
RESEARCH Open Access

Influence of microbial priming and seeding
depth on germination and growth of
native wildflowers
Daniela Barrera1, Juan Luera2, Kaitlynn Lavallee3 and Pushpa Soti4*

Abstract

Background: Using native wildflowers for restoring marginal lands has gained considerable popularity.
Establishment of wildflowers can be challenging due to several environmental factors. Restoring the microbial
community in degraded habitats can potentially result in the native plant performance and habitat restoration. This
study was conducted to investigate the impact of native soil microbes and seeding depth on germination of south
Texas native wildflowers. Two wildflower species, Ratibida columnifera (Nutt.) (Mexican Hat) and Verbesina encelioides
(Cav.) (cowpen daisy), were treated with microbial wash extracted from native soils, and germination rate was
recorded for 14-day period. We further analyzed the growth, biomass allocation, and root colonization by
mycorrhizal fungi in these two plants growing them in a plant growth chamber for 6 weeks. To determine the
impact of seeding depth, we planted the seeds of the two plant species at 2-cm, 6-cm, and 12-cm depth and
monitored germination and plant growth.

Results: The two species responded differently to the seeding depth and microbial wash treatments. Microbial
wash treatment resulted in higher germination rate in R. columnifera compared to control, while it did not have any
impact on V. encelioides seed germination. While microbial treatment did not influence the total biomass, it had a
significant impact on the biomass allocation in both the plant species. R. columnifera seeds germinated at both 2-
cm and 6-cm depth and did not germinate at 12 cm, while the V. encelioides seeds germinated only at 2 cm and
did not germinate at 6-cm or 12-cm seeding depth.

Conclusions: While our results are species specific, our results indicate that native soil microbes can potentially
improve the seed germination and growth of wildflowers. Our results also indicate the importance of specific
seeding depth when sowing wildflower seeds for habitat restoration.
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Introduction
Fragmentation and loss of native habitats along with in-
tensive agricultural practices have resulted in the loss of
biodiversity of plants, insects, along with soil microbes
contributing to cascading effects on the broader
ecosystem (Biesmeijer et al. 2006; Fischer et al. 2007;
Evans et al. 2013; Habel et al. 2019). Simplification of

agricultural landscapes has caused a significant decline
in flowering plants, which in turn has impacted the
pollinator populations (Blaauw et al. 2014). With the
alarming decline in insect populations (Sánchez-Bayo
and Wyckhuys, 2019; Hallmann et al. 2017; Leather
2017), planting native flowering plants has gained con-
siderable interest among land managers and researchers
(Kaiser-Bunbury et al. 2017; Morandin et al. 2013). Some
of the widely used techniques include planting flowering
species along field edges to attract beneficial insects and
planting along highways as erosion control. Additionally,
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restoring reclaimed agricultural land with native plants
is becoming popular. In most of these cases, seeds are
directly sowed into the soil. However, several environ-
mental factors influence the germination and establish-
ment of native plants in the heavily degraded soils and
result in a high failure rate (Nevill et al. 2018), and there
is limited information available on collecting, cleaning,
and quality testing of native plant seeds (Frischie et al.
2020). Factors such as compacted soils, low nutrient and
moisture, and lack of soil biota, which can potentially
break the seed dormancy or pathogens that cause decay
of seeds, can have significant impacts on the seed ger-
mination and growth. While land mangers focus on the
soil chemical and physical characteristics, soil biology
has remained largely unexplored in habitat restoration
(Harris 2009; Docherty et al. 2019).
Seed burial depth and native soil microbes are some of

the important factors that influence seed germination,
growth, and survival (Benvenuti, 2003; Sarmiento et al.
2017; Ye et al. 2019). Seed burial depth can affect seed
growth, survival, and overall germination process. Fatal
germination may occur where seeds may germinate at
depths they are unable to reach the surface (Davis et al.
2007) or meet physical barriers such as soil type, where
obstruction in the emergence path can result in unsuc-
cessful establishment (Gardarin et al. 2010; Benvenuti
2003). Similarly, soil microbes also play a key role in
seed germination and growth. Biological soil crusts are
known to have positive effects on the emergence and
survival of native plants in arid regions (Song et al.
2017) and dry land restoration (Muñoz-Rojas et al.
2018). The growing understanding of soil microbe and
plant relationships shows diverse interactions that im-
prove plant health, where beneficial microbes aid in the
seed germination, seedling survival, growth, increase
seed output; protect from harmful pathogens; and re-
duce environmental stress (Ashraf and Foolad 2005;
Compant et al. 2010).
In this study, we analyzed the impact of native soil mi-

crobes, which the plants have coevolved, and seed burial
depth on the germination and growth of two short lived,
native wildflower species, Ratibida columnifera (Nutt.)
(Mexican Hat) and Verbesina encelioides (Cav.) (cowpen
daisy), in south Texas, the Lower Rio Grande Valley
(LRGV). The LRGV has semi-arid subtropical climate.
Summers are long and hot with average high tempera-
tures 35 °C, and winters are mild with only occasional
frost or freezing (Adhikari and White, 2014). The aver-
age annual rainfall is 682mm with majority of precipita-
tion occurring during September and October (Eddy and
Judd 2003). Soils here are poor in nitrogen and high in
pH and salinity.
The LRGV region is likely to experience lower precipi-

tation and higher temperatures in the future (Hernandez

and Uddameri 2014; Jiang and Yang 2012), calling for
improved germination to maintain and restore the
remaining native habitat (Leslie Jr 2016). Both R. colum-
nifera and V. encelioides are popular for their role in
attracting native pollinators and predators and their abil-
ity to optimize disturbed soils (Soti et al. unpublished
data). Recently, these plants, along with other native
plants, are being displaced by exotic invasive grasses
such as Pennisetum ciliare (buffelgrass), Dichanthium
annulatum (Kleberg’s bluestem), and Megathyrsus maxi-
mus (guinea grass). We conducted a series of three ex-
periments to test the hypotheses that (i) treating the
seeds with the native soil microbial wash improves the
germination rate of the two plant species; (ii) microbial
wash treatment increases the growth and reproduction;
and (iii) seed germination is influenced by the seed bur-
ial depth.

Materials and methods
Seed and native soil source
Seeds of both plants R. columnifera and V. encelioides
were collected from a certified organic vegetable farm,
left fallow for a year, in Edinburg, Texas, in the spring of
2019. The seed heads were removed, stored in a paper
bag, separated, sorted, and dried to be stored long term
(> 1 year). During the summer of 2020, topsoil (0–6 cm)
was collected from the same farm and was used for both
the microbial wash extraction and for the growth cham-
ber experiments.

Experiment 1: influence of native soil microbes on seed
germination
The common soil microbial wash method was used to
treat the seeds with the native soil microbiome following
the method by Howard et al. (2017). The microbial wash
was prepared by mixing 40-g soil in a 160 mL solution
of 0.85% NaCl using a magnetic stirrer at 180 rpm for
10min. To remove the soil particles in the solution, the
mixture was vacuum filtered using Whatman #1 filter
papers. To isolate the microbial fraction and remove
water-soluble nutrients and chemicals, the filtrate was
then centrifuged at 3000 rpm for 30 min in 50-ml centri-
fuge tubes, and the supernatant was discarded. We ex-
tracted the pelleted microorganisms at the bottom of the
centrifuge tube in 200 ml 0.85% NaCl solution.
Two hundred seeds of both R. columnifera and V.

encelioides were randomly selected and sterilized with a
solution of 1:1 deionized (DI) water: bleach (6% NaClO)
(Great Value, Bentonville, AK) and rinsed three times
with DI water. Of these, half of the seeds of each species
were randomly selected and soaked in the microbial
wash extracted from farm soil, and the other half were
soaked in DI water for 5 h. The treated seeds were ran-
domly placed in sterile Petri dishes lined with wet paper
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napkins (10 seeds per dish, with 10 replications) for each
treatment. All plates were kept under a controlled light
setting in room temperature (24–26 °C) in the Weed
Ecology Lab at UTRGV for 14 days. The total number of
germinated seeds was counted every other day. Seeds
were considered germinated when the radicle was visible
and nonviable when soft and moldy (Coffey and Krik-
man 2006). We calculated germination rate (%) as done
by Wu et al. (2016) for both the species:

%Germination ¼ Gt
T

� 100

where Gt is the number of germinated seeds within 14
days and T is the total number of seeds.

Experiment 2: influence of native soil microbes on growth
and biomass allocation
To determine the influence of native microbes on plant
growth and biomass allocation, the randomly selected
seedlings from experiment 1 were planted in pots filled
with native sterilized (autoclave) and potting media (3:1)
mix. The microbial treatment seedlings received an add-
itional 1 ml of microbial wash extract prepared on the
same day following the modified protocol in experiment
1. The microbial wash used in this experiment was not
passed through the filter paper to allow arbuscular mycor-
rhizal fungi (AMF) propagules to pass through. Each treat-
ment was replicated 7 times for each species with a total
of 14 pots per plant species. The pots were placed in a
growth chamber (28 °C, 12 h light/dark cycle) and watered
every other day with 100ml DI water to maintain 10% soil
moisture. Plants in both treatments were grown for 6
weeks and terminated when V. encelioides plants started
to produce flowers. The plants were destructively har-
vested and separated into leaves, flowers, stem, and roots.
Area of the leaves was determined using a bench-top leaf
area meter (LI-3100C, LI-COR Biotechnology, Lincoln,
Nebraska, USA). The roots were washed with tap water,
and 25 1.5-cm root fragments were separated for AMF
analysis. All plant parts were then placed in separate paper
bags and dried (65 °C) in an oven to constant temperature
for 78 h. After drying, the plant parts were weighed to cal-
culate the total biomass, flower mass ratio (flower bio-
mass/total biomass) (FMR), leaf mass ratio (leaf biomass/
total biomass) (LMR), stem mass ratio (stem biomass/total
biomass) (SMR), root mass ratio (root biomass/total bio-
mass) (RMR), and specific leaf area (leaf area/leaf biomass)
(SLA). To determine the root mycorrhizal fungi (AMF),
dark septate endophyte (DSE) and colonization, the roots
were stained following the destructive root staining
method (Vierheiling et al. 2005). Roots were cleared by
boiling in 15% KOH at 70 °C for 2 h, rinsed twice with
water, bleached with ammoniated H2O2, and acidified
with 1 N HCl. Staining was done using Sheaffer black ink

in acidified glycerol at 80 °C for 20 min. The stained roots
were washed with tap water and acidified with 25% acetic
acid for 10min. The root fragments were then mounted
parallel on slides in lactoglycerol covered with coverslip
and examined for fungal structures at × 100 magnification.
Evidence of AMF colonization was based on the presence
of intraradical hyphae, arbuscules, or vesicles on the root
fragments, and the evidence of dark septate endophyte
(DSE) colonization was based on the presence of hyphae
or microsclerotia. Since most root fragments had both
AMF and DSE, both were counted together as
endophytes.

Experiment 3: influence of seeding depth on seed
germination and growth
To examine the impact of seeding depth on the germin-
ation and plant growth, we sterilized the seeds as done
in experiment 1. We sowed 5 seeds each of both the
plant species at 3 different depths, 2 cm, 6 cm, and 12
cm in 12-cm high pots filled with 3:1 native soil com-
mercial potting media mix. We had 5 replications of
each depth for both plant species with a total of 15 pots
per plant species and a total of 25 seeds per seeding
depth. We randomly stored all bioassays in an environ-
mental growth chamber (28 °C, 12 h light/dark cycle)
and watered every other day with 100 ml DI water to
maintain 10% soil moisture. We monitored germination
of seeds for 14 days. Since there was no germination of
seeds of V. encelioides at 6 cm and 12 cm, not further
measurements were done after 14 days. R. columnifera
was grown for 6 weeks and destructively harvested when
the plants started flowering. The plants were dried in an
oven at 65 °C for 78 h to a constant weight, and the total
biomass was measured.

Statistical analysis
We used the statistical software JMP to analyze the data
collected from these experiments. We used two-way
ANOVA to determine the impact of microbial treatment
on the seed germination. One-way ANOVA was used to
compare the difference in total biomass accumulation,
biomass allocation, specific leaf area, and the number of
flowers per plant in the two treatments for both the
plant species. T-test was done to compare the total bio-
mass of R. columnifera plants at 2-cm and 6-cm depth.
Correlation analysis was done to determine the correl-
ation between root endophyte presence and plant
growth parameters. The difference was considered sig-
nificant if P ≤ 0.05.

Results
Overall, our results show a mixed effect of microbial
treatment on seed germination and growth in the two
wildflower species (Fig. 1). The germination rate of R.
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columnifera was significantly higher than that of V. ence-
lioides (P < 0.0001). On average, R. columnifera had
more than 75% germination rate while V. encelioides had
about 30% germination rate.
The two species had different response to microbial

wash treatment, while the germination rate in V. ence-
lioides was not influenced by the microbial wash treat-
ment R. columnifera seeds treated with microbial wash
had a significantly higher germination rate (P=0.004). In

addition, seeds of R. columnifera germinated earlier than
V. encelioides. While the R. columnifera seeds started
germinating at day 4, V. encelioides seeds started ger-
minating at day 6 (Fig. 2).
While the total biomass was not influenced by the mi-

crobial wash treatment, there was a significant difference
in the biomass allocation strategy between the control
and microbial wash treatment for both the species
(Table 1). LMR was significantly higher in microbial

Fig. 1 The total germination rate for V. encelioides and R. columnifera seeds treated with a microbial wash (MW) and without any treatment
(control) at the end 14-day period

Fig. 2 The total germination rate for V. encelioides and R. columnifera treated with a microbial wash (MW) and without any treatment (control)
over the 14-day period
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wash compared to control (P=0.025) in V. encelioides,
while for R. columnifera control plants had higher LMR
(P=0.0002). SMR was significantly higher in control than
microbial wash in V. encelioides (P=0.001) while R.
columnifera had higher SMR in microbial wash plants
(P< 0.0001). Similarly, FMR was also higher in microbial
wash plants (P=0.02) in V. encelioides. Total number of
flowers produced was higher in microbial wash (P=
0.003) of V. encelioides where R. columnifera plants did
not produce any flowers during the 6-week period. Cor-
relation analysis showed that there was positive correl-
ation between the root endophyte colonization and
number of flowers (r = 0.53, P = 0.004) and FMR (r =
0.41, P = 0.029) in V. encelioides. There was no signifi-
cant difference in the RMR or LSA between the control
and microbial wash treatment for both study species.
Roots of both plant species were colonized by AMF

and DSE (Fig. 3). DSE was dominant in the roots of both
plant species. There was a significant difference in the
root colonization by endophytes in two plants (P =
0.004); V. encelioides roots had almost the double rate of
colonization compared to R. columnifera plants (58%
and 30% respectively).
The two plants responded differently to the seeding

depths. R. columnifera seeds planted at 2 cm and 6
cm germinated but there is no germination at 12 cm.
There was no significant difference in the germination
rate at both depths, 76% at 2 cm and 72% at 6 cm.
However, for V. encelioides, seeds germinated only 2
cm (germination rate 40%), and there was no germin-
ation at 6 cm and 12 cm.

Discussion
Research has shown that for successful habitat restor-
ation, it is important to integrate both native plants and
soil microbe restoration strategies (Heneghan et al. 2008;
Docherty et al. 2019). Recently, there has been an in-
crease in use of commercial microbial inoculants in

thorn forest restoration along the Lower Rio Grande,
but these have not resulted in any significant difference
in the establishment and growth of native plants (P. Soti,
personal communication). While the results are species
specific, our results show that treating seeds with native
soil microbes support increased germination and growth
of wildflowers. Treating the seeds with native microbes
has been proven to significantly increase seed germin-
ation rate, plant biomass, seed yield, and resistance to
abiotic stress in agricultural crops (Mastouri et al. 2010;
Wu et al. 2016; Rocha et al. 2019).
In our study, microbial treatment did not result in the

increase in total biomass; however, there was a signifi-
cant difference in germination rate, biomass allocation,
and number of flowers produced in between the treated
and untreated plants. Surprisingly, the microbial wash
treatment had opposite results in the two plants studied.
R. columnifera seeds treated with microbial treatment
had higher germination rate compared to the control.
Soil microbes are reported to improve germination rate
via the production of plant growth hormones (Wu et al.
2016). While V. encelioides plants in the microbial wash
treatment had significantly higher LMR compared to the
control, R. columnifera plants had significantly higher
LMR in the control. The plants also allocated biomass
differently to the stems; V. encelioides in microbial treat-
ment allocated lower biomass to the stem compared to
control. On the other hand, R. columnifera plants in mi-
crobial treatment allocated higher biomass to the stem
compared to the control. The different response to
microbial treatment in germination and growth seen
in the two plants could be because the plants were in
different stages of growth. While the V. encelioides
plants took time to germinate, but after germination,
they grew rapidly and produced flowers whereas R.
columnifera plants germinated early but had not
started flowering in 6 weeks.
There was a difference in the endophyte colonization

in the two plant species. Roots of both plants treated
with microbial wash had both AMF and DSE in them.
However, DSE structures (hyphae or microsclerotia)
were more prominent. DSE has been reported in the
roots of plants adapted to water stress (Knapp et al.
2012; Li et al. 2018). Both the plants used in our study
are well adapted in the semi-arid regions of south Texas.
Further analysis is needed to identify these endophytes
and to determine their roles in the growth of native spe-
cies in this region for successful habitat restoration with
native species. Environmental factors such as drought
and other confounding variables such as chemotaxis and
phytotoxins can influence the effect these microbes have
on seeds and seedling growth (Kremer 1993). There is
need to identify the microbial community the plants
have evolved with and their roles if we are to

Table 1 Difference in plant growth and biomass allocation
between the control and microbial wash (MW) treatments in V.
encelioides and R. columnifera

V. encelioides R. columnifera

Control MW Control MW

Total biomass (g) 6.31 a 6.81 a 1.35 a 1.44 a

LMR 0.33 b 0.41 a 0.53 a 0.37 b

SMR 0.41 a 0.30 b 0.21 b 0.35 a

RMR 0.14 a 0.13 a 0.26 a 0.28 a

FMR 0.12 b 0.15 a 0.00 0.00

SLA 118.39 a 99.91 a 91.76 a 95.23 a

Flowers/plant 3.00 b 5.00 a 0.00 0.00

Numbers in columns with similar letters represent no significant difference for
each species at P ≤ 0.05)
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successfully restore belowground community and thus
the aboveground plant community.
Similarly, species-specific results were seen for seeding

depth. R. columnifera seeds, which are smaller than V.
encelioides seeds, germinated from 2 cm and 6 cm, while
V. encelioides seeds germinated at 2 cm depth only.
However, after germination, V. encelioides grew much
faster than R. columnifera. Differences in germination
rate and plant vigor due to seed size have been reported
in previous studies (Souza & Fagundes 2014). Our re-
sults show that seeds may not germinate and become
dormant if they are planted or pushed more than 3–4
cm deeper into the soil. Furthermore, different seeds
germinate at different depths; thus, sowing wildflower
and native plant mixes has the potential to bury seeds
deeper in the soil, thus reducing size of seed bank by
killing sensitive native seeds, dormant in the soil, or po-
tentially burying seeds deeper into the earth (Grass et al.
2016). Site preparation and seed delivery are critical in
seed-based restoration projects (Shaw et al. 2020). Thus,
when using seed mixes for restoration, it is important to
consider both soil biology and environmental factors
to avoid germination and establishment failures
(Pedrini et al. 2020).
The Tamaulipan thornscrub, a subtropical, semi-arid

vegetation type occurring in either side of the Rio
Grande, provides a unique habitat for both plants and

animals. Clearing the shrubland for agriculture has re-
sulted in a significant alteration of the patterns and pro-
cesses of this ecoregion. Being in the subtropics, this
region is projected to experience lower precipitation and
higher temperatures (Jiang and Yang 2012; Hernandez
and Uddameri 2014), further endangering the plants and
animals. Thus, there is a need for restoring the habitats
with the locally adapted plant materials or local ecotypes
to maintain the native habitat that remains and restore
abandoned agricultural fields (Leslie Jr 2016). The suc-
cess of habitat restoration projects will largely depend
on the effective seed use (Pedrini et al. 2020). Successful
use of beneficial microbes to enhance seed germination
and seedling survival is site and plant species dependent.

Conclusions
Overall, our results show that native soil microbial com-
munities have the potential to influence the seed ger-
mination and growth of wildflowers. Our results also
indicate the importance of specific seeding depth with
showing wildflowers seeds for habitat restoration. This
result is particularly important when preparing wild-
flower seed mixes to ensure high germination rate.
Further analysis of the soil microbes is needed to iden-
tify the microbiota in the soil for effective use of natives
as well as the selection of commercial microbial inocu-
lant types.

Fig. 3 Root colonization by AMF (a, c) and DSE (b, d) in the roots of R. columnifera (top) and V. encelioides (bottom) plants treated with
microbial wash
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