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Abstract

Background: Species Distribution Modelling (SDM) coupled with freely available multispectral imagery from
Sentinel-2 (S2) satellite provides an immense contribution in monitoring invasive species. However, attempts to
evaluate the performances of SDMs using S2 spectral bands and S2 Radiometric Indices (52-Rls) and biophysical
variables, in particular, were limited. Hence, this study aimed at evaluating the performance of six commonly used
SDMs and one ensemble model for S2-based variables in modelling the current distribution of Prosopis juliflora in
the lower Awash River basin, Ethiopia. Thirty-five variables were computed from Sentinel-2B level-2A, and out of the
variables, twelve significant variables were selected using Variable Inflation Factor (VIF). A total of 680 presence and
absence data were collected to train and validate variables using the tenfold bootstrap replication approach in the
R software “sdm” package. The performance of the models was evaluated using sensitivity, specificity, True Skill
Statistics (TSS), kappa coefficient, area under the curve (AUC), and correlation.

Results: Our findings demonstrated that except bioclim all machine learning and regression models provided
successful prediction. Among the tested models, Random Forest (RF) performed better with 93% TSS and 99% AUC
followed by Boosted Regression Trees (BRT), ensemble, Generalized Additive Model (GAM), Support Vector Machine
(SVM), and Generalized Linear Model (GLM) in decreasing order. The relative influence of vegetation indices was the
highest followed by soil indices, biophysical variables, and water indices in decreasing order. According to RF
prediction, 16.14% (1553.5 km?) of the study area was invaded by the alien species.

Conclusions: Our results highlighted that S2-RIs and biophysical variables combined with machine learning and
regression models have a higher capacity to model invasive species distribution. Besides, the use of machine
learning algorithms such as RF algorithm is highly essential for remote sensing-based invasive SDM.

Keywords: Biophysical processors, Prosopis juliflora, Radiometric indices, Remote sensing, Sentinel-2, Species
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Introduction

Globally, the invasiveness of invasive alien plant species
has become a great risk as it adversely affects ecological
services and socio-economic systems (Rajah et al. 2019;
Paz-Kagan et al. 2019). The distribution and subse-
quent socio-economic loss in East Africa are also in-
creasing at an alarming rate (Landmann et al. 2020).
Despite their current distribution and negative conse-
quences, studies also daunt an expected large increase
in their invasion and will adversely affect uninvaded
areas (Howard 2019). Hence, monitoring the adverse
impacts of invasive alien plant species using contem-
porary technologies before its dispersion has para-
mount importance (Rajah et al. 2019; West et al. 2016).
This is particularly vital for developing countries with
no or little financial and technical capabilities to avert
the invasion and any delay further aggravates the prob-
lem (Pysek et al. 2012; Vila et al. 2011).

Prosopis juliflora (hereafter Prosopis) is one of the ten
worst invasive species that adversely affect millions of
hectares of land in many arid and semi-arid regions (Ilu-
kor et al. 2016; Rembold et al. 2015; Shackleton et al.
2014). In Ethiopia, about 1.17 million hectares of land
are currently invaded by Prosopis only in the Afar region,
which results in approximately 602 million US dollar
loss of ecosystem service (mainly due to Prosopis expan-
sion) (Shiferaw et al. 2019b). Its social, economic, and
ecological adverse impact in the area will also be ex-
pected to increase as the species is aggressively increas-
ing at a rate of 8.3% annually (Shiferaw et al. 2019b).
Hence, the best and recommended way is to control its
invasion early by anticipating suitable habitats for its di-
versification using timely and cost-effective tools (Reaser
et al. 2020; West et al. 2017).

Mapping the current invasion and modelling suitable
habitat of invasive species has an immense contribution
for ecologists and policymakers to control the expansion
and its adverse threat (Ayanu et al. 2014; Evangelista
et al. 2008; Feilhauer et al. 2012). However, controlling
its spread and managing its consequence needs a robust,
cost-effective, efficient, and precise monitoring system
(Lopatin et al. 2016). In addition, ecologists are also in
need of timely and cost-effective methods to model and
predict in advance the distribution of invasive species
(West et al. 2017). In this regard, the use of Species Dis-
tribution Medelling (SDM) and Geographic Information
System (GIS) are among the widely used prediction tools
(Bradley 2014). SDM’s had been used by ecologists for a
long time to predict species distribution (Allouche et al.
2006; Jiménez-Valverde 2014; Lemke and Brown 2012;
Wisz et al. 2008). However, models have shown varied
performance and no single best model has been identi-
fied by studies for different species and environments
(Reside et al. 2011).
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The selection and implementation of models require
great care as inappropriate use of models can affect the
accuracy of species prediction (Elith and Leathwick
2009; Elith et al. 2006). Consequently, many studies used
more than one model in comparison (Frith et al. 2018;
Ng et al. 2018; Stohlgren et al. 2010). Besides, some
studies recommend the use of presence-absence models,
while others appreciate the use of presence-only models
(Elith and Leathwick 2009). Owing to this, many studies
compared machine learning algorithms with regression-
based models (Shiferaw et al. 2019¢) while others made
a comparison among machine learning algorithms (Frith
et al. 2018) and others also developed ensemble models
from different SDMs rather than relying on a single
model (Ng et al. 2018). However, the performances of
SDMs are dependent upon the type of application and
problem (Bhattacharya 2013), the spatial resolution of
environmental variables (Reside et al. 2011), and the se-
lection of environmental predictors (Elith and Leathwick
2009). Owing to this, the use of several models by apply-
ing similar environmental variables and methodologies
gives confidence for ecologists to judge their results (Fi-
scher et al. 2013; Lemke and Brown 2012).

The use of machine learning algorithms for remotely
sensed-based prediction gets recent attention and signifi-
cantly improves the prediction of invasive species
(Benito et al. 2013; Friih et al. 2018). A timely, advanced,
and cost-effective approach that integrates remote sens-
ing technology to monitor invasive species risk is highly
needed (Rajah et al. 2019; West et al. 2017). This is par-
ticularly important in arid and semi-arid regions of de-
veloping nations as the cost of survey data and high-
resolution commercial data is difficult to justify. The
possible options in such areas are the use of freely avail-
able multispectral data (Jensen et al. 2020). In this re-
gard, S2 data due to its high spatial, spectral, and
temporal resolutions provide an immense contribution
to monitoring the distribution and spread of invasive
species (Martinez et al. 2020; Meroni et al. 2017; Ng
et al. 2016, 2017; Truong et al. 2017). S2’s high spectral
resolution allowed ecologists to derive numerous indices
(Rajah et al. 2019). The use of these indices is better
than raw bands as they can reduce the effect of atmos-
pheric condition and soil background on canopy reflect-
ance (Liu et al. 2005). Among the available indices, most
studies usually employed S2-derived Vegetation Indices
(S2VIs). Though S2VIs have higher importance, the con-
tribution of other radiometric indices is potentially also
very high. For example, soil radiometric indices (Nouri
et al. 2018) and biophysical variables have a higher cap-
acity in monitoring and managing vegetation changes
(Atzberger et al. 2015; Mudereri et al. 2019). Hence,
evaluating the contribution of S2-derived Rls is of ut-
most importance as they incorporate different variables
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from the soil, water vegetation, and biophysical charac-
teristics of the area.

So far, a number of studies have evaluated the per-
formance of SDMs for mapping and modelling different
invasive species. Stohlgren et al. (2010) made a compari-
son of five individual models for the prediction of inva-
sive species and suggested that the use of an ensemble
model significantly improves prediction compared to a
single model. Friith et al. (2018) made a comparison on
performances of four machine learning models in the
prediction of invasive species and recommended the use
of an ensemble approach from best-performing models
rather than a single or ensemble model from all models.
Likewise, Ng et al. (2018) made a comparison among
machine learning models and argued that the perform-
ance of Random Forest (RF) and ensemble models are
highly appreciated compared to other models used in
their study. Abdi (2020) made a comparison of four ma-
chine learning algorithms using S2-derived variables for
land cover classification and concluded that the Support
Vector Machine (SVM) performed better than other
models. These studies have used either integration of re-
mote sensing and non-remote sensing datasets (e.g., Ng
et al. 2018) or used coarse resolution remote sensing
data (Stohlgren et al. 2010). Other studies used S2 data
for land cover classification (Abdi 2020), mapping, and
detecting invasive species distribution (Rajah et al. 2019).
In Ethiopia, few studies were conducted on mapping and
prediction of Prosopis. Wakie et al. (2014) assess the dis-
tribution of invasive Prosopis using Moderate Resolution
Imaging Spectroradiometer (MODIS) data and Maxent
model. Besides, Shiferaw et al. (2019¢) evaluated the per-
formance of different SDM using Landsat 8 Operational
Land Manager (OLI), climate, and infrastructural data.
However, comparative studies about SDM using high-
resolution data in general and S2-RIs and biophysical
variables in particular for monitoring Prosopis were
scarce.

This study, therefore, aims at addressing the following
research gaps and needs: (1) identifying a robust method
for modelling remote sensing-based invasive species dis-
tribution is highly required; (2) assessing the potential of
S2-derived vegetation, soil and water indices, and bio-
physical variables for modelling invasive species distribu-
tion in arid and semi-arid regions of developing
countries is highly essential.

Materials and methods

Study area and species

The study was carried out in the lower Awash River
basin, Ethiopia. It is located between 40.74 to 41.82° lon-
gitude and 10.99 to 12.36° latitude (Fig. 1). It covers an
area of 9471.5 km? with elevations ranging from 240 to
1341 m above mean sea level. In addition, 75% (7103.6
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km?) of the study area is found in the desert and 25%
(2367.9km?) is found in arid to semi-arid agro-
ecological zones. It is also part of the great east African
rift valley system. According to the National Metro-
logical Agency (NMA) (2020), the mean annual
temperature, mean maximum, and mean minimum an-
nual temperature at Dubti station for years between
2002 and 2017 were recorded as 28.1°C, 33.5°C, and
22.6 °C, respectively. December and July are the coldest
and warmest months, respectively. Furthermore, fre-
quent drought and subsequent famine are the two major
characteristics of the area (Mulugeta et al. 2019).

Though pastoralism is the dominant way of life, agro-
pastoralism is also practicing in the area. The state-
owned Tendaho irrigation project which covers around
62,500 ha along the lower Awash River basin supports
irrigation-based agriculture (Tadese et al. 2019). The
cultivation of sugarcane, wheat, cotton, maize, and other
vegetables has been also practiced in small-scale agricul-
ture. In the Afar region, Prosopis was introduced in the
early 1980s for soil and water conservation (Tilahun
et al. 2017). This was part of the then government affor-
estation initiative to combat drought and desertification
(Wakie et al. 2014). Before the invasion of Prosopis, na-
tive grasses, forbs, shrubs, and woody plants dominantly
covered the area and were an important source of fodder
for the locality (Ayanu et al. 2014; Wakie et al. 2014).
After the invasion of the species, however, conflict
among pastoralists has increased due to resource com-
petition (Ilukor et al. 2016; Mehari 2015; Wakie et al.
2012). The expansion of Prosopis also affected livestock
production with an expected loss of about 26 million
dollars per year in the region (Ilukor et al. 2014).

Method overview

In this study, we evaluated the performance of six com-
monly used SDMs using S2-RIs. We computed thirty-five
variables from vegetation, soil, water radiometric indices,
and biophysical variables. Out of the variables, twelve sig-
nificant variables were selected using the VIF. TSS, AUC,
kappa, correlation, sensitivity, and specificity were used to
evaluate model performance. Besides, reference data on
the presence and absence of the species were collected
using a handheld Global Positioning System (GPS). Also,
an ensemble model was developed from best-performed
models (except the least performed bioclim model). At
last, prediction maps for all individual and ensemble
models were produced. Graphical illustrations on the
overall methods used for this study are presented in Fig. 2.

Presence and absence data

Georeferenced in situ data were collected with the help
of a handheld GPS from both presence (invaded) and
absence (uninvaded) points in the dry season between
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Fig. 2 Methodological flowchart showing the prediction of the current distribution of invasive Prosopis distribution using six individual and one
ensemble models from selected predictor variables of Sentinel-2B level-2A dataset

January and February 2020. In this period, Prosopis is
highly discriminated from the other tree species as most
tree types shed their leaves due to water scarcity (Godoy
et al. 2011; Meroni et al. 2017; Xu 2014). A total of 680
points were collected using stratified random sampling
in a 10m by 10 m plot similar to the spatial resolution
of S2 data (Arogoundade et al. 2020). Of all reference
points, 30% (205 points) were presence while 70% (475
points) were absence data. This share was chosen con-
sidering the previous distribution of Prosopis in the area
(Linders et al. 2020). Field data were collected through-
out the study area and 200 m was the minimum distance
among the points.

To evaluate the spatial autocorrelation among observa-
tions, Moran’s I was used. Accordingly, we found 0.28 of
Moran’s Index and 2.45 of Z-score, indicating no appar-
ent spatial clustering among the points (Abdulhafedh
2017). To further reduce spatial autocorrelation among
points, we used the “Spatially Rarefy Occurrence Data
for SDMs (reduce spatial autocorrelation)” function in
ArcGIS SDM Toolbox. To get independent validation
statistics, 70% of the collected data were used to train
models while 30% were used to validate models (Engler
et al. 2013).

Satellite image processing and selection of variables
In this study, Sentinel-2B level-2A data was used to pro-
duce varied radiometric indices and biophysical

variables. Sentinel-2B level-2A product provides geomet-
ric and radiometrically corrected images. The data is
delivered as Bottom-Of-Atmosphere (BOA) reflectance
images converted from the level-1C Top-Of-
Atmosphere (TOA) reflectance (Szantoi and Strobl
2019). Its application was tested by Vuolo et al. (2016)
and used by different studies (e.g., Arogoundade et al.
2020; Ng et al. 2018) in the areas of invasive species dis-
tribution. It can detect the Earth’s surface at 10-m, 20-
m, and 60-m spatial resolutions. Sentinel-2B level-2A
product acquired between 19 January 2020 and 28 Feb-
ruary 2020 which is concurrent with the field data col-
lection campaign were downloaded from the European
Space Agency (ESA) data portal (https://scihub.
copernicus.eu/dhus/#/home).

A total of four scenes were required to cover the study
area. Pre-processing such as image mosaicking, resam-
pling to a common grid of 10-m resolution, and sub-
setting were made using freely available Sentinel Appli-
cation (SNAP) 7.0 software. Maps were produced by
using ArcGIS software. A total of thirty-five variables
(Table S1): seventeen from vegetation radiometric indi-
ces, eight from soil radiometric indices, five from water
radiometric indices, and five from biophysical variables
were considered (Table S1). To select important vari-
ables, we used the VIF correlation approach to reduce
multicollinearity problems in the R 4.0 software “sdm”
package (Naimi and Aradjo 2016). VIF was used by
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Table 1 Description of the predictive variables used in modelling and mapping the current distribution of invasive Prosopis. The
variables were categorized under vegetation indices, soil indices, water radiometric indices, and biophysical variables

Variables Short description

Brightness Index (BI)

Bl is a soil radiometric index that represents the mean of the brightness of satellite images. It is highly

associated with soil brightness (Escadafal 1989).

Colour Index (Cl)

Cl is a soil radiometric index that helps to differentiate soils and their development. Higher Cl values

representing crusted soils and sands while lower Cl values indicating a high concentration of
carbonates or sulfates (Escadafal 1989).

Canopy Water Content (CWC)

CWC is a biophysical variable that quantifies the amount of water in the given area. It is also an

essential predictor in the areas of agriculture and forestry (Cernicharo et al. 2013).

Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR)

Leaf Area Index (LAI)
et al. 2003).

Modified Chlorophyll Absorption Ratio Index
(MCARI)

Modified Normalized Difference Water Index
(MNDWI)

Meris Terrestrial Chlorophyll Index (MTCI)
Redness Index (RI)

FAPAR is an important biophysical variable that indicates the capacity of the vegetation canopy to
absorb Photosynthetically Active Radiation (Fensholt et al. 2004).

LAl is a key biophysical variable that quantifies the amount of leaf area per unit ground surface (Zhang
MCARI is a vegetation radiometric index, responsive to chlorophyll variations (Daughtry et al. 2000).

MNDWI is a water radiometric index promoted to enhance open water features by minimizing the
effect of vegetation, soil, and built-up land noises (Xu 2006).

MTCl is a water radiometric index that estimates the amount of chlorophyll (Dash and Curran 2004).

Rl'is a soil radiometric index that gives information about soil color variation in a given area. It is an

important index to measure soil redness in the arid environment (Mathieu et al. 1998).

Sentinel-2 Red-Edge Position Index (S2REP)

Transformed Normalized Difference
Vegetation Index (TNDVI)

Transformed Soil Adjusted Vegetation Index

(TSAVI) Guyot 1991).

S2REP is a vegetation radiometric index that provides information on chlorophyll content and the
growth status of vegetation.

TNDVI is a vegetation radiometric index that shows the amount of green biomass in a pixel. It has a
high coefficient of determination and excellent linearity to vegetation cover (Bannari et al. 2002).

TSAVI is a soil radiometric index developed to minimize the influence of soil brightness (Baret and

several studies in the areas of invasive species distribu-
tion as a tool to select important variables (Ng et al.
2018; Zimmermann et al. 2007). Accordingly, for this
study, out of thirty-five variables, a total of twelve im-
portant variables (Table 1) with threshold values less
than 0.7 were selected (Engler et al. 2013; Zimmermann
et al. 2007). Furthermore, the relative importance of var-
iables for all models was computed using the “getVar-
Imp” function in the R software “SDM” package (Naimi

and Aradjo 2016). Then, the weighted mean values of
each variable for each model run was calculated and cat-
egorized as vegetation, soil radiometric indices, and bio-
physical variables.

Selection of Species Distribution Modelling

Today a large number of modelling methods are available
and can be classified as “profile,” “regression,” and “ma-
chine learning” (Hijmans and Elith 2019). This study

Table 2 Predictive models from machine learning (RF, SVM, and BRT), regression (GAM and GLM), and profile (bioclim) methods and
their short description and common pieces of literature that have used these models in modelling invasive species distribution

Models Short description

Examples

Random Forest (RF)

Support Vector
Machine (SVM)

Boosted Regression
Trees (BRT)

Generalized
Additive Model
(GAM)

Generalized Linear
Model (GLM)

Bioclim

RF (Breiman 2001), a combination of tree predictors, is the most commonly used
machine learning algorithm (Abdi 2020). It is an effective method for predicting
species richness and density (Kosicki 2020).

SVM (Cortes and Vapnik 1995) is characterized by its ability to generalize features. It
can be used for classification and regression-based studies.

Like RF, BRT is based on a combination of a relatively small number of trees to
increase the performance of predictive variables (Elith et al. 2008). It has also the
capacity to process several predictors at high predictive accuracy (Gu et al. 2019).

GAM is a popular regression model and is extensively used in ecological studies for
modelling non-normal distributions (Ravindra et al. 2019).

GLM can process and manage non-linear data structures. Its flexibility makes it better
suited for ecological-based studies (Guisan et al. 2002).

Bioclim was the earliest SDM package used in many ecological studies including
invasive species prediction (Booth et al. 2014).

Fruh et al. (2018); Mi et al. (2017); Ng
et al. (2018); West et al. (2017)

Abdi (2020); Frih et al. (2018); Ng et al.
(2016)

Guisan et al. (2007); West et al. (2017)

Guisan et al. (2007); Soultan and Safi
(2017)

Guisan et al. (2007); Soultan and Safi
(2017); West et al. (2017)

).
(

Guisan et al. (2007); Hernandez et al.
(2006); Reiss et al. (2011)
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evaluates the performance of six commonly used models
in the areas of invasive SDM. The models were selected
from machine learning algorithms, regression models, and
profile methods for comparison reasons (Table 2).
Boosted Regression Trees (BRT), RF, and SVM from ma-
chine learning models; Generalized Additive Model
(GAM) and Generalized Linear Model (GLM) from re-
gression models; and bioclim from profile methods were
considered. One ensemble model from all models, except
the least performing bioclim model, was also developed.

Model validation and mapping
For validations of the above-listed models, we used the
bootstrap replication approach in the R 4.0 software
“SDM” package developed by Naimi and Aratdjo (2016).
Out of 680 collected points, 205 (30%) randomly se-
lected points were used as test data to validate models
and the remaining 70% were used for the training of
models. This step was replicated ten times and their
mean values of sensitivity, specificity, TSS, kappa, AUC,
and correlation were used to assess the accuracy of the
models. The bootstrapping replication method has the
potential to offer unbiased predictive accuracy with fairly
low variance (Harrell et al. 1996; Lima et al. 2019). Be-
sides, the sensitivity-specificity sum maximization ap-
proach was used to select the best threshold. This
threshold was recommended as the best approach for
the prediction of species distribution (Liu et al. 2005).
Binary maps were developed as pixels greater than the
threshold represented the presence of Prosopis at differ-
ent levels of invasion and pixels lower than the threshold
indicated the absence of Prosopis in the area for all
models. Besides, a correction for over-prediction using
clip models by buffered Minimum Convex Polygon
(MCP) was made in ArcGIS SDM Toolbox. The buff-
ered MCP as a posteriori method enables the reduction
of over-prediction (Mendes et al. 2020). In addition, the
ensemble model was evaluated using a weighted mean of
all models except the least performing bioclim model.
Maps were further classified into “uninvaded,” “low-
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invasion,” “moderate-invasion,” and “high-invasion” for
the ensemble model.

Results

Performances of Species Distribution Modelling

The performances of SDMs using different evaluation
techniques are presented in Table 3. Except for the bio-
clim model, the accuracy of the other models was very
high. Machine learning algorithms (RF and BRT) per-
formed better than regression models (GLM and GAM)
and profile (bioclim) method for all evaluation tech-
niques. Following RF, BRT, Ensemble, GAM, SVM,
GLM, and bioclim performed better in decreasing order.
In addition, BRT performed well in AUC and sensitivity,
and GAM performed well in kappa and correlation
evaluation techniques after RF.

Model accuracy can also be evaluated using the re-
ceiver operator characteristics (ROC) curve as it has the
capacity to show the proportion of the true presence rate
(sensitivity) and the true absence rate (specificity). The
ROC curve for all models is presented in Fig. 3. Except
in bioclim, sensitivity and specificity scores were very
high for all models indicating both invaded and unin-
vaded areas were well identified and the proportion of
correctly classified samples were maximum (Fig. 3).

Prosopis distribution

The presence (invaded) of Prosopis distribution for RF,
SVM, GLM, BRT, GAM, Ensemble, and bioclim models
were 14.3%, 12.9%, 12.8%, 13.9%, 14.9%, 16.11%, and
3.9%, respectively (Fig. 4). According to the best-
performed RF model, 1354.6 km® of the study area was
invaded by Prosopis, which was more intense around the
central part (Fig. 4).

Furthermore, the ensemble model was used to pro-
duce maps showing the invasion of Prosopis at varying
levels of distribution. The threshold for the ensemble
model was 0.47 (Table 3), and pixels below the threshold
were considered as “uninvaded” of Prosopis and pixel
values above the threshold were further divided into
three classes as “low,” “medium,” and “high” invasion of

Table 3 Performance evaluation of SDMs using different statistical parameters. Sensitivity and specificity describe the rate of true

positive and negative respectively

Models TSS Kappa Correlation AUC Sensitivity Specificity Threshold
RF 0.93 0.91 0.93 0.99 0.98 0.95 0.46
SVM 0.89 0.86 0.89 0.98 0.95 091 0.52
BRT 0.90 0.88 0.90 0.98 097 0.90 049
GLM 0.87 0.86 087 097 0.94 0.92 047
GAM 0.90 0.90 0.89 0.96 0.96 0.93 041
Bioclim 037 034 041 0.69 042 0.94 040
Ensemble 0.90 0.88 0.90 0.98 0.96 0.92 047
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Fig. 3 Receiver operator characteristics (ROC) curve using bootstrap replication method for different SDMs. Sensitivity (true positive rate) of the
vertical line and 1-specificity (false positive rate) of the horizontal line describe the proportion of correctly and incorrectly classified samples. The
red and blue curves represent the mean of AUC using training and test data respectively

Prosopis distribution (Ng et al. 2018). Accordingly, 86.8%
of the study place was not invaded by Prosopis distribu-
tion. The rest of the study place (13.2%) was invaded by
Prosopis at different levels of invasion as low (2.5%),
medium (3.2%), and high (7.5%) distribution (Fig. 5).

Relative contribution of predictor variables

The relative influence of predictors is shown in Fig. 6
and supporting information (Table S2). The relative in-
fluence of few variables was very high while other vari-
ables were found to be insignificant. The relative
influence of vegetation radiometric indices (TNDVI,
MCARI, MTCI, and S2REP) for RF, SVM, BRT, GLM,
GAM, and bioclim were 83%, 65.75%, 74.35%, 75.5%,
54.85%, and 51.95%, respectively. However, the relative
importance of water radiometric indices (MNDWI) was
the least in all models except in the bioclim model (Fig.
6 and Table S2).

Discussion

Implications of SDMs performance for remote sensing-
based prediction

Our study highlights the relative performance of SDMs
for remote sensing-based prediction of invasive species
distribution. In the present study, the higher perform-
ance of machine learning algorithms (RF, BRT, and
SVM) and regression models (GLM and GAM) were

observed. Among all models, the bioclim model per-
formed worst. The result of our study varied from
19.75% (GAM) to 5% (bioclim) prediction. This huge
difference between the models’ predictions can affect the
monitoring of invasive species. According to Gonzélez-
Ferreras et al. (2016), models with AUC values below 0.7
and above 0.9 are considered as “very poor” and “highly
accurate,” respectively. Besides, models with TSS and
kappa values below 0.4 and above 0.8 are considered as
“poor” and “excellent,” respectively. Based on the above
evaluation techniques the performances of all models,
except bioclim, were in the category of “excellent”
whereas the performance of the bioclim model was in
the category of “very poor” and “poor.” The prediction
obtained from the above models, except for bioclim, also
agreed with previous studies conducted in the area indi-
cating the performance of SDMs has great implication in
providing certain predictions. Moreover, numerous stud-
ies highlight the higher performance of RF for remote
sensing-based prediction of invasive species distribution
after evaluating the performance of several SDMs (Jen-
sen et al. 2020; West et al. 2016, 2017).

A study by Jensen et al. (2020) made comparisons
among machine learning algorithms for the prediction
of invasive Kudzu vine in the USA using S2 and Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS)
data. They found a higher performance of RF, neural
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Fig. 5 Ensemble model produced from RF, SVM, BRT, GLM, and GAM for modelling and mapping of Prosopis habitat suitability distribution. The
gray, black, pink, and red colors describe “uninvaded,” “low,” “medium,” and “high” invasion by Prosopis, respectively
A

network, and SVM algorithms. Besides, West et al.
(2016) investigated five SDMs for the prediction of Tam-
arisk invasive species using remote sensing data and
found RF as the best-performed model followed by Max-
ent, BRT, Multivariate Adaptive Regression Spline
(MARS), and GLM. Also, West et al. (2017) compared
four SDMs using remote sensing data for the prediction
of invasive cheatgrass and concluded that RF was better
performed than GLM and BRT. The higher performance
of RF is attributed to its ability to avoid overfitting as it
combines and votes the most popular class from several
individual trees (Breiman 2001). Due to its higher

performance, it is the most flexible and widely applied
machine learning algorithm for various field of studies
such as land cover classification (Abdi 2020), forest
monitoring (Ma et al. 2020), species richness, and dens-
ity (Kosicki 2020), and invasive species modelling (Ng
et al. 2018). In addition, its capability for remote
sensing-based studies is also immense as it requires
minimum time for satellite image classification (Sabat-
Tomala et al. 2020).

Furthermore, the bioclim model was the least per-
formed model in our study and was reaffirmed with the
study findings of Hernandez et al. (2006) and Guisan
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Fig. 6 The relative influence of predictive variables (vegetation indices, soil indices, and biophysical variables) for different models. The blue, red,
and gray colors describe the weighted mean influence of vegetation indices, soil indices, and biophysical variables, respectively

et al. (2007). Except for bioclim, all models worked well
for S2-based studies for the prediction of Prosopis distri-
bution and can be used in similar environments.

Potential of Sentinel-2 for invasive species prediction

Our study indicated that mapping and modelling the
distribution of invasive Prosopis using remote sensing-
derived variables have an immense contribution to the
management of the invasive species. Our study findings
agreed with the government report and previous studies
in the area. A study by Shiferaw et al. (2019b) mapped
Prosopis distribution using Landsat-8 OLI and in situ
survey data using RF classifier. They found that 15.4% of
the study area was invaded by Prosopis. Their result
finding was comparable with our findings which were
14.3%.

In addition, our study is also consistent with the study
finding of Shiferaw et al. (2019a, b, ¢) and the report of
the Ministry of Livestock and Fisheries (MoLF 2017).
Shiferaw et al. (2019a, b, ¢) found a 12.33% distribution
of Prosopis using remote sensing, climate, and infrastruc-
tural variables collected in 2017. Employing 8.3% as a
rate of annual increase Shiferaw et al. (2019b), its distri-
bution will increase to 15.4% of the region in 2020. This
result is also comparable to our study findings which are
14.3%. Besides, a report by MoLF (2017) described that

Prosopis covers 12.6% of the Afar region. Considering
the same rate of increase (8.3%), its distribution will in-
crease to 15.75% in 2020 which was also comparable to
our study findings. On the contrary, a study by Wakie
et al. (2014) using remote sensing-derived variables and
topo-climatic variables in Afar predicts the distribution
of Prosopis species and concludes that the distribution of
species was 3.8%. Its minimum prediction might occur
due to the low spatial resolution of MODIS vegetation
indices and bioclimatic variables used for their study. Be-
sides, the quality of WorldClim-based bioclimatic vari-
ables is uncertain in areas where weather stations are
scarce (Deblauwe et al. 2016).

Martinez et al. (2020) and Truong et al. (2017) de-
scribed the importance of contemporary remotely sensed
variables for the prediction of invasive species. Sentinel-
1 and S2 data have a huge contribution in detecting and
mapping invasive species (Rajah et al. 2019). The freely
available S2 data with its high spatial, spectral, and tem-
poral resolutions provides important information for
species-level monitoring and management (Immitzer
et al. 2016; Rapinel et al. 2019). Several studies also used
S2-derived variables for mapping and modelling of inva-
sive species distribution (Arogoundade et al. 2020; Dube
et al. 2020; Ng et al. 2017; Rajah et al. 2019). Dube et al.
(2020) compared S2 with Landsat-8 OLI for mapping
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the distribution of invasive Lantana camara (Verbena-
ceae) and conclude that the higher performance of S2-
derived variables is due to its higher spectral and spatial
resolution. Moreover, a study by Arogoundade et al.
(2020) applauds the use of S2 spectral bands, S2-derived
vegetation indices, and their combination for modelling
invasive species. In addition, they also pointed out that
red edge S2 bands have a huge contribution to mapping
and modelling invasive species distribution.

Among S2-derived variables, our study identified the
higher influence of vegetation radiometric indices over
soil indices and biophysical variables (Fig. 5). Vegetation
indices derived from satellite remote sensing data are
recognized as a reliable source of information for moni-
toring vegetation changes (Feilhauer et al. 2013; He et al.
2015; Maschler et al. 2018; Nouri et al. 2018; Teillet
et al. 1997). Several studies also confirmed the higher
importance of vegetation indices over other variables
such as infrastructure, bio (climate), and remote sensing
spectral bands. A study by Shiferaw et al. (2019¢) illus-
trated that the Normalized Difference Vegetation Index
(NDVI) had higher importance than other variables for
invasive species prediction. Similarly, a study by Wakie
et al. (2014) employed remote sensing and topo-climatic
variables to map and model invasive Prosopis distribu-
tion in the Afar region, Ethiopia, and described that the
relative influence of Enhanced Vegetation Index (EVI)
and NDVI was better than other variables. Immitzer
et al. (2019) also demonstrated that S2-derived vegeta-
tion indices enhanced model performance.

Furthermore, a study by Rajah et al. (2019) evaluated
S2-based Vegetation Indices (S2-VIs) for detecting and
modelling invasive American Bramble (Rubus cuneifo-
lius) and described that the performance of models with
S2-VIs was far better than S2-VIs fused with Sentinel-1
Synthetic Aperture Radar (SAR) and S2 optical imagery.
Besides, a study by Arogoundade et al. (2020) evaluated
the performance of S2-derived vegetation indices for
modelling invasive Parthenium hysterophorus in South
Africa and confirmed its potential for mapping and
modelling invasive species. Moreover, TNDVI and NDVI
derived from Landsat-8 OLI showed the higher perfor-
mances for prediction and description of forest parame-
ters such as density, canopy cover, and basal area (Nouri
et al. 2018). Similarly, a study by Musande et al. (2012)
evaluated the performance of vegetation indices to dis-
criminate specific crop types and found that the per-
formance of TNDVI was better than other vegetation
indices used in their study. However, its limitation to
identify water areas and considers it as vegetation cover
can significantly decrease the accuracy of the model par-
ticularly if the study was conducted in areas where large
water bodies are available (Shetty and Somashekar
2013).
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However, several studies employed the commonly
known vegetation indices, such as NDVI, without evalu-
ating the performances of other variables from vegeta-
tion, soil and water radiometric indices, and biophysical
variables (e.g., Arogoundade et al. 2020). Considering
the different characteristics (benefits and limitations) of
radiometric indices and biophysical variables, the use of
several indices provides certain predictions as it incorpo-
rates different features such as soil, water, and vegeta-
tion. Moreover, the performances of radiometric indices
varied in different studies. For example, Bannari et al.
(2002) described the higher performance of the Trans-
formed Difference Vegetation Index (TDVI) over widely
used SAVI and NDVI. They pointed out that TDVI has
higher sensitivity to bare soil below vegetation cover that
helps to provide necessary information about the specific
vegetation parameters. Besides, NDVI has some uncer-
tainties as it is affected by soil reflectance and hence the
use of other vegetation indices can reduce this problem
(Koller and Upadhyaya 2005).

Besides vegetation indices, the contribution of bio-
physical variables in monitoring vegetation changes, in
our study, was also immense. Mudereri et al. (2019)
evaluated the performances of biophysical variables of
LAI FAPAR, CWC, Fraction of Vegetation Cover (FVC),
chlorophyll content (Cab), and S2 bands to characterize
land cover in semi-arid regions and conclude that both
biophysical variables and S2 wavebands have great cap-
ability for land cover classification. They also conclude
that FAPAR was the best-performing variable and out-
performing the other variables used in their study. Also,
biophysical variables have a higher capacity for monitor-
ing and managing vegetation changes (Atzberger et al
2015). Moreover, biophysical variables derived from sat-
ellite remote sensing data have a huge contribution to
describe forest variables (Schlerf et al. 2005). In particu-
lar, S2 data provides an unprecedented option to retrieve
biophysical parameters (Brown et al. 2019).

Furthermore, in our study, the relative influence of soil
radiometric indices (BI, CI, TSAVI, and RI) was mini-
mum compared to vegetation radiometric indices. Ac-
cording to Nouri et al. (2018), the lower performance of
soil radiometric indices was observed in areas where low
and high vegetation densities are available. Indeed, low
species richness and low diversity of woody vegetation
are the major characteristics of our study area (Ilukor
et al. 2016). Therefore, evaluating the performance of
several indices beyond the commonly used indices is ne-
cessary for mapping and modelling invasive species dis-
tribution (West et al. 2017). However, in our study, the
relative influence of TNDVI was far greater than other
vegetation and soil radiometric indices. Hence, our re-
sults would have benefited if it includes other biocli-
matic variables (Ahmed et al. 2020). However, acquiring



Ahmed et al. Ecological Processes (2021) 10:18

these variables at high resolution was difficult in the
study area.

Conclusion

Our study describes the distribution of invasive Prosopis in
the lower Awash River basin, Ethiopia, using machine learn-
ing (RF, BRT, and SVM), regression (GAM, GLM), and pro-
file (bioclim) methods. We used S2-Rls and biophysical
variables as predictors to evaluate the performances of
models. The performance of machine learning algorithms
(RF and BRT) was very high. Besides, the roles of regression
models (GAM and GLM) were also found to be very high
next to RF, BRT, and ensemble models. On the contrary, the
performance of the bioclim model was insufficient. Hence,
we encourage researchers not to highly depend on the pre-
diction of the bioclim model with S2-RIs and biophysical var-
iables for predictions of Prosopis distribution in the dryland
ecosystem. We also encourage researchers to evaluate the
performances of models or to use models evaluated previ-
ously in related ecosystems and datasets before directly
employing specific models as the performances of models
can create a significant difference. Therefore, the use of sev-
eral models can provide reliable information and increase the
confidence of ecologists in their result findings.

The best-performed RF model predicted 1354.6 km?
(14.3%) of the study area were invaded by the species in-
dicating more efforts are required to reduce its distribu-
tion. Our study also demonstrated that the use of freely
available S2 data has an immense contribution for de-
tecting, mapping, and modelling the spatial distribution
of invasive species with a high level of precision. In par-
ticular, the use of S2-RIs and biophysical variables can
provide basic information about vegetation, soil, and
water for better spatial modelling of invasive species.
Also, the higher performances of S2-derived variables
for mapping and modelling invasive Prosopis distribution
indicates the use of such datasets are adequate for such
type of studies. Moreover, the relative influences of vege-
tation radiometric indices were very high followed by
soil radiometric indices, biophysical variables, and water
radiometric indices. We recommend researchers inte-
grate variables from vegetation indices, soil indices, and
biophysical variables for modelling invasive species ra-
ther than relying on commonly known vegetation radio-
metric indices.
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