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Abstract

Background: Cities are social-ecological systems characterized by remarkably high spatial and temporal
heterogeneity, which are closely related to myriad urban problems. However, the tools to map and quantify this
heterogeneity are lacking. We here developed a new three-level classification scheme, by considering ecosystem
types (level 1), urban function zones (level 2), and land cover elements (level 3), to map and quantify the
hierarchical spatial heterogeneity of urban landscapes.

Methods: We applied the scheme using an object-based approach for classification using very high spatial
resolution imagery and a vector layer of building location and characteristics. We used a top-down classification
procedure by conducting the classification in the order of ecosystem types, function zones, and land cover
elements. The classification of the lower level was based on the results of the higher level. We used an object-
based methodology to carry out the three-level classification.

Results: We found that the urban ecosystem type accounted for 45.3% of the land within the Shenzhen city
administrative boundary. Within the urban ecosystem type, residential and industrial zones were the main zones,
accounting for 38.4% and 33.8%, respectively. Tree canopy was the dominant element in Shenzhen city, accounting
for 55.6% over all ecosystem types, which includes agricultural and forest. However, in the urban ecosystem type,
the proportion of tree canopy was only 22.6% because most trees were distributed in the forest ecosystem type.
The proportion of trees was 23.2% in industrial zones, 2.2% higher than that in residential zones. That information
“hidden” in the usual statistical summaries scaled to the entire administrative unit of Shenzhen has great potential
for improving urban management.

Conclusions: This paper has taken the theoretical understanding of urban spatial heterogeneity and used it to
generate a classification scheme that exploits remotely sensed imagery, infrastructural data available at a municipal
level, and object-based spatial analysis. For effective planning and management, the hierarchical levels of landscape
classification (level 1), the analysis of use and cover by urban zones (level 2), and the fundamental elements of land
cover (level 3), each exposes different respects relevant to city plans and management.

Keywords: Social-ecological hybridity, Object-based classification, High-resolution imagery, Ecosystem, Urban
function zones, Land cover
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Introduction
Urban landscapes are highly heterogeneous in space,
structurally and functionally (Band et al. 2005; Cadenasso
et al. 2013; Zhou et al. 2014). The biophysical and social-
economic heterogeneity are closely related to myriad
urban problems, such as the urban heat island (Hu et al.
2016; Huang et al. 2010; Oke 1982), urban air pollution
(Briggs et al. 2000; Han et al. 2014; Rodríguez et al. 2016),
threats to biodiversity (BINO et al. 2008; Nilon et al.
2011), and challenges to human health and well-being
(Groenewegen et al. 2006). Mapping and quantifying the
heterogeneity of urban structures and functions is crucial
for understanding urban patterns, functions, and services,
and finally for promoting urban management.
Remote sensing has long been used to quantify and map

the spatial heterogeneity of the urban landscape, especially
its biophysical structure at coarser scales. For example,
medium and coarser-resolution remotely sensed images
have been widely used to map and quantify urban expan-
sion and associated land use/land cover changes, at scales
from individual cities to regionals, and the globe (Hansen
et al. 2000; Xian et al. 2009). In particular, numerous stud-
ies have mapped the intensity of impervious surfaces with
different data sources and algorithms (Weng 2012; Zhang
et al. 2013). With the growing availability of very high
spatial resolution satellite imagery (e.g., 1-m IKONOS,
0.6-m QuickBird) and aerial photos/digital imagery, re-
mote sensing has been increasingly used to map specific
landscape features such as buildings, trees, and small-
sized lawns, to understand the fine-scale spatial hetero-
geneity of urban landscapes (Lee et al. 2003; Ouma and
Tateishi 2008; Zhou and Troy 2008).
Remote sensing has also long been used to map and

quantify urban form from a functional perspective. The
most common example of such perspective is land use
mapping, from the simple “urban” versus “non-urban”
mapping (Hu et al. 2020; Jing et al. 2015) to more detailed
within-urban land use classifications (Hu and Wang 2013;
Wu et al. 2006). Other interesting, but not so widely used
classification systems include examples such as the Urban
Structure Types (Voltersen et al. 2014; Wurm et al. 2009;
Zhan et al. 2003), HERCULES classification scheme (Cade-
nasso et al. 2007), Ecotopes (Geerling et al. 2009), and Local
Climate Zones (Middel et al. 2014; Stewart and Oke 2012).
Cities, or urban areas more broadly, are now widely

recognized as social-ecological systems (McHale et al.
2015; Pickett et al. 2011), or social-ecological-
technological systems (Grimm et al. 2017). Therefore, a
holistic approach that integrates the biophysical struc-
ture and social function is highly desirable to understand
urban form. Here, we developed a three-level classifica-
tion scheme and mapped those levels based on high
spatial resolution imagery and a municipal census of
building size, height, and usage using an object-based

workflow. We aimed to reveal urban landscape from a
comprehensive perspective and derive useful information
for urban management.

Materials and methods
Study area and data
We chose Shenzhen, Guangdong Province, China (22° 26′
59´´–22° 51′ 49´´ N, 113° 45′ 44´´–114° 37′ 21´´ E), as
our study area. It is a highly developed city with a total ad-
ministrative area of 1997 km2 (Fig. 1). Shenzhen is the first
“Special Economic Zone” of China, established in 1978,
and generating a GDP of more than 2000 billion yuan in
2019. In addition to economic development, Shenzhen
has also put great effort into ecological conservation. For
example, in 2005, Shenzhen created a “Basic Ecological
Control Line” to restrict urban expansion, which has slo-
wed down the loss of forests (Yu et al. 2019). The highly
hybridized social and natural features in this city make it
an ideal place to quantify urban form.
We used SPOT 6 (Satellite Pour l’ Observation de la

Terre, French for “Earth observation satellite”) images
from 2017 to map the hierarchical structure of the urban
landscape (Fig. 1). SPOT 6 images consist of one pan-
chromatic band, with 1.5-m spatial resolution, and four
multispectral bands, namely blue, green, red, and near-
infrared, with 6-m resolution. In addition, we also used
the Shenzhen building census in 2015, which consists of
594,823 polygons for each building footprint, and con-
tains the building height and the attribute of building
use. The building census was obtained from the Bureau
of Planning and Natural Resources.

Hierarchical classification system
We constructed a three-level classification system from
a coarse to fine-scale, by considering various ways in
which humans perceive and use urban landscape. Specif-
ically, we first separated the urban ecosystem type from
others such as forests and agriculture. We then mapped
urban functional zones—hybrid patches that typically
have a mixture of different land cover elements with
built and non-built components within urban ecosys-
tems. The different land cover elements within each
patch type or zone were mapped (Fig. 2). In level 1, we
separated the ecosystem types of urban, forest, wetland,
grassland, and farmland. In level 2, we first classified
urban function zones, namely residential, commercial,
industrial, transportation, and mixed zones, within the
urban ecosystem type. Any places not classified in one
of the zones just mentioned were merged into a scenic
zone. Within the scenic zone, we also separated trans-
portation zones. In level 3, we differentiated eight land
cover elements, namely tree canopy, grass, bare soil,
water, building, road, impervious surface, and construc-
tion, within different types of zones.
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Hierarchical classification methods
We used a top-down classification procedure by con-
ducting the classification in the order of ecosystem
types, function zones, and land cover elements. The clas-
sification of the lower level was based on the results of
the higher level. We used an object-based methodology
to carry out the three-level classification. We segmented

objects of multiple sizes to match the classification scales
of different levels.
We first segmented the SPOT 6 image to generate

large-scale objects of the first level and then used rule-
based classification and visual interpretation to classify
the objects. Based on the first level, we segmented the
second level by overlaying the vector layer of blocks,

Fig. 1 The spatial location of the study area

Fig. 2 The graphical example of the hierarchical classification system
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which was modified from the OpenStreetMap (www.
openstreetmap.org), on the first level and classified the
function zones in the second level using building attri-
butes. Based on the second level, we segmented small
objects of the third level and classified the land cover el-
ements with supervised classification. During the classifi-
cation, the classification results of the upper level
provided information for the classification of the lower
level, which referred to as a top-down feedback ap-
proach (Zhang et al. 2018).

The first level: ecosystem types
We used a multi-resolution segmentation algorithm
(MRS) embedded in the eCognitionTM software to seg-
ment the SPOT 6 image. This algorithm is a bottom-up
segmentation method, which consecutively merges pixels
with similar spectral features to generate objects. The
spectral similarity of pixels is determined by the input
image layers (Baatz and Schäpe 2000). Here, we set equal
weights for the five original bands of SPOT 6 to calcu-
late spectral similarity. The multi-resolution segmenta-
tion uses a parameter “scale” to determine the size of
segmented objects. In general, the higher the scale value,
the larger the size of the segmented object. In addition
to the parameter scale, the multi-resolution segmenta-
tion uses two pairs of parameters: color and shape, and
compactness and smoothness, to adjust the shape of seg-
mented objects.
We first resampled the spatial resolution of the ori-

ginal image from 1.5 to 12 m to improve the segmenta-
tion efficiency. Then, we segmented large objects
corresponding to the large patches of ecosystem types
(Fig. 3). We set a large value of the scale parameter
(450) by visually comparing segmentation results with
different values from 200 to 600. In addition, we set the
weights of color and shape as 0.9 and 0.1, respectively,
and weighted both compactness and smoothness as 0.5
to segment meaningful boundaries, as suggested by pre-
vious studies (Mathieu et al. 2007; Pu et al. 2011).

After segmentation, we calculated the object features
of normalized difference vegetation index (NDVI), nor-
malized difference water index (NDWI), and brightness
based on the original image (Table 1). Then, we catego-
rized ecosystems using a rule-based classification. First,
we classified the forest by setting an NDVI threshold lar-
ger than 0.22. Second, we classified the wetland using a
0.17 threshold of NDWI. Third, we classified urban
using a threshold of brightness set to larger than 530. Fi-
nally, we manually mapped grassland and farmland and
improved classification results with visual interpretation.
All threshold values were determined by the “trial and
error” approach.
After classification, we further smoothed the borders

of the objects by “sanding” the peninsulas, such as the
long and thin roads which sprout from urban to forest
ecosystems (Fig. 4), because those peninsulas were in
fact belonging to the ecosystem enclosing them. Here,
we used an algorithm called morphology embedded in
eCognitionTM to smooth the borders. We created a cir-
cle mask with a diameter of 6 pixels to sand the object.
The parts of a single object were separated if the width
of those parts were smaller than the mask and then re-
classified to its surrounding context.

The second level: urban function zones
Based on the ecosystems’ objects of the first level, we
segmented the objects of the second level by overlaying
the vector layer of the block (Fig. 5). Then, we classified
urban function zones based on the classification results
of the first level. First, we classified the scenic zones by
merging ecosystems of forest, farmland, grassland, and
wetland. Second, we extracted transportation zones in
the whole Shenzhen based on the block layer. Third, we
classified the urban ecosystem into residential, commer-
cial, industrial, and mixed zones using the attribute of
building usages.
For each building in the census, many attributes such

as height, types, and usage were labeled by field

Fig. 3 The segmentation result of level 1
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investigation included in the census. Based on the attri-
bution of usage, we categorized buildings into four basic
types: residential, commercial, industrial, and others. For
each object in the second level, we calculated the per-
centage of different building types and then classified
the function zones according to the percentage of differ-
ent building types. Specifically, if the percentage of one
building type surpassed 50%, then the object was classi-
fied as a zone of that building type. If the percentage of
all building types were less than 50%, the object will be
classified as a mixed zone.

The third level: land cover elements
Within the objects of the second level, we further seg-
mented the third level based on the original image with
a spatial resolution of 1.5 m (Fig. 6). In addition, we used
the vector layer of buildings as ancillary data to segment
the boundary of the building footprint. We used a multi-
resolution segmentation algorithm and set the scale
value as 120 to segment the relatively fine land covers.
To segment objects along the boundary of land cover,
we set more weights on color (0.9) and less weights on
shape (0.1) and set equal weights for compactness (0.5)
and smoothness (0.5), according to previous studies
(Mathieu et al. 2007; Pu et al. 2011).
After segmentation, we classified roads and buildings

based on the ancillary data. Then, we classified six land
cover elements, namely tree canopy, grass, bare soil,
water, impervious surface, and construction, using

supervised classification. After that, we refined the re-
sults using a knowledge-based classification, which used
the information of ecosystem types and function zones
to improve the classification result. Finally, we con-
ducted manual editing to refine the results, especially for
construction and bare soil.
For the supervised classification, we first chose 30

training samples for each of the six classes referring to
high spatial resolution imagery of SPOT 6. Then, we
chose NDVI, NDWI, brightness, canny edge, and ori-
ginal bands, as features for classification, which are com-
monly used in previous studies (Qian et al. 2014) (Table
1). Finally, we applied the classifier of the support vector
machine (SVM) to classify different land cover elements.
For SVM, we chose the RBF kernel, setting the param-
eter C to 106, and the parameter gamma to 10−5 as sug-
gested in the previous study (Qian et al., 2014).
Subsequently, we conducted a knowledge-based classi-

fication by integrating expert knowledge to improve the
classification. Specifically, we reclassified the land cover
elements of the third level by considering the object
characteristics of the upper levels of ecosystems and
functions. For example, as previous research found that
cloud shadows in the mountain areas are likely to be
misclassified as water due to their spectral similarity
(Amin et al. 2013; Li et al. 2013), we reclassified the
water as tree canopy, if the corresponding object in the
first level was classified as forest. Similarly, most water
patches in the residential zones are most likely to be

Table 1 Object features used for classification

Object features Description

Mean valuea Mean value of a specific band of an image object

Brightness Average value of the 5 multispectral bands of an image object

Max. diff. Max intensity difference of the 5 multispectral bands of an image object

NDVI Mean value of the (NIR − red)/(NIR + red) of an image object

NDWI Mean value of the (green − NIR)/(green + NIR) of an image object

Canny Mean value of the Canny edge of an image object
aObject features were calculated for each of the 5 original bands

Fig. 4 An example of the smoothed objects by the morphology algorithm
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shadows cast by buildings (Zhao et al. 2009), so we cor-
rected those instances of water to impervious surfaces if
the corresponding object in the second level was classi-
fied as the residential zone.

Accuracy assessment
After the three-level classification, we conducted an ac-
curacy assessment for the first and the third levels. We
did not assess the accuracy of the second level, because
its classifications were based on the ancillary data of
roads and roofs, which are reliable results manually
depicted based on field investigation of the census. For
the first and third levels, we randomly selected 30 testing
samples for each category based on SPOT 6 satellite im-
agery. Using the error matrix, we calculated the overall
accuracy and the kappa coefficient.

Results
Landscape pattern on the three levels
The overall accuracies and kappa coefficient for the first
level of the ecosystem were 91.3% and 0.89, respectively.

The classification on level 1 showed that the ecosystem types
of forest and urban were the dominant ecosystems within
the administrative boundaries of Shenzhen city, amounting
to 51.4% and 45.3%, respectively. Urban landscapes were lo-
cated mostly in the western and northeastern parts of
Shenzhen, while the forest landscapes were mainly distrib-
uted in the eastern Dapeng district of Shenzhen (Fig. 7, panel
a). The proportions of the ecosystem types of wetland, farm-
land, and grassland were relatively small, accounting for only
2.3%, 0.6%, and 0.3% of the whole city (Fig. 7, panel a).
On the second level, the scenic zone was the dominant

functional type, which accounts for 53.9% of the area,
and was distributed throughout Shenzhen city (Fig. 7,
panel b). The residential and industrial zones were also
main functional types, which have proportions of 17.7%
and 15.6%, respectively. Within the urban ecosystem
type, the proportions of residential and industrial zones
were 38.4% and 33.8%, respectively. The residential
zones were distributed all over Shenzhen city, while the
industrial zones were mainly located in the north, and
many of them were connected with scenic zones (Fig. 7,
panel b). The proportions of other functional zones were
relatively small, with the proportions of mixed transpor-
tation, and commercial zones amounting to only 7.9%,
3.7%, and 1.3%, respectively (Fig. 7, panel b).
The overall accuracies and kappa coefficient for the

third level of land cover were 87.5% and 0.86, respect-
ively. We found tree canopy was the dominant land
cover element in Shenzhen, which accounted for 55.6%.
Second, building and impervious surfaces comprised
16.0% and 15.6% of Shenzhen. The next most abundant
land cover elements were roads and water, which
accounted for 5.0% and 4.5% of Shenzhen. The propor-
tions of other land cover elements were relatively small,
ranging from 0.6 to 1.7% (Fig. 7, panel c).

Landscape pattern from a multi-level perspective
Comparing the land cover composition of different eco-
systems, we found that the proportion of impervious

Fig. 5 The segmentation result of level 2

Fig. 6 The segmentation result of level 3
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surface (29.1%), buildings (32.2%), and roads (9.6%) was
higher in urban ecosystems, while in other ecosystems,
the proportion of impervious (less than 6.5%), buildings
(less than 6.0%), and roads (less than 1.5%) was much
lower. In addition, the proportion of tree canopy in the
urban ecosystem was also high (22.6%), second only to
the proportion of tree canopy (85.8%) in the forest eco-
system (Fig. 8, panel a). From the perspective of the dis-
tribution of different land covers, we found most
impervious surface (84.8%), building (91.1%), road
(86.1%), and construction lands (71.4%) were distributed
in the urban ecosystem, while the natural land cover ele-
ments such as tree canopy (81.3%), water (83.0%), grass
(57.9%), and farmland (80.5%) were mostly located
within non-urban ecosystem types (Fig. 8, panel b).
Comparing the land cover composition of different

function zones, we found the mixed, residential, indus-
trial, and commercial zones had a similar land cover
composition (Fig. 8, panel c). All four zones had a large
proportion of impervious surfaces, buildings, and trees.
The total proportion of these three land cover elements
was more than 80% (Fig. 8, panel c). Different from these
four types of zone, the scenic zone was dominated by
trees, which account for 81.6%, while the transportation

zone had a large proportion of roads, amounting to
51.6% (Fig. 8, panel c). Combined with the distribution
of different land covers (Fig. 8, panel d), we found that
although the composition of the land covers in the
mixed, residential, industrial, and commercial zones was
similar, the areas of them were very different. Most
buildings (76.0%) and impervious surfaces (62.1%) were
located in residential and industrial zones, not the com-
mercial zones (Fig. 8, panel d).

Discussion
Classification of urban systems began by distinguishing
cities from the countryside (Pickett and Cadenasso 2009;
Small et al. 2005) and has evolved to document the spread
of urban land covers and land uses over expanding regions
(Tan et al. 2010; Xiao et al. 2006). Land cover and land
use (LC/LU) classifications, even with high-resolution im-
agery, consider large urban regions to be mosaics of dis-
tinct and sharply contrasting zones or districts. This can
lead to confusion in understanding the very large adminis-
trative jurisdictions that characterize many megacities.
Such large cities comprise vastly different landscapes that
mix many specific habitat types. A first cut at understand-
ing such extensive jurisdictions has been to identify and

Fig. 7 Landscape pattern at each of the three levels

Qian et al. Ecological Processes            (2020) 9:59 Page 7 of 11



map the broadest landscapes or ecosystem types that exist
within their boundaries (Fig. 3). Although functional zones
can be recognized in cities, they are actually made up of
specific, discrete cover types at lower hierarchical levels of
the organization, though simultaneously contributing to
the structure and function of the larger landscapes that
exist in urban regions.
Our hierarchical classification system separates the

urban system into three related levels: (1) ecosystem or
landscape type, (2) functional zones, and (3) land cover
elements. Land cover elements make up the functional
zones, and the functional zones are distributed among
contrasting landscape or aggregate ecosystem types. The
different levels are connected using an object-based clas-
sification framework. Comparing to the traditional clas-
sification systems which mostly focused on one aspect of
the many urban characteristics, such as urban area (Cao
et al. 2009; Hu et al. 2020), urban structure types (Vol-
tersen et al. 2014; Wurm et al. 2009), or land cover (Yu
et al. 2016; Zhou et al. 2014), this new approach pro-
vides a comprehensive perspective and exposes massive
“hidden” information by quantifying the pattern at and
across multiple scales.
Take tree canopy as an example, previous studies were

mainly interested in the percentage of tree canopy for
the whole Shenzhen, which is 55.6% for Shenzhen city

(Fig. 7, panel c). However, with the multi-level analysis,
we found although tree canopy was the dominant land
cover element in Shenzhen city, most trees (80.7%) were
located in the forest ecosystem type (Fig. 8, panel b).
That led to a low percentage of the tree canopy (22.6%)
in the urban ecosystem type (Fig. 8, panel a), much
lower than the percentage of buildings and impervious
surfaces, which accounted for 32.2% and 29.1% of the
urban ecosystems, respectively (Fig. 8, panel a). Similarly,
most water (83.0%) were distributed in the non-urban
ecosystems; the percentage of water in the urban ecosys-
tem type was 1.7%, much lower than that in the whole
city (4.5%). Interestingly, we found that most of the con-
struction lands (71.4%) were distributed in the urban
ecosystem, which indicates that there is a large propor-
tion of internal renewal in Shenzhen.
By integrating the structures and functions, this ap-

proach can explore more classes of urban landscape ac-
cording to our needs. For example, we can identify
urban trees (18.7%) and non-urban trees (81.3%), which
have different social-ecological processes and require dif-
ferent management, by combining level 1 and level 3.
Within the urban ecosystem, this approach can differen-
tiate residential areas (level 2) based on building density,
building height, and tree covers (level 3), which repre-
sent different living quality. In addition, this approach

Fig. 8 Landscape pattern combining different levels

Qian et al. Ecological Processes            (2020) 9:59 Page 8 of 11



can create a massive spatial relationship when combin-
ing different classes, such as an industrial area next to
the forest ecosystem.
That multiscalar information has great potential for

urban management. For example, by analyzing the height
and proportion of buildings in residential areas, we can
identify shantytowns that might need urban renewal (Fig. 9,
panel a). In addition, information on the percentage of trees
in the patches can help urban managers rank the priority
for urban revitalization. Furthermore, this approach can not
only identify the area and location of forest or wetland eco-
systems that merit protection, but also evaluate their eco-
logical risks by analyzing their spatial distance from
industrial zones (Fig. 9, panel b). Finally, in comparison to
previous studies that mostly classified urban areas at a fixed
spatial scale (Hu et al. 2020; Voltersen et al. 2014; Zhou
and Troy 2008), this approach provides a flexible way of
generating customized information at city, block, and patch
scales. Such flexibility can support urban planning and
management at corresponding scales.
This new approach has also improved the classification

accuracy of urban land cover by using a top-down feed-
back approach (Zhang et al. 2018). That is, the classifica-
tion results on the upper levels provided expert
knowledge to assist the classification of the lower levels.
For example, it corrected the misclassification of water
as impervious surfaces in residential areas and corrected
misclassification of some forest cover as water in the for-
est ecosystem. Previous studies often used expert know-
ledge of the land cover change to improve classification
accuracy; for example, areas of impervious surface

measured in early years of a study is unlikely to convert
to water in later years (Yu et al. 2016). This new ap-
proach, however, introduced the social-ecological infor-
mation in classification and enlarged the application of
the knowledge-based classification.
According to different research and management needs,

this hierarchical framework can also be flexibly expanded or
modified, especially for the socio-ecological hybrid patches of
level 2. Take urban heat island (UHI) as an example. If we
aim to study urban heat island intensity, we can analyze the
temperature difference between the urban ecosystem land-
scapes and non-urban ecosystem in level 1 (Hu et al. 2016;
Peng et al. 2018). In the urban ecosystem of level 1, we can
further subdivide the local climate zone (LCZ) to study the
heat island within the urban area (Leconte et al. 2015; Stew-
art and Oke 2012). Within different LCZs, we can investigate
the cooling effect of tree patches (Jiao et al. 2017; Qian et al.
2018). In addition to UHI, social-ecological patches of other
types, such as urban structure types (Voltersen et al. 2014)
or HERCULES (Cadenasso et al. 2007), can also be inte-
grated into this framework.

Conclusions
This paper has taken the theoretical understanding of
urban spatial heterogeneity and used it to generate a
classification scheme that exploits remotely sensed im-
agery, infrastructural data available at a municipal level,
and object-based spatial analysis. Applying the classifica-
tion scheme to the megacity of Shenzhen has exposed
the limitations of using data only at the scale of land-
scape or ecosystem type (level 1) in assessing, for

Fig. 9 Identifying urban hotspots by analyzing the pattern across levels
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example, the tree cover of the city. The hierarchical clas-
sification developed here has discovered that within the
large urban landscape type, tree cover is actually less
common than in city-wide data that include the four
coarse landscape or ecosystem types. In other words, for
effective planning and management, the hierarchical
levels of landscape classification (level 1), analysis of use
and cover by urban zones (level 2), and the fundamental
elements of land cover (level 3), each exposes different
respects relevant to city plans and management.

Acknowledgements
We thank the Shenzhen government for providing us with building census
data to establish the hierarchical structure of the urban landscape. We also
thank the two anonymous reviewers and editor in the journal Ecological
Processes for their valuable and constructive comments.

Authors’ contributions
Conceptualization: Yuguo Qian, Weiqi Zhou, and Steward T.A. Pickett;
methodology: Yuguo Qian and Wenjuan Yu; validation: Dingpeng Xiong and
Weimin Wang; formal analysis: Yuguo Qian; data curation: Wenjuan Yu;
writing and original draft preparation: Yuguo Qian; writing, review, and
editing: Weiqi Zhou and Steward T.A. Pickett; visualization: Chuanbao Jing;
funding acquisition: Weiqi Zhou. All authors read and approved the final
manuscript.

Funding
This research was funded by the National Key R&D Program of China (Grant
No. 2017YFC0505801), the National Natural Science Foundation of China
(Grant No. 41771203 and 41601180), the Shenzhen Ecological Environment
Bureau (Grant No. SZCG2018161498), and the Shenzhen Environmental
Monitoring Center (Grant No. SZCG2018161442 and SZCG2017158233).

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory of Urban and Regional Ecology, Research Center for
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China. 2University of Chinese Academy of Sciences, Beijing 100049, China.
3Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA.
4PowerChina Eco-environment Group Co., Ltd, Shenzhen 518102, China.
5Shenzhen Environmental Monitoring Center, Shenzhen 518049, China.

Received: 30 June 2020 Accepted: 30 September 2020

References
Amin R, Gould R, Hou W, Arnone R, Lee Z (2013) Optical algorithm for cloud

shadow detection over water. IEEE Transactions on Geoscience & Remote
Sensing 51:732–741

Band LE, Cadenasso ML, Grimmond CS, Grove JM, Pickett STA (2005)
Heterogeneity in urban ecosystems: patterns and process. In: Lovett GM,
Turner MG, Jones CG, Weathers KC (eds) Ecosystem Function in
Heterogeneous Landscapes. Springer, New York, NY. https://doi.org/10.1007/
0-387-24091-8_13

Bino G, Levin N, Darawshi S, Van Der Hal N, Reich-Solomon A, Kark S (2008)
Accurate prediction of bird species richness patterns in an urban

environment using Landsat-derived NDVI and spectral unmixing.
International Journal of Remote Sensing 29:3675–3700

Briggs D et al. (2000) A regression-based method for mapping traffic-related air
pollution: application and testing in four contrasting urban environments.
Science of the Total Environment 253:151–167

Cadenasso ML, Pickett STA, McGrath B, Marshall V (2013) Ecological
heterogeneity in urban ecosystems: reconceptualized land cover models as a
bridge to urban design. In: Cadenasso ML, Pickett STA, McGrath BP, Marshall
V (eds) Resilience in ecology and urban design: linking theory and practice
for sustainable cities. Springer, Dordrecht

Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban
ecosystems: reconceptualizing land cover and a framework for classification.
Frontiers in Ecology and the Environment 5:80–88

Cao X, Chen J, Imura H, Higashi O (2009) A SVM-based method to extract urban
areas from DMSP-OLS and SPOT VGT data. Remote Sensing of Environment
113:2205–2209 https://doi.org/10.1016/j.rse.2009.06.001

Geerling GW, Vreekenbuijs MJ, Jesse P, Ragas AMJ, Smits AJM (2009) Mapping
river floodplain ecotopes by segmentation of spectral (CASI) and structural
(LiDAR) remote sensing data. River Research and Applications 25:795–813

Grimm NB, Pickett STA, Hale RL, Cadenasso ML (2017) Does the ecological
concept of disturbance have utility in urban social–ecological–technological
systems? Ecosystem Health and Sustainability 3:e01255

Groenewegen PP, Berg AEvd, Vries Sd, Verheij RA (2006) Vitamin G: effects of
green space on health, well-being, and social safety. BMC Public Health 6:149

Han L, Zhou W, Li W, Li L (2014) Impact of urbanization level on urban air quality: a case
of fine particles (PM2.5) in Chinese cities. Environmental Pollution 194:163–170

Hansen MC, Defries RS, Townshend JRG, Sohlberg RA (2000) Global land cover
classi cation at 1 km spatial resolution using a classification tree approach.
International Journal of Remote Sensing 21:1331–1364

Hu S, Wang L (2013) Automated urban land-use classification with remote
sensing. International Journal of Remote Sensing 34:790–803 https://doi.org/
10.1080/01431161.2012.714510

Hu X, Qian Y, Pickett STA, Zhou W (2020) Urban mapping needs up-to-date
approaches to provide diverse perspectives of current urbanization: a novel
attempt to map urban areas with nighttime light data. Landscape and Urban
Planning 195:103709 https://doi.org/10.1016/j.landurbplan.2019.103709

Hu X, Zhou W, Qian Y, Yu W (2016) Urban expansion and local land-cover
change both significantly contribute to urban warming, but their relative
importance changes over time. Landscape Ecology 32:1–18

Huang G, Zhou W, Cadenasso ML (2010) Understanding the relationship
between urban land surface temperature, landscape heterogeneity and
social structure. In: IEEE International Geoscience & Remote Sensing
Symposium, IGARSS 2010, July 25–30, 2010, Honolulu, Hawaii, USA

Jiao M, Zhou W, Zheng Z, Wang J, Qian Y (2017) Patch size of trees affects its
cooling effectiveness: a perspective from shading and transpiration
processes. Agricultural and Forest Meteorology 247:293–299

Jing W, Yang Y, Yue X, Zhao X (2015) Mapping urban areas with integration of
DMSP/OLS nighttime light and MODIS data using machine learning
techniques. Remote Sensing 7:12419–12439

Leconte F, Bouyer J, Claverie R, Petrissans M (2015) Using local climate zone
scheme for UHI assessment: evaluation of the method using mobile
measurements. Building and Environment 83:39–49

Lee DS, Shan J, Bethel JS (2003) Class-guided building extraction from Ikonos
imagery. Photogrammetric Engineering & Remote Sensing 69:143–150

Li S, Sun D, Yu Y (2013) Automatic cloud-shadow removal from flood/standing
water maps using MSG/SEVIRI imagery. International Journal of Remote
Sensing 34:5487–5502

Mathieu R, Aryal J, Chong AK (2007) Object-based classification of Ikonos imagery for
mapping large-scale vegetation communities in urban areas. Sensors 7:2860–2880

McHale MR et al. (2015) The new global urban realm: complex, connected,
diffuse, and diverse social-ecological systems. Sustainability 7:5211–5240

Middel A, Hab K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban
form and design on mid-afternoon microclimate in Phoenix Local Climate
Zones. Landscape & Urban Planning 122:16–28

Nilon CH, Warren PS, Wolf J (2011) Baltimore birdscape study: identifying habitat
and land-cover variables for an urban bird-monitoring project. Urban Habitats 6

Oke TR (1982) The energetic basis of the urban heat island. Quarterly Journal of
the Royal Meteorological Society 108:1–24

Ouma YO, Tateishi R (2008) Urban-trees extraction from Quickbird imagery using
multiscale spectex-filtering and non-parametric classification. ISPRS Journal of
Photogrammetry & Remote Sensing 63:333–351

Qian et al. Ecological Processes            (2020) 9:59 Page 10 of 11

https://doi.org/10.1007/0-387-24091-8_13
https://doi.org/10.1007/0-387-24091-8_13
https://doi.org/10.1016/j.rse.2009.06.001
https://doi.org/10.1080/01431161.2012.714510
https://doi.org/10.1080/01431161.2012.714510
https://doi.org/10.1016/j.landurbplan.2019.103709


Peng J, Ma J, Liu Q, Liu Y, Hu Y, Li Y, Yue Y (2018) Spatial-temporal change of
land surface temperature across 285 cities in China: an urban-rural contrast
perspective. Science of the Total Environment 635:487–497

Pickett ST, Cadenasso ML (2009) Altered resources, disturbance, and
heterogeneity: a framework for comparing urban and non-urban soils. Urban
Ecosystems 12:23–44

Pickett STA, Buckley GL, Kaushal SS, Williams Y (2011) Social-ecological science in
the humane metropolis. Urban Ecosystems 14:319–339

Pu R, Landry SM, Yu Q (2011) Object-based urban detailed land cover
classification with high spatial resolution IKONOS imagery. Journal of Remote
Sensing 32:3285–3308

Qian Y, Zhou W, Hu X, Fu F (2018) The heterogeneity of air temperature in urban
residential neighborhoods and its relationship with the surrounding
greenspace. Remote Sensing 10:965

Qian Y, Zhou W, Yan J, Li W, Han L (2014) Comparing machine learning classifiers
for object-based land cover classification using very high resolution imagery.
Remote Sensing 7:153–168

Rodríguez MC, Dupont-courtade L, Oueslati W (2016) Air pollution and urban
structure linkages: evidence from European cities. Renewable & Sustainable
Energy Reviews 53:1–9

Small C, Pozzi F, Elvidge CD (2005) Spatial analysis of global urban extent from
DMSP-OLS night lights. Remote Sensing of Environment 96:277–291
https://doi.org/10.1016/j.rse.2005.02.002

Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies.
Bulletin of the American Meteorological Society 93:1879–1900

Tan KC, San Lim H, MatJafri MZ, Abdullah K (2010) Landsat data to evaluate
urban expansion and determine land use/land cover changes in Penang
Island. Malaysia Environmental Earth Sciences 60:1509–1521

Voltersen M, Berger C, Hese S, Schmullius C (2014) Object-based land cover
mapping and comprehensive feature calculation for an automated
derivation of urban structure types at block level. Remote Sensing of
Environment 154:192–201 https://doi.org/10.1016/j.rse.2014.08.024

Weng Q (2012) Remote sensing of impervious surfaces in the urban areas:
requirements, methods, and trends. Remote Sensing of Environment 117:34–
49

Wu SS, Xu B, Wang L (2006) Urban land-use classification using variogram-based
analysis with an aerial photograph. Photogrammetric Engineering & Remote
Sensing 72:813–822

Wurm M, Taubenbock H, Roth A, Dech S (2009) Urban structuring using
multisensoral remote sensing data: by the example of the German cities
Cologne and Dresden. In: 2009 Joint Urban Remote Sensing Event

Xian G, Homer C, Fry J (2009) Updating the 2001 National Land Cover Database
land cover classification to 2006 by using Landsat imagery change detection
methods. Remote Sensing of Environment 113:1133–1147. https://doi.org/
10.1016/j.rse.2009.02.004

Xiao J, Shen Y, Ge J, Tateishi R, Tang C, Liang Y, Huang Z (2006) Evaluating urban
expansion and land use change in Shijiazhuang, China, by using GIS and
remote sensing. Landscape and Urban Planning 75:69–80

Yu W, Zhang Y, Zhou W, Wang W, Tang R (2019) Urban expansion in Shenzhen
since 1970s: a retrospect of change from a village to a megacity from the
space. Physics and Chemistry of the Earth. Parts A/B/C 110:21–30.
https://doi.org/10.1016/j.pce.2019.02.006

Yu W, Zhou W, Qian Y, Yan J (2016) A new approach for land cover classification
and change analysis: integrating backdating and an object-based method.
Remote Sensing of Environment 177:37–47

Zhan Q, Molenaar M, Tempfli K (2003) Hierarchical image object-based structural
analysis toward urban land use classification using high-resolution imagery
and airborne LIDAR data. Proceedings of the Remote Sensing and Data
Fusion over Urban Areas, IEEE/ISPRS Joint Workshop, 2002

Zhang H, Zhang Y, Lin H (2013) A comparison study of impervious surfaces
estimation using optical and SAR remote sensing images. International
Journal of Applied Earth Observations & Geoinformation 18:148–156

Zhang X, Du S, Qiao W (2018) Integrating bottom-up classification and top-down
feedback for improving urban land-cover and functional-zone mapping.
Remote Sensing of Environment 212:231–248

Zhao L, Yu H, Zhang L (2009) Water body extraction in urban region from high
resolution satellite imagery with near-infrared spectral analysis. SPIE 7383:125

Zhou W, Mary C, Kirsten S, Steward P (2014) Quantifying spatial heterogeneity in
urban landscapes: integrating visual interpretation and object-based
classification. Remote Sensing 6:3369–3386

Zhou W, Troy A (2008) An object-oriented approach for analysing and
characterizing urban landscape at the parcel level. International Journal of
Remote Sensing 29:3119–3135

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Qian et al. Ecological Processes            (2020) 9:59 Page 11 of 11

https://doi.org/10.1016/j.rse.2005.02.002
https://doi.org/10.1016/j.rse.2014.08.024
https://doi.org/10.1016/j.rse.2009.02.004
https://doi.org/10.1016/j.rse.2009.02.004
https://doi.org/10.1016/j.pce.2019.02.006

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Study area and data
	Hierarchical classification system
	Hierarchical classification methods
	The first level: ecosystem types
	The second level: urban function zones
	The third level: land cover elements

	Accuracy assessment

	Results
	Landscape pattern on the three levels
	Landscape pattern from a multi-level perspective

	Discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

