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Abstract

Background: Suitable habitat and landscape structure play a pivotal role in the success of forest restoration
projects. This study aimed to model the habitat suitability of wild almond (Amygdalus scoparia Spach) using three
individual species distribution models (SDMs), i.e., backpropagation artificial neural network (BP-ANN), maximum
entropy (MaxEnt), generalized linear model (GLM), as well as the ensemble technique along with measuring the
landscape metrics and analyzing the relationship between the distribution of the suitable habitat of the species in
different landform classes in Fars Province, southern Iran.

Results: There was no clear difference in the prediction performance of the models. The BP-ANN had the highest
accuracy (AUC = 0.935 and k= 0.757) in modeling habitat suitability of A. scoparia, followed by the ensemble
technique, GLM, and MaxEnt models with the AUC values of 0.890, 0.887, and 0.777, respectively. The highest
discrimination capacity was associated to the BP-ANN model, and the highest reliability was related to the
ensemble technique. Moreover, evaluation of variable importance showed that the occurrence of A. scoparia was
strongly dependent on climatic variables, particularly isothermality (Bio 3), temperature seasonality (Bio 4), and
precipitation of driest quarter (Bio 17). Analysis of the distribution of species habitat in different landform classes
revealed that the canyon, mountain top, upland drainage, and hills in valley classes had the highest suitability for
the species establishment.

Conclusions: Considering the importance of landform in the establishment of plant habitats, the combination of
the outputs of the SDMs, landform, and the use of landscape metrics could provide both a clear view of habitat
conditions and the possibility of analyzing habitat patches and their relationships that can be very useful in
managing the remaining forests in semi-arid regions. The canyon, mountain top, and upland drainage classes were
found to be the most important landforms to provide the highest suitable environmental conditions for the
establishment of A. scoparia. Therefore, such landforms should be given priority in restoration projects of forest in
the study area.

Keywords: Amygdalus scoparia, DOMAIN presence-only model, Ensemble technique, Individual distribution models,
Landscape metrics, Pseudo-absence points
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Introduction
Predicting the distribution of plant species in a specific
region has become an increasingly important issue in
ecology, phytogeography, and conservation biology (Mi
et al. 2017). One of the ecological theories supporting
species distribution modeling is the niche theory. The
potential distribution of a species or realized niche is a
subset of the species’ fundamental niche in which biotic
and abiotic conditions are suitable for species occur-
rence (Stiels and Schidelko 2018; Pecchi et al. 2019).
Plant response to variation of environmental factors is
recognized as one of the important aspects of species
ecological niche. It is also important to determine the
ecological range of a species or its response model to en-
vironmental variables. Thus, plant response could play a
significant role in management and restoration of a spe-
cies in natural habitats (Coudun and Gégout 2006).
Species distribution models (SDMs) are quantitative

and empirical ecological models specifying the relation-
ships between species and the environment. These
models are constructed using species location data and
environmental variables (Elith and Franklin 2017). They
can generate prediction maps of species distribution,
which are usually used as both inputs to other analysis
and a tool to identify the ecological conditions required
for species (Guisan and Thuiller 2005; Peterson et al.
2011). On the other hand, the relationship between en-
vironmental variables and plant distribution has been
described by a variety of modeling methods, such as the
generalized linear model (GLM), generalized cumulative
model (GAM), and machine-learning (ML) algorithms,
including artificial neural networks (ANN), TreeNet
(boosting), random forest (bagging), Classification and
Regression Tree (CART), and maximum entropy (Max-
Ent) (Williams et al. 2009; Miller 2010; Lei et al. 2011;
Wang et al. 2015; Zare Chahouki and Piri Sahragard
2016; Mi et al. 2017; Piri Sahragard et al. 2019).
Additionally, given the significant effects of climate

variables on plant distribution (Zarenistanak et al. 2014)
and the necessity to study the species distribution
changes at different scales, the use of climatic models
are essential for understanding the potential distribution,
ecological needs, sustainable exploitation, and restor-
ation of plant habitats. On a global and continental scale,
climate is the main factor controlling the distribution of
plants, while at the regional level climate and topography
are major contributing factors to species distribution
(Pearson and Dawson 2003).
Moreover, quantifying the spatial distribution of plants

and their relationship with landscape metrics and under-
standing the spatial and temporal variations of landscape
composition are necessary for biological resource con-
servation, environmental impact assessment, and identi-
fication of the most influential factors in landscape

composition (Chefaoui 2014; Zare Chahouki et al. 2016).
In addition, landscape metrics are used in habitat suit-
ability mapping to identify the best management prac-
tices for the restoration of degraded habitats (Pflüger
and Balkenhol 2014; Auffret et al. 2015). The landscape
metrics are categorized into three levels of patch, class,
and landscape (Uuemaa et al. 2011).
Arid forests are sparsely vegetated land with xero-

phytic trees and shrubs, which are mostly distributed in
mountainous regions of deserts in central, western, and
southern Iran. Xerophytic plant species, such as Amyg-
dalus scoparia (Rosaceae), Pistacia mutica (Anacardia-
ceae), and Ephedra sp. (Ephedraceae) species, are salient
woody species in dry lands that have evolved over time
to survive in dry regions. Wild almond (Amygdalus sco-
paria) has tremendous importance for livelihood and
survival of local communities and arid mountain forest
health and production. Stands of Amygdalus scoparia
are largely distributed over dry and hot mountains of
Iran, Turkey, Afghanistan, Turkmenistan, and western
Pakistan. This plant is highly drought-tolerant and plays
a valuable role in soil conservation and slope
stabilization in arid and semi-arid mountains (Haidarian
Aghakhani et al. 2017). Amygdalus scoparia is a pioneer
species capable of colonizing sites lacking developed soil
and providing favorable conditions for establishment of
other species by creating microclimate and coping with
unfavorable conditions in rock debris and slopes (Mor-
shedi and Koravand 2016). Wild almond, furthermore,
plays a critical role in the livelihood of local communi-
ties in arid mountainous regions of Iran (Browicz and
Zohary 1996). Despite the tremendous importance of
this species for the livelihood and survival of local com-
munities and arid mountain forest health and produc-
tion, overutilization during last decades, canopy cover
reduction, and increased soil erosion (Nejabat et al.
2017) were serious threats to survival and regeneration
of A. scoparia. These factors have also imposed intoler-
able pressure on habitats (Haidarian Aghakhani et al.
2017). Therefore, it is essential to study various aspects
of the species restoration and management to conserve
and improve its economic, social, and ecological values.
A study on the ecological needs of A. scoparia in Mar-
kazi Province, central Iran, revealed that its distribution
and its quantitative and qualitative characteristics are
mostly influenced by physiographic factors (i.e., land-
form, altitude, slope direction, and aspect) and some soil
properties, particularly sand content (Goodarzi et al.
2012). Further, geographic orientation has been intro-
duced as an important factor in distribution of A. sco-
paria in semi-arid forests of Zagros Mountain Range,
western Iran (Salarian et al. 2008). In general, a set of
physiographic characteristics, such as altitude, slope, as-
pect, soil properties, and geological formation, has been
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reported as the most significant factors influencing the
distribution of A. scoparia in semi-arid mountain forests of
Iran (Tavakol Neko et al. 2012; Piri Sahragard et al. 2017).
Despite several studies carried out to describe the eco-

logical needs of A. scoparia in Iran, lack of studies on
the potential habitat distribution and landscape compos-
ition analyses has imposed serious restrictions on proper
management and restoration of A. scoparia habitats. In
this study, therefore, the distribution of A. scoparia was
investigated mainly based upon topography, geology,
and climatic variables (Lou et al. 2018). This study aimed
to (1) assess the capability of the SDMs algorithms, i.e.,
BP-ANN, MaxEnt, and GLM as well as the ensemble
technique in predicting habitat suitability of A. scoparia;
(2) identify the most suitable habitats for A. scoparia
and its ecological needs for restoration purposes; and (3)
evaluate the suitable habitat distribution of A. scoparia
in different landform classes based on landscape metrics
analysis.

Materials and methods
Study area
This study was carried out in the southern part of the
Zagros Mountains and the Iran-Turanian floristic zone
of Fars Province, southern Iran. Fars Province lies within
27° 2′ to 31° 42′ N latitude and 52° 42′ to 55° 36′ E lon-
gitude (Fig. 1). This area with semi-arid climate experi-
ences average annual temperature and precipitation of
18 °C and 307 mm, respectively (Arvin and Shojaeezadeh
2014).

Data collection and preprocessing
Presence data
For field studies, pure habitats (habitats in which canopy
cover of A. scoparia was greater than 75%) (Gholizadeh
et al. 2017) of A. scoparia were delineated. Also, field
sampling was carried out by a combination of
systematic-randomized method in 2018. After the estab-
lishment of transects, species presence points were re-
corded along the transects using the GPS. Since most
SDMs are sensitive to the bias in samples, a maximum
distance of 1 km was observed for recording presence
points. In addition, after collection of dataset, the auto-
correlation of re-presence points within a radius of 1 km
was investigated using the SDM toolbox functions.

Environmental variables
Environmental factors affecting species distribution are
different depending on the grain (resolution or size of an
observation) and extant (study area consideration)
(Franklin 2010). By scrutinizing available literature re-
lated to habitat characteristics of A. scoparia, climate
variables (i.e., average monthly temperature and precipi-
tation for 1970–2000 from the Global Climate Database
(http://www.worldclim.org)) were used for distribution
modeling of the species in the study area. In addition, a
digital elevation model (DEM) with an accuracy of 32 m
prepared from USGS data (https://earthexplorer.usgs.
gov/) was used to analyze the effect of topographic fac-
tors. Aspect and slope variables were also extracted from
DEM by using Spatial Analyst Tools in ArcGIS 10.4.1.
Further, compound topographic index (CTI) and heat

Fig. 1 Location of the study area and current habitats of Amygdalus scoparia (red points) in Fars Province, southern Iran
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load index (HLI) were derived from DEM by using Geo-
morphometry and Gradient Metrics toolbox (Evans et al.
2014) in ArcGIS 10.4.1.
The heat load received by geographical direction was

calculated using Eq. 1.

HI ¼ 1 − cos θ − 45ð Þ½ �=2 ð1Þ

where θ is the value of azimuth in degrees and HI is
the value of the heat load index between 0 and 1. The
northeast-facing slopes have a value of 0 (coolest aspect),
and the southwest-facing slopes have a value of 1
(warmest aspect) (McCune and Keon 2002). In addition,
geological map at the scale of 1:250,000 was included in
the modeling. In addition, vegetation density index was
extracted from Aqua Vegetation Indices 16-Day Global
500 m (MYD13A1 V6 product) in Google Earth Engine
(Gorelick et al. 2017). All cell sizes were also fixed with
the finest resolution of WorldClim dataset (approxi-
mately 1 × 1 km precision). Table 1 shows the environ-
mental variables used in the modeling along with the
variation range of each variable. Prior to modeling, the
correlation coefficients between the variables was inves-
tigated using ArcGIS 10.4.1 functions and variables with
correlation higher than 0.85 were removed from the
modeling process (Duan et al. 2014).

Generating the pseudo-absence data
Due to the necessity of access to the absence points for
habitat suitability modeling using group discrimination
methods, pseudo-absence points are required. The
choice of pseudo-absence points was made using a two-
step modeling approach and intermediate models (Wisz
and Guisan 2009). Based on this approach, the potential

habitat suitability was modeled using the DOMAIN
method. The output of this method is a 0 and 1 map,
wherein suitable areas for the distribution of a species
have a value of 1, while the unsuitable areas have a value
of 0. To achieve proper pseudo-absence points, which
increase the efficiency of the model used, 10 series of
pseudo-absence points were constructed, and the model
accuracy best series of points were used in the modeling
process. Thus, 200 absence points, which were equal to
the number of presence points in the areas identified as
unsuitable for the establishment and growth of A. sco-
pari, were randomly generated a (Barbet-Massin et al.
2012; Liu et al. 2019). In the next step, the presence and
pseudo-absence points (200 presence and 200 pseudo-
absence points) were randomly divided into two parts of
training (75%) and testing (25%) data.

Running the models, prediction performance, and
optimal threshold limit
Since the selection of a single modeling algorithm can-
not guarantee the highest prediction accuracy, it is ne-
cessary to employ a multiple ensemble approach to
achieve a greater accuracy (Thuiller et al. 2009). The en-
semble approach is more reliable than individual models
in this study (Poulos et al. 2012; Latif et al. 2013). Thus,
the SDMs used in this study included BP-ANN, GLM,
MaxEnt, and the ensemble technique, which have been
employed in numerous studies (Ardestani et al. 2015; Yi
et al. 2016). The ModEco software package (v 1.0) was
also used to run the models (Guo and Liu 2010).
The prediction performance of the models was evalu-

ated by the AUC (area under the curve) statistic as a
threshold independent criterion. For such statistic,
values above 0.7 indicate good performance, and values

Table 1 Details of environmental variables used in habitat suitability modeling of Amygdalus scoparia in Fars Province, southern Iran

S/n Variable Variation range Unit

1 Bio 3 (isothermality) 32–43 Dimensionless

2 Bio 4 (temperature seasonality) 5784–9017 °C

3 Bio 13 (precipitation of wettest month) 27–86 mm

4 Bio 14 (precipitation of driest month) 0–2 mm

5 Bio 15 (precipitation seasonality) 79–126 Fraction

6 Bio 17 (precipitation of driest quarter) 0–17 mm

7 Bio 19 (precipitation of coldest quarter) 66–201 mm

8 Altitude 117–3735 m

9 Slope 0–59.18 %

10 Aspect 1–9 -

11 Soil type 1–13 -

12 CTI (compound topographic index) 3.92–19.15 -

13 HLI (heat load index) 0.53–1.14 -

14 NDVI (normalized difference vegetation index) −0.08–1 -
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below 0.5 represent random output of the model (Mar-
mion et al. 2009; Liu et al. 2011). Further, the weighted
averaging was used based on the AUC to combine the
results of other models. Moreover, since the perform-
ance of the models is evaluated by dependent and inde-
pendent threshold-based measures (Liu et al. 2011), we
measured the model prediction performance by those
criteria to approve that the models showed a higher per-
formance. Therefore, the use of accuracy, as weight to
intersect the maps of each model, was done based on
non-threshold-dependent values (AUC) or threshold-
dependent values (Kappa index, k). These models have
been run with selecting default parameters in the Mod-
Eco 1.0 software package (Guo and Liu 2010).
The maximum Kappa (MaxKappa) method was also

used to determine the optimal threshold limit. In this
method, after applying different values of the threshold
level to the continuous map, the threshold leading to the
maximum value of Kappa index was selected as the opti-
mal threshold limit. This method is widely used to meas-
ure model accuracy when only presence data are
available using some indices, such as Kappa, TSS, and
ROC (Liu et al. 2005; Zhang et al. 2019).

Importance of variables
In this research, random forest regression method was
used to determine the effect of each variable on the suit-
ability of the predicted areas in habitat modeling. Values
of the predicted suitability for presence points were con-
sidered dependent variables, and effective environmental
variables were regarded as independent variables. Also,
out of 100% of presence points, 70% and 30% of them
were considered as training and testing data, respect-
ively. The model was eventually run in the R.3.5.2 soft-
ware (R Development Core Team 2014). The MAE,
MSE, and RMSE functions were used to evaluate the re-
sults of the regression model fit.

Analysis of suitable habitat distribution using landscape
metrics
Landform classes were determined using the digital ele-
vation model (DEM) and topography tools toolbox.
Landforms were divided into 10 classes (Dilts 2015). The
binary map of the suitable habitat obtained from the en-
semble approach and landscape metrics was further used
to quantitatively analyze the distribution of species habi-
tat in each class of landforms (Auffret et al. 2015). In the
present study, in the FRAGSTATS 2.2 software, metrics
available were used at the levels of class and landscape
(Table 2).

Results
Prediction performance of the models
Prediction performance of the DOMAIN model showed
that this model was highly capable of identifying suitable
and unsuitable areas (AUC=0.94). Subsequently, only
small areas of Fars Province in the southwest and north
parts were found to be suitable for the species establish-
ment. Figure 2 shows the result of DOMAIN model and
pseudo-absence points in unsuitable habitat.
In general, the relative success of three individual

modeling methods in predicting species occurrence
showed that the AUC values of models were higher than
their Kappa values. Therefore, the AUC was used to
construct the ensemble map. Compared to other models,
the BP-ANN had the highest AUC value (0.935),
followed by the ensemble technique, GLM, and MaxEnt
with the AUC values of 0.890, 0.887, and 0.777, respect-
ively. Subsequently, the maximum and minimum thresh-
old values of 0.23 and 0.45 were applied to the BP-ANN
and the ensemble approach models, respectively (Table
3). After applying the threshold, the accuracy of classifi-
cation was presented on the basis of the Kappa index. In
the end, the highest value of Kappa index was related to
BP-ANN (0.757), while its lowest value was associated to
MaxEnt (0.438).

Table 2 Metrics used at the class and landscape levels to analyze the distribution of the suitable habitat of Amygdalus scoparia in
different classes of landform (McGarigal 2012)

Metrics Abbreviation Units Range

Number of patch NP None NP> 0

Total edges TE Meters TE≥ 0

Edge density ED Meters per hectares ED≥ 0

Mean patch size MPS Hectares MPS> 0

Mean shape index MSI None MSI≥ 1

Large patch index LPI % 0 < LPI < 100

Contagion index CONTAG % CONTAG> 0

Shannon’s diversity index SHDI None SHDI > 0

Euclidean mean nearest neighbor MNN M MNN > 0

Landscape shape index LSI None LSI ≥ 1
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Potential distribution map of A. scoparia
The continuous spatial suitability map of A. scoparia de-
rived from the BP-ANN model showed that in addition
to the narrow strip of west and north of the province,
small areas in the southern and southwestern border of
the province also have potential for species establish-
ment. Moreover, distribution map derived from the
GLM indicated that in most parts of Fars Province, in-
cluding southeast, south, southwest, west, and north, the
species is likely to occur. Contrarily, central parts were
shown to be non-susceptible for A. scoparia establish-
ment. On the other hand, based on the MaxEnt model,
the probability of the species presence throughout the
province has increased, and the species can potentially
be distributed in the southeastern, eastern, and partially
in northeastern parts of the province. Furthermore,
intersected map obtained from the ensemble application
of the models showed an overview of the conditions of
the implemented models, indicating susceptible habitat
conditions for the establishment of species in east, south,
west, and north parts of the province (Fig. 3).

Based on the binary maps, suitable potential habitats
for the studied species covered 24.07, 30.74, 43.05, and
23.55% of Fars Province in BP-ANN, GLM, MaxEnt, and
ensemble approach, respectively (Fig. 4). Thus, we can
state that the maximum and minimum areas of suitable
habitats corresponded to the maps obtained from the
MaxEnt model and the ensemble approach, respectively.
Table 4 demonstrates the area and percent of suitable/
unsuitable habitat for each model in Fars Province.

Analysis of variable importance by accuracy reduction
method
Table 3 shows the importance of the variables employed
in the modeling process. The results of random forest
regression analysis in the BP-ANN model showed that
Bio 3 (isothermality) and Bio 17 (precipitation of driest
quarter) variables with 37% justification of species distri-
bution variations had the most influence on the presence
of A. scoparia in the study area. On the contrary, slope
degree and aspect had the least effects on species distri-
bution in the study area. In other words, Bio 3 and Bio

Fig. 2 Result of DOMAIN present only model and location of pseudo-absence points

Table 3 Threshold, TPR (true positives rate), and highest kappa value

Model/technique Area under curve (AUC) Threshold limit TPR Kappa index

ANN 0.935 0.23 0.927 0.757

MaxEnt 0.777 0.40 0.808 0.438

GLM 0.887 0.34 0.922 0.616

Ensemble 0.890 0.45 0.876 0.706
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Fig. 3 Continuous map of habitat suitability for Amygdalus scoparia in Fars Province, southern Iran. a BP-ANN model, b GLM model, c MaxEnt
model, and d ensemble technique

Fig. 4 Discrete habitat suitability map of Amygdalus scoparia after applying optimal threshold limits in Fars Province. a BP-ANN, b GLM; c MaxEnt,
and d ensemble technique
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17 variables were better predictors of habitat distribution
than the others. In the MaxEnt model, both Bio 3 and
Bio 4 (temperature seasonality), with justification of
about 46% of the variations, had the most impact on the
model implementation and distribution of the study spe-
cies. In this model, the least influence was related to the
slope aspect. Moreover, the results of sensitivity analysis
of the GLM and the ensemble approach verified that the
Bio 3 and Bio 4 variables had the highest (50 and 48%,
respectively) impacts on habitat suitability and subse-
quently on the spatial distribution of A. scoparia (Table
5). Hence, it is safe to say that the random forest regres-
sion model performed well in modeling (Table 6).

Analysis of spatial distribution of suitable habitat using
landscape metrics
The results of landscape metrics in different classes of
landform and the relationship between species habitat
distribution and different landforms are presented in
Table 6. The highest (1,474,162.19 ha) and lowest (53.28
ha) habitat covers of the species were observed in can-
yons and open slope landforms, respectively, followed by
mountain tops, upland drainages, and hills in valleys
(Table 7). Furthermore, according to the NUMP metric,
the highest and lowest numbers of patches were in up-
land drainages and open slopes (1255 and 1 patches, re-
spectively). The high value of NUMP in the upland

drainage class indicated the fragmentation and scattered
distribution of the suitable habitat of the species. The
mean shape size (MSI) also showed that in most distrib-
uted habitat patches, landform classes had near-squared
shapes, indicating pixel distribution. In open slopes, the
MSI index value was 1, suggesting that there was only
square-shape pixel in this class. However, the highest
amount of complexity in the metric shape was calculated
in the mountain top and canyon classes. Additionally,
based on the results of the total edge (TE) metrics, the
highest and lowest edges belonged to the canyons and
open slopes (2,3875,595.2 and 3528.8, respectively). Con-
sidering the calculated metrics related to the open slope
class and the low number and size of patches in this
class, it seemed that the open slopes of landform did not
play much role in suitable habitat of the species. Based
on the edge density (ED) metric, the lowest and highest
edges were assigned to the plains and shallow valleys, re-
spectively, indicating the discrete distribution of the suit-
able habitat in the shallow valleys. The largest patch
index (LPI) was also calculated 19.17, suggesting that the
distribution of the suitable habitat of the species in dif-
ferent landform classes is small patches but not domin-
ant; because this metric shows the percentage of the
largest patch to total area. The high value of LPI, on the
other side, represented the dominance of a particular
class in the landscape. This value (19.17) covering the

Table 4 Importance of environmental variables (%) used in predictive models by the random forest regression analysis

Variable ANN model MaxEnt model GLM model Ensemble technique

Bio 3 22.09 31.35 31.73 30.74

Bio 17 14.89 14.55 18.59 18.03

Bio 13 14.07 17.70 19.03 16.87

Ndvi 14.03 15.17 11.56 17.35

Dem 12.34 17.43 13.63 11.45

Bio 19 12.19 23.23 15.72 15.63

Bio 15 10.63 12.33 14.55 12.40

Bio 4 9.57 30.73 22.38 23.32

Soil 9.20 20.15 12.85 14.14

Bio 14 4.26 3.77 9.40 4.77

HLI 3.99 8.30 0.66 2.99

CTI 2.99 5.23 4.88 4.24

Slope 2.40 8.38 6.53 2.23

Aspect 1.50 1.30 0.03 1.84

HLI heat load index, CTI compound topographic index

Table 5 Evaluation functions of the random forest regression performance in analyzing the importance of variables

Parameter BP-ANN model MaxEnt model GLM model Ensemble technique

MAE 0.07 0.08 0.1 0.06

MSE 0.02 0.01 0.01 0.00

RMSE 0.14 0.11 0.12 0.09
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desired habitat in the landform classes was related to the
valleys. Further, based on the value of CONTAG metric
(55.17), it can be declared that the suitable habitat of the
species is contiguous in different landform classes, and
there are patches between different classes of landform.
This value (55.17) also indicated that the suitable habitat
of the species is contiguous in different landform classes,
and there are common patches between landform clas-
ses. The SHDI was opposite to the CONTAG metric.
Since the value of SHDI was not zero, it had a small
share in the distribution of the desired habitat in differ-
ent classes of landform. The habitat of the species had
little diversity in terms of covering different landform
classes. Also, the value of MNN metric (3659.93 m)
showed that the suitable habitat of the species in differ-
ent classes of landform was on average 3659 m apart. Be-
sides, considering the value of LSI metric, we can assert
that there was considerable perturbation in various clas-
ses of landform creating a complex feature for the spe-
cies suitable habitat.

Discussion
Due to the unknown extent of suitable habitats for the
establishment of A. scoparia and its mountainous and

rocky habitats, it is necessary to use different modeling
methods to identify potential suitable areas for the ex-
pansion of current habitats. Moreover, given the limited
distribution of the species, it is difficult to define geo-
graphical boundary for its habitat. This brings about the
modeling level to be chosen subjectively (Williams et al.
2009). On the other hand, study of the interaction be-
tween the species and its surrounding environment, as
one of the functions of the SDMs, is an important aspect
of ecological studies (Thakur et al. 2017). Therefore,
knowledge obtained from the SDMs can be used to pro-
tect and restore plant habitats.

Suitable habitat analysis
The used models were clearly different in prediction per-
formance and identification of the potential distribution
areas of the species. The BP-ANN and the ensemble ap-
proach were the best and most accurate models in pre-
dicting suitable habitat of A. scoparia. Although the
discrimination capacity of all models was at a favorable
level, the BP-ANN had the highest ability to discriminate
between presence and absence points (AUC = 0.935). It
has been reported that the model’s discrimination cap-
acity and output reliability indices are highly important
in measuring the prediction accuracy of the SDMs (Liu
et al. 2011; Piri Sahragard and Zare Chahuki 2015). The
relative importance of these indices (i.e., capacity dis-
crimination and output reliability) is influenced by the
type of use and the user proficiency (Pearce and Ferrier
2000). In the present study, the BP-ANN was a more ef-
ficient model than others in predicting the distribution
of A. scoparia potential habitats because of its higher
discrimination capacity in distinction of presence and

Table 6 Area (km2) and percent of different classes of habitat
suitability for Amygdalus scoparia in Fars Province, southern Iran

Model Suitable % of total area Unsuitable % of total area

BP-ANN 29,969.68 24.07 94,500.51 75.93

GLM 38,268.79 30.74 86,194.58 69.26

MaxEnt 53,580.76 43.05 70,876.22 56.95

Ensemble 29,316.46 23.55 95,151.42 76.45

Table 7 Evaluation of the distribution of suitable habitat of Amygdalus scoparia in landform classes based on the landscape metrics
analysis

Landscape metrics (class level)

Landform Habitat coverage (ha) TE ED MPS NP MSI

Canyons 1,474,162.19 23,875,595.2 3.62 1709.65 863 1.4

Shallow valleys 8086.38 520,492.2 12.36 85.1 139 1.02

Upland drainages 177,652.24 7,962,648.6 10.08 185.11 1255 1.16

U-shaped valleys 47,321.34 2,401,321.7 4.29 133.65 474 1.1

Plains 1278.82 84,690.3 1.35 81.21 23 1.02

Open slopes 53.28 3528.8 7.56 77.83 1 1

Upper slopes 11,258.62 728,689.1 11.16 84.65 194 1.02

Hills in valleys 134,928.50 625,6492.8 8.19 168.4 1062 1.14

Mid slope ridges 7871.33 495,790.9 8.68 91.41 126 1.03

Mountain tops 855,816.76 18,668,908.7 5.67 820.6 1090 1.42

Landscape metrics (landscape level)

LPI CONTAG SHDI MNN LSI

All type of landforms 19.17 55.17 1.15 3659.93 46.37
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absence points. However, the largest and smallest pre-
dicted suitable areas (43.05% and 23.55% of total area of
Fars Province, respectively) for A. scoparia were related
to the MaxEnt model and the ensemble approach. The
prediction performance of models can vary on the basis
of used mathematical functions (Haidarian Aghakhani
et al. 2017; Piri Sahragard et al. 2017).
Analysis of the true positive rate (TPR) and a criterion

for assessment of model’s prediction accuracy, moreover,
indicated that the BP-ANN with the sensitivity of 0.927
and the MaxEnt model with the sensitivity of 0.808 had
the highest and lowest ability to distinguish between
presence and absence points. In other words, the model
obtained from the MaxEnt was the weakest model in
discriminating presence points from absence ones be-
cause the ability of the model to detect presence and ab-
sence points did not exceed 0.808 with regard to the
optimal threshold of 0.4. In consistent with these find-
ings, Norris (2014) reported that the model must be
highly sensitive due to the unique environmental condi-
tions, the limited habitat size, and the need to identify
highly suitable areas to protect and manage rare plants
habitats. Additionally, because of the ability of the BP-
ANN to model nonlinear relationships between vari-
ables, it can be a valid alternative to regression methods
and other widely used SDMs. The superiority of the BP-
ANN over other models has been also reported in sev-
eral studies (Rasztovits et al. 2012; Abbasi and Zare Cha-
huki 2014; Rasztovits et al. 2014; Kafaei et al. 2020).
Consequently, this study recommends the use of BP-
ANN model for studies of A. scoparia habitats.
The BP-ANN model indicated that out of the total

area of Fars province, about 29,969 km2 (24.07%) had a
high suitability for establishment of A. scoparia. But in
94,500.51 km2 (75.93%) of the province, the prevailing
environmental conditions did not meet the ecological re-
quirements of the species. Distribution pattern of the
potential habitats also showed that the west and north of
the province were potentially more suitable for expan-
sion of the current habitats provided that other environ-
mental conditions are met. Further, given the unsuitable
areas for species establishment, it can be declared that
climatic constraints can limit the expansion of current
habitats to areas with special environmental conditions.
Piri Sahragard et al. (2019) reported that A. scoparia was
only found in areas with shallow soil and abundant
gravels where these conditions are more frequent in cer-
tain elevation ranges (ca. 1500–2150 m above sea level).
This point should be also considered in conservation
and afforestation plans (Tavakol Neko et al. 2012).

Landscape structure analysis
Analysis of habitat distribution in landform classes indi-
cated that A. scoparia was mainly distributed in the

canyon, mountain top, and upland drainage classes. For
example, according to the LPI metric, 19.17% of the total
suitable habitat of the species was located in the canyon
class. Habitat suitability was higher in the canyons and
mountain tops than in other classes. For instance, the
highest complexity and the lowest edge density (ED)
were in the canyons and mountain tops. The highest
number of patch (NP) was in the upland drainage class,
indicating that the species’ habitat was fragmented in
this class of landform. The low value of MSI metric and
low number and small size of patches in open slope class
illustrate that this class of landform did not have consid-
erable contribution in suitable habitat distribution. It has
been reported that some metrics, such as NP, ED, and
MSI, are the most important metrics in assessing the
landscape and separating plant habitats (Sfougaris et al.
2014; Piri Sahragard et al. 2015; Zare Chahouki et al.
2016). In this research, the relationship between the cal-
culated metrics and the spatial distribution of the species
in different landform classes showed that the most suit-
able habitats of the species were located in the mountain
tops and upland drainages with shallow soil and abun-
dant pebbles. In fact, these classes have created the pos-
sibility of the emergence of continuous habitats with
high complexity and low edge for A. scoparia. We fur-
ther noticed that the suitability of landform for the spe-
cies was decreased by descending to lower altitude and
flat landform. In other words, the highest presence of
the species occurred in landforms with medium to light
soil texture and abundant pebbles, which are coincident
with ecological needs of the species (Tavakol Neko et al.
2012). It has been reported that the probability of A. sco-
paria occurrence could be limited by altitude in different
parts of Iran so that the highest occurrence of A. sco-
paria habitat has been observed in elevation of 1500–
2150 m above sea level (Tavakol Neko et al. 2012; Piri
Sahragard et al. 2018).
In addition, the relationship between species presence

probability and dominant environmental variables re-
vealed that the Isothermal and Precipitation of Driest
Quarter justified about 36% of the variation habitat dis-
tribution. These variables contribute significantly
(22.09% and 14.89%, respectively) in habitat suitability
determination. Slope had the least effect on variation of
habitat distribution, indicating that model implementa-
tion with this variable alone could not be useful for habi-
tat prediction of A. scoparia. Thus, it can be concluded
that the isothermal, annual temperature, and rainfall in
the driest season with considerable justification of the
species distribution variations have the greatest contri-
bution in determining habitat suitability of A. scoparia.
Consistently, Haidarian Aghakhani et al. (2017) reported
that the annual temperature and rainfall are important
variables affecting the occurrence of A. scoparia so that
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this species could mostly appear in areas with mean an-
nual temperature of 24–26 °C and annual rainfall of 400
to 600 mm.

Conclusion
This study aimed to analyze the suitable habitat of A. sco-
paria in different landform classes by integrating landscape
metrics and the SDMs in Fars Province, southern Iran.
The BP-ANN was found to be the most accurate model
for predicting the distribution of A. scoparia habitats in the
study area. The most suitable habitats for the potential dis-
tribution of the species, with an area of 29,969 km2, were
located in the northern and western regions of the prov-
ince. Moreover, analysis of landscape metrics showed that
the canyons, mountain tops, and upland drainages were
the most important landforms for A. scoparia establish-
ment since they can provide the most favorable environ-
mental conditions. As a result, these landforms should be
given priority in the restoration of A. scoparia habitats at
the northern and western regions of the province. Conse-
quently, integration of landscape composition related to
landforms and accurate SDM for predicting the distribu-
tion of plant habitats can provide valuable knowledge for
the restoration of degraded habitats. However, due to the
limitations of the SDMs, caution should be taken in inter-
preting the results of such approaches.
Climatic variables, including Bio 3 (isothermality) and

Bio 17 (precipitation of driest quarter), were the most
important drivers of A. scoparia occurrence in the study
area. These factors could significantly impact the poten-
tial distribution or realized niche of the species. How-
ever, by considering the biophysical factors, such as
inter-species interaction, geomorphological characteris-
tics, and soil type, we can achieve more reliable results
in habitat distribution modelling generates.
Finally, it should be pointed out that for future studies,

finding out the effectiveness of integrated landscape
composition and the SDMs approach in predicting the
potential habitat of plant species with different distribu-
tion ranges can be an attractive research field. Such re-
search not only develops the use of new frameworks in
spatial distribution modeling of plant habitats but also
helps forest managers and other authorities with the ef-
fective restoration of degraded habitats by generating ac-
curate information and maps.
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