencies of four paper birch (Betula papyrifera) populations grown under
different soil moisture and nutrient regimes. For Ecol Manag 112:233–244

Willmott C, Matsuura K (2001) Terrestrial Water Budget Data Archive: Monthly
Time Series (1950–1999) Version 1.02

Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A, Group NPSDW (2008)
Effects of sample size on the performance of species distribution models.
Divers Distrib 14:763–773

Woodward FI, Williams B (1987) Climate and plant distribution at global and local
scales. Vegetatio 69:189–197

Xu J, Song Y-G, Deng M, Jiang X-L, Zheng S-S, Li Y (2020) Seed germination
schedule and environmental context shaped the population genetic
structure of subtropical evergreen oaks on the Yun-Gui Plateau, Southwest
China. Heredity 124:499–513

Yi Y-J, Zhou Y, Cai Y-P, Yang W, Li Z-W, Zhao X (2018) The influence of climate
change on an endangered riparian plant species: The root of riparian
Homonoia. Ecol Indic 92:40–50

Younis AJ, Hassan MK (2019) Assessing volume of Quercus aegilops L. trees in
Duhok Governorate, Kurdistan Region of Iraq. J Duhok Univ 22:265–276

Zhang K, Yao L, Meng J, Tao J (2018) Maxent modeling for predicting the
potential geographical distribution of two peony species under climate
change. Sci Total Environ 634:1326–1334

Zohary M (1973) Geobotanical foundations of the Middle East. Gustav Fisher
Verlag, Amsterdam

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Khwarahm Ecological Processes            (2020) 9:56 Page 16 of 16


	Abstract
	Background
	Results
	Conclusions

	Background
	Materials and methods
	Study area
	Q. aegilops presence records data
	Environmental variables
	Model building
	Model evaluation
	Change detection analysis between current and future habitat distributions
	Magnitude and direction of distributional changes

	Results
	Predictor’s relative contribution and importance to the probability of distribution
	Model performance and current habitat suitability distribution
	Future habitat suitability distribution
	Change detection analysis between current and future habitat distribution
	Magnitude and direction of distributional changes

	Discussion
	Conclusions
	Appendix
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

