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Abstract

Tropical primary forests have been disappearing quickly to make use of the land for commercial purposes. Land-use
change has an impact on downstream aquatic processes, but those impacts have mainly been studied in
temperate climate regions. The present article reviews the impacts of various tropical land-use changes caused by
human activities on downstream riverine and estuarine water properties and biogeochemical cycles, focusing
especially on the behaviors of nitrogen (N) and phosphorus (P). Logging of tropical primary forests, subsequent
establishment of pasture lands, and occasional wildfire or intentional burning have decreased terrestrial N fixation
and increased the discharge of P combined with soils, which has lowered the N:P ratio of dissolved inorganic
nutrients in the adjacent stream waters and downstream rivers. Agricultural fertilizers and aquacultural practices
basically cause nutrient enrichment in downstream riverine and estuarine waters, changing the N:P ratio depending
on the source. Finally, urbanization causes eutrophication in many tropical estuaries, where a halocline forms easily
because of a warm temperature throughout the year and the water at the bottom of the estuary tends to become
hypoxic or anoxic. Overall, the impact of land-use change on aquatic processes may be more serious in tropical
regions than in temperate or cold climate regions because of (1) a higher biomass and nutrient stock in original
tropical forests; (2) higher precipitation, more frequent episodic flooding, and warmer temperatures in tropical
regions; and (3) certain practices that are rapidly expanding in tropical regions such as land-based aquaculture.
Various land-use changes are causing downstream nutrient enrichment or disturbance of the nutrient balance at
tropical land-sea interfaces, and the overall N:P ratios in the aquatic ecosystem seem to be declining. Nonetheless, if
proper management is conducted and the discharge of nutrients and soils ceases, tropical aquatic systems may
have the potential to recover faster than those in other climate regions because of their abundant precipitation and
warm temperature. Long-term monitoring and more attention to elemental stoichiometry are important areas for
future research.
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Introduction
Primary forests have been globally cut down with in-
creasing human populations and expanding commercial
land use; in particular, tropical forests have been lost fas-
ter than those in other climate regions during the past
several decades (Gibbs et al. 2010; Miettinen et al. 2011;
Achard et al. 2014; Rosa et al. 2016). As a result, for ex-
ample, the eastern lowlands of Sumatra and the peat-
lands of Borneo lost approximately half of their peat
swamps for conversion to industrial plantations from
2000 to 2010 (Miettinen et al. 2011), and the Brazilian
Amazon lost 15% of the primary forest by 2010 (Maia
and Schons 2020). Not only inland forests but also
coastal forests have been cut down quickly. Tropical
coasts and estuaries are often bordered by mangrove for-
ests, but it was estimated that 35% of global mangroves
were already lost from 1980 to 2000 (Valiela et al. 2001),
although recently the rate seems to be declining (Friess
et al. 2019). At the global level, the gross loss of tropical
forests has been estimated to be 8 million ha per year
from 1990 to 2010 (0.5% annually; Achard et al. 2014).
These deforested lands have been replaced with com-
mercial lands for various purposes: agricultural fields
(e.g., rice, soybeans, and oil palm), aquaculture ponds, or
ranching and poultry farms, depending on the demands
of the region (Chen et al. 2013; Richards and Friess
2016).
Generally, tropical forests and their soil have higher

carbon (C) and nitrogen (N) stocks than those in other
climate regions because of active photosynthesis and
biological N fixation throughout the year (Cleveland
et al. 1999; Jobbágy and Jackson, 2000; Hedin et al. 2009;
Cloern et al. 2014). Organic litter is fragmented into dis-
solved and particulate organic matter (DOM and POM,
respectively) and is mineralized into carbon dioxide
(CO2) by bacteria faster in the tropics because of warmer
temperatures (Wetterstedt et al. 2010). When precipita-
tion and throughfall pass through forest soils, the con-
centration of dissolved organic carbon (DOC) in the soil
solution gradually declines with soil depth because DOC
tends to be adsorbed to soil particles (McDowell 1998).
Because of organic matter decomposition, the ammo-
nium (NH4

+) concentration is relatively high in the sur-
face soil but is gradually oxidized into nitrate (NO3

−) as
soil water moves downstream as groundwater (McDow-
ell et al. 1995; McDowell 1998). Phosphate (PO4

3−) is
also regenerated from organic matter decomposition,
but PO4

3− tends to be adsorbed to soil and does not per-
colate deeply into groundwater (McDowell et al. 1995;
McDowell 1998). Thus, stream waters surrounded by
tropical primary forest and its downstream river and es-
tuarine waters are usually enriched with dissolved inor-
ganic carbon (DIC) and NO3

− (McDowell 1998;
Miyajima et al. 2009; Brookshire et al. 2012; Noriega and

Araujo 2014). DIC and N exports from undisturbed
tropical watersheds are generally higher than those from
temperate watersheds because of the higher stock of or-
ganic matter and active bacterial mineralization in the
forest (Hedin et al. 2009; Sarma et al. 2011; Abril et al.
2014). However, along with the disappearance of tropical
primary forests, less organic matter is produced on land,
and more organic matter is discharged downstream by
increased erosion, which results in a reduction in the
stock of soil organic C and N (Brown and Lugo 1990;
Brouwer and Riezebos, 1998; Don et al. 2011; Drake
et al. 2019; Hattori et al. 2019). Therefore, the impact of
deforestation on downstream limnological processes is
expected to be greater in tropical regions than in other
climate regions.
Conversely, artificial nutrient loading, such as the ap-

plication of fertilizers, increases with human land use
after deforestation because many human activities in-
volve the use of nutrients (Downing et al. 1999). In agri-
culture, more than half of applied fertilizers are often
not recovered by plants but can accumulate in soils,
volatilize to the atmosphere, or leach from the land to
ambient streams and rivers through groundwater or sur-
face water runoff (Rocha et al. 2019). The impact of fer-
tilizers may remain in the soil even after several decades
(Sebilo et al. 2013). The fluxes of total N (TN) or NO3

−

in rivers are correlated with population densities in the
watershed, and TN fluxes have increased by 2- to 20-
fold in temperate rivers since industrialization (Howarth
et al. 1996), although the trend is specific to the catch-
ment and is also highly affected by climatic drivers, such
as hydrology and temperature (Argerich et al. 2013).
The discharge of total phosphorus (TP) and PO4

3− has
also been increasing with wastewater discharge, artificial
drainage systems, and erosion (Nieminen et al. 2017;
Williams and King 2020). Because tropical regions often
experience more rainfall than other climate regions,
more N and phosphorus (P) might be discharged with
water from tropical lands.
The impacts of land-use change on downstream

aquatic processes have mainly been studied in temperate
regions, and some reviews are available (Howarth et al.
2011; Statham 2012; Bauer et al. 2013). However, re-
views of the impacts on tropical regions are scarce
(Downing et al. 1999; Camara et al. 2019; Thomaz et al.
2020), even though the impacts are expected to be dif-
ferent from those seen in other climate regions, as intro-
duced above. To summarize our present understanding
of changing tropical aquatic processes, the present art-
icle reviews the impacts of various tropical land-use
changes on the water properties and biogeochemical cy-
cles in adjacent streams, rivers, and estuaries. We fo-
cused on six major land-use changes: (1) logging of
primary forests, (2) pasture including ranching, (3)
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agriculture, (4) forest fire including intentional burning,
(5) aquaculture, and (6) urbanization affected by various
types of wastewaters. We collected published literature
mainly from Google Scholar and focused on studies that
directly compared water properties or biogeochemical
cycles between sites affected or unaffected by land-use
change. In the present review, tropical regions were de-
fined as the warmest areas in the Köppen-Geiger climate
classification (roughly between 20° N and 20° S; Peel
et al. 2007).

Logging
Tropical land-use change starts from deforestation by
logging primary forests. At this stage, both above- and
belowground plant biomasses are drastically and quickly
removed from the land, where the soil is dug up and
loosened. Subsequent transportation of timber by trac-
tors further disturbs the ground, which causes runoff of
surface water and soils downstream after rainfall (Nyk-
vist et al. 1996; Chappell et al. 2004). Moreover, total
evaporation (or evapotranspiration) from the land may
be reduced due to less vegetation, and more rainwater
flows into the adjacent streams and rivers after logging
(Chappell et al. 2005; Ling et al. 2016). The groundwater
baseflow also increases because of the reduced uptake of
infiltrated rainwater by terrestrial plants. In the Bukit
Berembun catchments in Peninsular Malaysia, the aver-
age water yield increased by 50−70% after commercial
logging (Nik and Harding 1992; Chappell et al. 2005).
The increased volume and velocity of water flows erode
stream banks, making the stream increasingly wider
(Iwata et al. 2003; Neill et al. 2006).

Most previous studies on the effects of logging on
downstream riverine water properties have focused on
the monitoring of suspended solids (SS) or turbidity, and
increases in these water variables have been recorded at
many study sites during and after logging (Table 1). The
increase in SS and turbidity is mainly caused by soils,
but dissolved inorganic nutrients (e.g., NO3

− and PO4
3−),

minerals (e.g., K+, Mg2+, and Ca2+), and organic matter
are also discharged from soils (Table 1). Because terres-
trial plant-derived organic matter generally has a higher
C:N ratio than aquatic microbes in rivers, the discharge
of terrestrial organic matter from logging sites increases
the C:N ratio of total organic matter in the river (Ward
et al. 2015; Zhang et al. 2019). In the Changhuajiang
River basin, China, the C:N ratio of POM increased from
7 to 10 during the wet season, where more terrestrial
particles were discharged downstream due to high pre-
cipitation and strong soil erosion (Zhang et al. 2019). In
addition, the N:P ratio of tropical plant leaves is occa-
sionally very high due to the active N fixation of the for-
est ecosystem compared to temperate or cold climate
regions (Hedin et al. 2009). This finding suggests that
the N:P ratio of POM in the downstream river might be
higher in tropical regions than expected in other climate
regions.
River water pH can also be altered due to terrestrial

inputs because most soils in the humid tropics are acidic
(e.g., pH = 4.5−6.4; Grip et al. 2005). This acidity has
both biological and chemical causes: microbial processes
(e.g., aerobic oxidation, methanogenesis, sulfate reduc-
tion, nitrification) enrich the soil pore water with H+

and various forms of oxidized C and N (e.g., CO2, CH4,
NO3

−) (Melling et al. 2005; Ríos-Villamizar et al. 2017),

Table 1 A summary of the effects of logging on the downstream riverine and estuarine water properties. The arrows indicate that
the subsequent water properties increased (↑), decreased (↓), or did not change (→). See the list of abbreviations for water
properties

Study sites Effects on downstream water
properties

Sources

Bukit Berembun rivers, Negri Sembilan, Malaysia ↑: SS, turbidity, NO3
−, PO4

3− Chappell et al. (2004, 2005)

Bukit Tarek streams, Selangor, Malaysia ↑: EC, SS, turbidity Gomi et al. (2006), Marryanna et al. (2007)

Danum Valley rivers, Sabah, Malaysia ↑: SS Douglas et al. (1992), Greer et al. (1996), Nainar
et al. (2017)

Mendolong catchment, Sabah, Malaysia ↑: EC, TN, NO3
−, NH4

+, DOC
↓: DOC:DON

Malmer and Grip (1994)

Baleh River, Sarawak, Malaysia ↑: pH, SS, DO
→: TP
↓: NO3

−, PO4
3−, Chl. a

Ling et al. (2016)

Batam River, Sarawak, Malaysia ↑: SS, turbidity Ling et al. (2017)

Rivers, Seram, Indonesia ↑: SS Cecil et al. (2003)

Bongan River, East Kalimantan, Indonesia ↑: SS de Jong et al. (2015)

Bukit Baka Experimental Catchment, Central Kalimantan,
Indonesia

↑: SS Suryatmojo et al. (2014)

Purus river, Amazonas, Brazil ↓: pH Ríos-Villamizar et al. (2017)
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and weathering of parent material may also directly acid-
ify adjacent aquatic systems by reacting with precipita-
tion or moisture. For example, acid sulfate soil (ASS) is
widely distributed in tropical regions and is stable under
anoxic conditions. However, when ASS is exposed to
oxygen (atmosphere) with water, which is often driven
by logging during a rainy season, ASS starts to be oxi-
dized, producing H+ and causing severe acidification of
the downstream rivers (Sammut et al. 1996; Vuai et al.
2003; Van Ha et al. 2011). In the Kahayan River in Cen-
tral Kalimantan, Indonesia, the surface water pH
dropped to as low as 3 due to ASS during a rainy season
(Haraguchi 2007).
Because P combines with certain soil minerals (e.g.,

calcium, iron, and aluminum), enhanced soil runoff due
to logging would involve a drastic transportation of P
from the surface land to the downstream aquatic ecosys-
tem, decreasing the N:P ratio (Chappell et al. 2005). In
the downstream estuary, suspended particulate P de-
sorbs from the soil particles, and PO4

3− becomes avail-
able for primary producers (Zhang and Huang 2011; Lin
et al. 2012; Nguyen et al. 2019a). The sorption/desorp-
tion of P is chemically affected by the water temperature
and salinity; PO4

3− desorption is enhanced with decreas-
ing temperature or increasing salinity (Zhang and Huang
2011). However, in a turbid tropical estuary of Saigon,
Vietnam, the SS concentration was the greatest factor in
determining the P content in the water because of the
high flocculation of cohesive sediments (Nguyen et al.
2019a). These properties of P indicate the importance of
the management of soil discharge from logging sites to
prevent P overloading in downstream aquatic ecosys-
tems. All the above types of runoff (i.e., water, soil, or-
ganic matter, and nutrients) would be alleviated by
riparian vegetation because the vegetation zone func-
tions as a filter (Williams et al. 1997; Gomi et al. 2006;
de Souza et al. 2013).
The effects of logging on downstream riverine and es-

tuarine water could last for months to years until the
terrestrial soil is gradually stabilized and plants regrow
naturally or artificially. During the recovery period, the
discharge of N and P into the adjacent river seems to re-
turn to the original level before logging earlier than
other mineral ions (e.g., K+, Ca2+, Mg2+) (Malmer and
Grip 1994; Chappell et al. 2005). For example, in the riv-
ers of the Mendolong catchment, Malaysia, the concen-
tration of NO3

− returned to the original level within 2
years after clear felling, but the K+ concentration was
still high even after 5 years (Malmer and Grip 1994).
This difference suggests that N and P often limit the
growth of terrestrial vegetation after logging and thus
are subject to active absorption by the vegetation for re-
growth, while other minerals, such as K+, are relatively
sufficient for plants because they are continuously

leached from soil and rock through weathering (Malmer
and Grip 1994; McDowell 1998; Chappell et al. 2005).
However, from a longer-term viewpoint, the removal of
terrestrial vegetation and the gradual erosion of soils de-
crease the storage of nutrients and minerals on land
(Recha et al. 2012; Hattori et al. 2019), which would
eventually lower the concentration of these ions in the
downstream river and estuarine water.
To summarize this section, logging increases the dis-

charge of terrestrial soils, including nutrients and or-
ganic matter that are stored in the forest (Table 2).
Because tropical forest soils store larger biomass stocks
than those of other climate regions, the impact of log-
ging on organic matter and nutrient discharge would be
greater in tropical regions, especially when episodic
heavy rainfall occurs. The discharge of soils might in-
crease the C:N ratio of organic matter and decrease the
N:P ratio of dissolved inorganic nutrients in the down-
stream river and estuary (Table 2). The increase in tur-
bidity caused by soil and organic matter might reduce
aquatic photosynthesis in the downstream river and es-
tuary, but in contrast, the discharged nutrients have the
potential to increase productivity. The final productivity
would be determined by the balance of these effects.

Pastures and ranches
After deforestation, the land is often changed to pasture
by natural sprouts or seedings of a target species of
grass. The grown pasture may be repeatedly burned to
remove unwanted weeds and used for ranches (Neill
et al. 2001, 2017). If fertilizers are not added to pasture
lands, nutrient stocks in the soil may gradually decline
from the original stock in primary forests (Hattori et al.
2019; López-Poma et al. 2020). Because of deforestation
and conversion to pasture, the primary production and
standing stock of biomass are decreasing globally on
tropical lands (Erb et al. 2016). Ranching of aviculture,
swine, and cattle for livestock production is the major
use of pasture lands, especially in Latin America. Brazil
alone accounts for almost half of the livestock

Table 2 A summary of the common effects of tropical land-
use change on the downstream riverine and estuarine water
properties. The arrows indicate that the water properties would
increase (↑), decrease (↓), or not change (→). See the list of
abbreviations for water properties

Land use SS TN TP OC:ON TN:TP DO

Logging ↑ ↑ ↑ ↑ ↓ ↓

Pasture and ranching ↑ ↑↓ ↑ ↓ ↓ ↓

Agriculture ↑ ↑ ↑ ↓ ↑↓ ↓

Burning ↑ ↑ ↑ ↑ ↑↓ ↓

Aquaculture ↑↓ ↑ ↑↓ ↓ ↑↓ →

Urbanization ↑ ↑ ↑ ↓ ↓ ↓
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production in Latin America and the Caribbean (OECD/
FAO 2019).
Because of its extensive area and long history, the im-

pacts of the conversion of tropical primary forest to pas-
ture on adjacent stream waters have been frequently
studied in the Amazon region (de Mello et al. 2020; Tho-
maz et al. 2020; Table 3). In the Amazonian state of Ron-
dônia, Brazil, forest reserves were logged from 1987 to
1990 and were mostly planted with Brachiaria grass spe-
cies for extensive cattle ranching (Thomas et al. 2004;
Nóbrega et al. 2018). The planted grasses had low prod-
uctivity compared to the primary forest (Nóbrega et al.
2018). Due to the conversion from primary forest to
grasses, decreased canopy densities allowed more sunlight
to reach streams, which increased the temperature and
primary production in the stream water (Thomas et al.
2004; Lorion and Kennedy 2009). Most of the measured
organic and nutrient contents in the stream waters were
higher alongside pastures than the streams surrounded by
primary forest during the dry season, although the differ-
ence was smaller or negligible during the wet season be-
cause of the dilution by rainwater (Biggs et al. 2004; Neill
et al. 2006; Thomas et al. 2004; Deegan et al. 2011;
Nóbrega et al. 2018). Higher POM and DOM would be
derived from aquatic vegetation, which became dominant
on the stream banks in pastures due to increased light
availability (Neill et al. 2001; Nóbrega et al. 2018). NH4

+

and PO4
3− also increased through the mineralization of

the organic matter produced by aquatic vegetation in the
stream, which led to lower dissolved oxygen (DO) in the
water (Thomas et al. 2004).
Conversely, NO3

− may decrease in the pasture streams
because less N fixation, mineralization, and nitrification
could occur on the pasture lands than in the original
primary forest (Neill et al. 2001; Thomas et al. 2004;
Table 3). The reduced NO3

− concentration lowered the
N:P ratio of dissolved inorganic nutrients in the stream
waters of the Amazon regions, shifting from a P limita-
tion in forest streams to an N limitation in pasture
streams for aquatic primary producers (Neill et al. 2001;
Figueiredo et al. 2020). A similar reduction in N:P ratios
in stream waters was also observed in pasture-
dominated watersheds in Panama (Valiela et al. 2013).
Because tropical primary forests have high N fixation
and provide excess N downstream (McDowell 1998; He-
din et al. 2009; Brookshire et al. 2012), this reduction in
NO3

− and the N:P ratio would be more impactful in
tropical regions than in other climate regions. The total
fluxes of these nutrients would be greatly affected by
water discharge, and therefore, long-term monitoring is
important to observe seasonal changes and to assess an-
nual budgets (Williams et al., 1997; Nóbrega et al. 2018).
Pasture lands are often used for ranching to raise live-

stock animals. The grazing of grass by those animals

Table 3 A summary of the effects of the conversion of primary forest to pastures and ranches on the downstream riverine and
estuarine water properties. The arrows before the water properties indicate that the subsequent water properties increased (↑),
decreased (↓), or did not change (→). See the list of abbreviations for the water properties

Study sites Effects on downstream water properties Sources

Rayu River, Sarawak, Malaysia →: pH, NO3
−, NO2

−, NH4
+, PO4

3− Iwata et al. (2003)

Rivers, Queensland, Australia ↑: PON, NO3
− Furnas (2003)

Rondônia, Amazon Basin, Brazil ↑: TDN, TDP, PP Biggs et al. (2004)

↑: SS, POC, PON, DON, PO4
3−

→: TDN, NH4
+

↓: NO3
−, TDN:TDP, DIN:DIP, DO

Neill et al. (2001)

↑: SS, POC, PON, NH4
+, PO4

3−, Chl a
↓: NO3

−, DO
Thomas et al. (2004)

↓: NO3
−, DIN:DIP, DO Neill et al. (2006)

↑: SS, NH4
+, PO4

3−

↓: NO3
−, DIN:DIP, DO

Deegan et al. (2011)

Paragominas streams, Pará, Brazil ↑: pH, DO
↓: NO3

−
Figueiredo et al. (2010)

Novo Progresso (Amazon) and Campo Verde (Cerrado), Brazil ↑: TOC, DOC, TN, NO3
− Nóbrega et al. (2018)

Sarapuí River Basin, São Paulo, Brazil ↑: SS, turbidity, TP
→: TN

de Mello et al. (2018a)

Sixaola River streams, Limón, Costa Rica ↑: Chl a Lorion and Kennedy (2009)

Veraguas rivers and estuaries, Panama ↑: SS, Chl a
→: PO4

3−

↓: NO3
−, NH4

+, DIN:DIP

Valiela et al. (2013, 2014)

Streams, Puerto Rico ↑: Turbidity, TN, TP
→: DO

Uriarte et al. (2011)
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generally enhances (1) the cycling of plant decompos-
ition and nutrient regeneration through digestion and
excretion by animals (Assmann et al. 2017; Arnuti et al.
2020) and (2) soil erosion from fragile stream banks
(McCulloch et al. 2003; Brodie and Mitchell 2005). Dung
nutrients are recycled by terrestrial plants or utilized as
manure fertilizer for agriculture (Sileshi et al. 2017), but
some of them can flow into adjacent streams with pre-
cipitation. In the Amazon catchment, the fluxes of total
inorganic C (TIC) and TN increased by 5 and 3.7 times,
respectively, in the streams surrounded by pasture lands
with extensive cattle ranching compared to those in pri-
mary forests (Nóbrega et al. 2018). This increase in TIC
was caused by the practice of liming (CaCO3) in the pas-
ture to raise the pH of the indigenous acidic soils. A
meta-analysis of the chemical composition of animal
manure from sub-Saharan countries showed that 77% of
manure had N:P ratios less than 5, which is lower than
the N:P requirement of major crops (Sileshi et al. 2017).
When plants take up available nutrients, the N:P ratio of
the residue would decrease further. The accumulation of
P relative to N was also found in subtropical pastures
with livestock grazing in Florida, USA (Ho et al. 2018).
The discharge of these P-rich residues into streams may
shift the limitation factor from P to N for primary pro-
duction in downstream aquatic ecosystems (Jennerjahn
et al. 2008; see “Agriculture”).
If deforested lands or pasture lands are abandoned,

they will gradually regenerate trees by natural seeding or
artificial plantations as secondary forests. Generally, it
takes a longer time for tropical lands to recover their
floral and faunal diversity than temperate lands because
of the higher diversity in the original tropical forest
(Meli et al. 2017). In the Rayu River catchment of Bor-
neo, Malaysia, slash-and-burn agricultural practices were
performed until 1989, but then the area was protected as
a national park, and a secondary forest was redeveloped.
In 1998, the dissolved inorganic nutrients, electrical con-
ductivity (EC), and pH in the stream water of the sec-
ondary forest were no longer different from those of the
original primary forest (Iwata et al. 2003). However, the
stream substrates were finer and the banks were more
eroded in the secondary forest, most likely because of
the loss of the riparian primary forest during the initial
deforestation. Because of this physical alteration of habi-
tats, the diversity and abundance of aquatic organisms
(e.g., periphyton, aquatic insects, shrimp, and fish) were
still lower in the streams surrounded by the secondary
forest than in those surrounded by the primary forest
(Inoue et al. 2003; Iwata et al. 2003). These observations
suggest that even if secondary forest develops, the recov-
ery of aquatic habitats and ecosystems would take a lon-
ger time than that of chemical water properties (Feio
et al. 2015).

To summarize this section, the conversion of primary
forest to pasture lands enables more sunlight to reach
the ground and adjacent lotic ecosystems, increasing the
temperature and primary production in the water. Be-
cause terrestrial N fixation declines with deforestation,
the NO3

− concentration and the N:P ratio of dissolved
inorganic nutrients in the downstream riverine and estu-
arine waters would decrease (Table 2), and this reduc-
tion would be more drastic in tropical regions than in
other climate regions. Ranching further decreases the N:
P ratio in the water due to the input of animal excretion.
Both aquatic primary production and the input of ani-
mal excretion increase DOM and POM in downstream
rivers and estuaries, causing high turbidity and low DO
in the water (Table 2).

Agriculture
Primary forests are frequently converted to lands for
agriculture in tropical regions. The net agricultural pro-
duction in Southeast Asia has increased by approxi-
mately 3% per year over the past several decades
(OECD/FAO 2017). In Southeast Asia, rice cultivation
was the main agricultural activity until the 1980s, but
the percentage of rice production to the total agricul-
tural production has been decreasing for the past 40
years; instead, palm oil and poultry production are in-
creasing because of the higher income they generate
(OECD/FAO 2017). In Latin America and the Carib-
bean, soybeans are the major agricultural products, and
their production has increased fourfold during the past
40 years (OECD/FAO 2019). As seen in logging and pas-
ture lands, agricultural lands also cause increased runoff
of surface water and soil. In the Nandi district, Kenya,
the water runoff increased twofold after the primary for-
est was converted to croplands (Recha et al. 2012).
In agricultural fields, synthetic fertilizers, which are

commonly composed of soluble inorganic nutrients (e.g.,
ammonium chloride, diammonium phosphate, potas-
sium chloride) or organic nutrients that decompose rap-
idly, such as urea, are frequently used, although
natural organic fertilizer (e.g., animal manure and vege-
table compost) has recently received attention (Ding
et al. 2019). Synthetic fertilizers are created to quickly
dissolve and be efficiently absorbed by crop plants, but
in general, only 10−50% of applied N and P fertilizers
are recovered as crop harvests (Prasertsak et al. 2002;
Chen et al. 2008; Ding et al. 2019). The remaining N
percolates through soil into groundwater, discharges
with surface water runoff, or it is released into the at-
mosphere through volatilization (e.g., NH3) or denitrifi-
cation (e.g., N2 and N2O) (Downing et al. 1999; Rivett
et al. 2008; Maranguit et al. 2017). Conversely, P tends
to remain in the surface soil or be discharged with sedi-
ment as surface runoff because of its ability to bind to
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certain soil minerals (Faithful and Finlayson 2005; Zhang
and Huang 2011; Nguyen et al. 2019a).
In the Brazilian Amazon and Cerrado, the major crops

are soybean, maize, corn, and cotton, and the effects of
fertilizers on the adjacent stream water quality have been
frequently reported (Figueiredo et al. 2010; Silva et al.
2011; Riskin et al. 2017; Neill et al., 2017; Figueiredo et al.,
2020; de Mello et al. 2020). After the land use shifted from
pasture to agriculture, the concentration of most of the
measured nutrients, minerals, and EC increased, while DO
decreased in the stream surrounded by agricultural fields
with the use of fertilizers (Figueiredo et al. 2010; Silva
et al. 2011; de Mello et al. 2018b; Table 4). Even though
the concentration appeared to be unaffected, the impact
of fertilizer may become obvious when annual export is
measured. In the Brazilian state of Mat Grosso, the nutri-
ent concentration in stream waters was not affected by
soybean cropping compared to primary forest, but the an-
nual export of nutrients was higher from soybean fields
than the forest watershed because of the increased water
discharge from the soybean fields (Riskin et al. 2017).
Oil palm plantations are one of the most extensive

agricultural crops in the tropics and consume the largest
amount of commercial fertilizers in Southeast Asia
(Maranguit et al. 2017), but the effects on adjacent
streams or rivers have not been well studied (Ah Tung
et al. 2009; Comte et al. 2012, 2015; Gandaseca et al.
2015; Table 4). Because of fertilizer use, the rivers sur-
rounded by new oil palm plantations in Sarawak,
Malaysia, had higher NH4

+ and biological and chemical
oxygen demands (BOD and COD, respectively) than the
controlled forest sites (Gandaseca et al. 2015). The sur-
face runoff from the mature oil palm farms of Papua
New Guinea also had higher NH4

+ concentrations than
the controlled sites, and the nutrient and water balance
implied that a considerable amount of N was lost as
deep drainage by leaching (Banabas et al. 2008). The
groundwater collected from the well in the oil palm
plantation of Sabah, Malaysia, had high NH4

+ and K+

concentrations, which were likely derived from fertilizer
(Ah Tung et al. 2009). The NO3

− concentration was not
significantly affected by fertilizer at these oil palm sites
in Southeast Asia, demonstrating that nitrification is not
a major process in N transformation in these agricultural
lands. Because of the high precipitation in Southeast
Asia, fertilizer-derived NH4

+ could be discharged into
streams and rivers before being oxidized into NO3

−. At
an oil palm plantation in Sumatra, Indonesia, the use of
organic fertilizer caused a high BOD and COD level in
the adjacent stream water, which also suggests a short
residence time of fertilizer-derived organic matter in the
surface soil (Comte et al. 2015).
Conversely, NO3

− may become the major fertilizer-
derived nutrient in regions where precipitation

percolates and travels underground as groundwater with
a relatively long residence time. In northern Queensland,
Australia, sugarcane and banana cultivation have been
the major industries over the last century, and the details
have been reviewed in several articles (Furnas 2003; Bro-
die and Mitchell 2005; Davis et al. 2016). In brief, the
use of fertilizer in this region increased the NO3

− con-
centration in the groundwater through nitrification
(Thorburn et al. 2003), and fertilizer-derived NO3

− flo-
wed into adjacent streams and rivers as baseflow (Mitch-
ell et al. 2001, 2009). The N:P ratio of dissolved
inorganic nutrients in the Tully River was much higher
than the Redfield ratio (N:P = 16) throughout the year
(Faithful and Finlayson 2005), indicating that P limited
aquatic primary production in the river. High N:P ratios
of dissolved inorganic nutrients in groundwaters or river
waters affected by agricultural fertilizers have also been
reported in many other tropical and subtropical regions,
e.g., Hawaii (USA), Java (Indonesia), Okinawa (Japan),
and São Paulo (Brazil), where the major N form is NO3

−

(Blanco et al. 2010; Bishop et al. 2017; Taniwaki et al.
2017; Oehler et al. 2018).
The impact of fertilizer would also be different de-

pending on the type of fertilizer: in the Kallada
River, India, where a large part of the catchment is
dominated by agricultural plantations (e.g., rice,
coconut, tea, and rubber), low N:P ratios of dissolved
inorganic nutrients were measured in the down-
stream river region (Jennerjahn et al. 2008). The ra-
tio of NO3

− to PO4
3− ranged from 2.9 to 8.0; the

lowest value was measured during the wet season.
This low N:P ratio seems to have been caused by
the use of organic fertilizers such as urea and ma-
nure in this region (Jennerjahn et al. 2008). Similar
effects are expected to occur by ranching, as men-
tioned in the above section.
To summarize this section, the effect of agricultural

fertilizer on the adjacent stream and river waters is
not straightforward but is affected by various factors
(e.g., chemical composition and amount of fertilizer,
soil properties, precipitation). Simply speaking, if
fertilizer-derived nutrients are quickly flushed down-
stream with rainfall, the N:P ratio in the discharged
water would be affected by the residue of the
fertilizer. In contrast, if fertilizer-derived nutrients re-
main in the soil or percolate into groundwater with a
long residence time, the groundwater would have high
N:P ratios of dissolved inorganic nutrients because P
tends to be chemically trapped in soils. Considering
the climate of tropical regions, the former case could
occur more commonly or frequently than in other cli-
mate regions. Regardless of which case occurs, down-
stream primary production would increase due to
fertilizer-derived nutrients.
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Wildfire and intentional burning
Humid tropical forests are generally resistant to burning,
but the transition from primary to secondary forests,
shrubs, pastures, and agricultural plantations increases
the frequency of fires (da Silva et al. 2018; Adrianto
et al. 2020). Not only natural wildfires but also
intentional burning to remove weeds for agriculture may
trigger extensive fires. In Southeast Asia, 50% of forests
were affected by fire from 2003 to 2017 (Reddy et al.
2019). The area of forest fires increased 36-fold in the
Amazon region from 1984 to 2016 (da Silva et al. 2018).
Forest fires provoke airborne release and deposition of
suspended matter and gaseous chemicals, causing exten-
sive haze in tropical regions (Tacconi 2016).

The effects of forest wildfire or intentional burning on
the adjacent stream and river water quality have been
studied well in temperate regions, such as North Amer-
ica, but they have not been frequently studied in tropical
regions (Earl and Blinn 2003; Smith et al. 2011; Rust
et al. 2018). Basically, terrestrial organic matter is com-
busted into ash, black carbon, or volatized chemicals,
which are released into the atmosphere or transported
into the adjacent aquatic ecosystem. The composition
and amount of ash or black carbon (including both or-
ganic and inorganic matter) change with the
temperature and duration of burning: a higher combus-
tion completeness decreases the organic matter content
and increases the relative content of minerals (Audry

Table 4 A summary of the effects of agriculture on the downstream riverine and estuarine water properties. When most minerals
(e.g., Na+, Mg2+, Cl−, K+, Ca2+) increased, they were collectively described as EC increased. The arrows before the water properties
indicate that the subsequent water properties increased (↑), decreased (↓), or did not change (→). See the list of abbreviations for
the water properties

Study sites Effects on downstream water
properties

Sources

Jambi estuary rivers, Sumatra, Indonesia ↑: SS, TOC Sanderson and Taylor (2003)

Streams at the Petapahan area, Sumatra, Indonesia →: DIN, TP Comte et al. (2015)

Rivers at Sibu and Tatau, Sarawak, Malaysia ↑: COD, NH4
+

↓: pH, DO
Gandaseca et al. (2015)

Rajang River, Sarawak, Malaysia ↑: SS
↓: pCO2

Müller-Dum et al. (2019)

Sundar River, Sarawak, Malaysia ↑: EC, turbidity, NH4
+, COD Rosli et al. (2020)

Groundwater at Tawau, Sabah, Malaysia ↑: NH4
+

→: NO3
−

Ah Tung et al. (2009)

Buyhang watershed streams, Leyte, Philippines ↑: Turbidity
↓: NO3

−, PO4
3−

Dessie and Bredemeier (2013)

Surface runoff at Sangara and Dami, Papua New Guinea ↑: NH4
+

→: NO3
−

Banabas et al. (2008)

Tully River, Queensland, Australia ↑: SS, PON, NO3
−, PO4

3−

→: DON, PP, DOP
Mitchell et al. (2001), Furnas (2003)

Tully and Murray Rivers, Granite Creek, Queensland,
Australia

↑: SS, TN, TP Faithful and Finlayson (2005)

Herbert River, Queensland, Australia ↑: SS, TN, TP Bramley and Roth (2002), Mitchell et al.
(1997)

Cudgen Catchment, New South Wales, Australia ↑: pH
↓: pCO2

Jeffrey et al. (2016)

Kallada River and Ashtamudi estuary, Kerala, India ↑: SS, NO3
−, PO4

3−

↓: DIN:DIP
Jennerjahn et al. (2008)

Nawuni Catchment, Ghana ↑: Turbidity, NH4
+ Tahiru et al. (2020)

Federal District streams, Brasilia, Brazil ↑: EC, NO3
−, NO2

−, NH4
+

→: DON, PO4
3−

↓: DO

Silva et al. (2011)

Tanguro Ranch, Mat Gross, Brazil ↑: EC, SS, DOC, NH4
+, PO4

3− Riskin et al. (2017)

Paragominas streams, Pará, Brazil ↑: EC, pH, turbidity, NO3
−

→: PO4
3−

↓: DO

Figueiredo et al. (2010)

Sarapuí River Basin, São Paulo, Brazil ↑: SS, turbidity, POM, TN, TP De Mello et al. (2018a, b)

Streams, Puerto Rico ↑: DO, TP Uriarte et al. (2011)
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et al. 2014; Bodí et al. 2014). Because ash is easily dis-
charged from burnt forests with surface water runoff
after rainfall (Malmer and Grip 1994; Ice et al. 2004;
Dittmar et al. 2012), episodic, heavy rainfall that fre-
quently occurs in tropical regions could cause a more
rapid loss of nutrients and organic matter from the land
compared with temperate regions (Marques et al. 2017).
In the Mendolong catchments of northern Borneo,

Malaysia, the effects of the conversion of humid primary
forest to Acacia mangium plantations as well as agricul-
tural use have been monitored since 1985 (Malmer
1992; Nykvist et al. 1996). After clear felling, the practice
of intentional burning increased the concentration of
ash and major nutrients in the adjacent streams, and
high concentrations were detected in the baseflow even
after 3 years (Malmer and Grip 1994; Malmer 1996;
Table 5). The C:N ratio of organic matter in the stream
water increased with burning (Malmer and Grip 1994),
which suggests that more terrestrial organic matter was
carried downstream as ash or black carbon than before
burning (Bodí et al. 2014; Marques et al. 2017). More-
over, less vegetation due to burning would decrease the
uptake and retention of NO3

− in the soil and might
increase NO3

− leaching to downstream river waters
(Rhoades et al. 2019). Ash and soil samples collected
from burnt land showed that more N than P was lost
during combustion (Kauffman et al. 1995, 1998; Mur-
phy et al. 2006), suggesting that more N is leached
than P and that the N:P ratio increases in the down-
stream groundwater or river water after burning. The
impact of burning on nutrient discharge would be
mitigated by retention and uptake by riparian vegeta-
tion, indicating the importance of riparian manage-
ment (Williams et al. 1997; Malmer 2004; de Souza
et al. 2013).
In the tropical savanna of northern Australia (Kakadu

National Park), fires in the late dry season caused high
concentrations of total suspended solids (TSS), volatile
suspended solids (VSS), N, and P in the adjacent stream

after episodic storms and runoff, but fires in the early
dry season did not have similar impacts (Townsend and
Douglas 2000, 2004; Table 5). Because leaf litter and
vegetation accumulate during the preceding wet season,
ash and soil are retained by the litter, and nutrients are
absorbed by the remaining vegetation in the early dry
season (Townsend and Douglas 2004). Conversely, in
the late dry season, a lower canopy cover and less vege-
tation and litter caused higher overland flows of ash and
water, which increased the concentration of the above-
mentioned water quality variables in the stream (Town-
send and Douglas 2000). These observations showed
that the impacts of wildfire on the adjacent water prop-
erties are affected by the season of the fire and that for-
est management in the late dry season is especially
important to prevent destructive wildfires and subse-
quent drastic changes in the downstream riverine and
estuarine water properties.
The combustion of terrestrial biomass transports nu-

trients to adjacent rivers and the coastal sea through the
atmosphere (i.e., dry and wet depositions). During exten-
sive forest fires in Southeast Asia in 2006, N and P con-
centrations in both dry (aerosol) and wet (rainwater)
depositions increased in Singapore (Sundarambal et al.
2010a). These depositions would considerably increase
nutrient concentrations in coastal seawater and might
increase the productivity of phytoplankton (Sundarambal
et al. 2010b). Because the volatilization temperature of N
is much lower than that of P (Bodí et al. 2014), more N
would be lost during combustion, and the N:P ratio in
atmospheric deposition is expected to decrease after fire
events.
To summarize this section, the frequency and area of

wildfires or intentional burning are increasing in tropical
regions because of the conversion of primary forests to
pasture and agricultural lands. Combustion changes the
chemical compositions of terrestrial material and in-
creases its mobility into adjacent streams and rivers. Be-
cause of the discharge of plant-derived materials and the

Table 5 A summary of the effects of wildfire or burning on the downstream riverine and estuarine water properties. The arrows
before the water properties indicate that the subsequent water properties increased (↑), decreased (↓), or did not change (→). See
the list of abbreviations for the water properties

Study sites Effects on downstream water
properties

Sources

Mendolong catchment, Sabah, Malaysia ↑: TN, NO3
−, NH4

+, TP, PO4
3−, DOC Grip et al. (1994), Malmer and Grip (1994),

Malmer (1996)

↑: TN, NO3
−, NH4

+

→: PO4
3−

Malmer (2004)

Rain waters and aerosol deposition during smoke haze
events, Singapore

↑: TN, NO3
− + NO2

−, NH4
+, TP, PO4

3− Sundarambal et al. (2010a, b)

Kakadu National Park catchments, Northern Territory, Australia ↑: SS, TN, TP Townsend and Douglas (2000)

↑: TN
→: SS, TP

Townsend and Douglas (2004)
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leaching of N, the downstream river waters would have
a higher C:N ratio of organic matter and a higher N:P
ratio of dissolved inorganic nutrients than those before
burning (Table 2). Tropical lands might lose organic
matter and nutrients more quickly than other climate re-
gions because of frequent heavy rainfall events in the
tropics.

Aquaculture
Due to the global consumption of seafood, aquacultural
production is currently almost equivalent to capture
fisheries. Production from inland (land-based) aquacul-
ture, where earthen ponds are created or culture tanks
are placed on land, is almost twice as high as that from
marine aquaculture and increased by 30% from 2011 to
2016 worldwide (FAO 2018). Asia alone accounted for
93% of global inland aquacultural production in 2016
(FAO 2018). Because aquaculture ponds are usually lo-
cated beside coasts and estuaries to obtain and release
water efficiently, mangroves and coastal forests are the
major vegetation types that have been lost due to land-
based aquaculture. On the coast of Hainan, China, 76%
of the mangrove loss was attributed to the creation of
new aquaculture ponds (Herbeck et al., 2020). The dif-
ference in water properties between the influent and ef-
fluent through an aquaculture pond is considered a
potential impact of this practice on the downstream
environment.

Land-based aquaculture usually involves the feeding of
organic pellets to raise target species as fast as possible
(Rout and Bandyopadhyay 1999; Correia et al. 2014).
However, a large part of the feed is not recovered as har-
vests but is wasted with the water discharged from the
pond or accumulates in the sediment of the pond (Jack-
son et al. 2003; Islam et al. 2004; Anh et al. 2010).
Therefore, most studies have shown that the effluent
from aquaculture ponds tends to be eutrophic compared
to the influent that enters the pond (Table 6). This eu-
trophication is largely composed of DOM and POM ra-
ther than dissolved inorganic nutrients such as NH4

+

(Jackson et al. 2003; Costanzo et al. 2004; Islam et al.
2004; Molnar et al. 2013). For example, the total dis-
solved and particulate organic nitrogen (DON and PON,
respectively) accounted for approximately 60−80% of the
total N in the effluents from shrimp ponds in Queens-
land, Australia (Jackson et al. 2003; Costanzo et al.
2004); a value of 98% was reported for shrimp ponds
along the west coast of New Caledonia (Thomas et al.
2010), and a value of 70% was reported for shrimp ponds
in Hainan, China (Herbeck et al. 2013). These high per-
centages of organic N relative to inorganic N are most
likely caused by extra feed pellets, feces excreted from
cultured organisms, and/or the microbes that proliferate
in the pond (Jackson et al. 2003; Thomas et al. 2010;
Herbeck et al. 2013).
Laboratory experiments showed the release of N with

different chemical forms specific to the source: while

Table 6 A summary of the effects of aquaculture on the downstream riverine and estuarine water properties. The arrows before
the water properties indicate that the subsequent water properties increased (↑), decreased (↓), or did not change (→). See the list
of abbreviations for the water properties

Study sites Effects on downstream water properties Sources

Shrimp and fish ponds, Wenchang and Wenjiao Estuary,
Hainan, China

↑: DOC, DON, DOC:DON, DIN, NH4
+, PO4

3−,
Chl a
→: NO3

−, NO2
−

↓: SS, POC, PN, POC:PN, DIN:PO4
3−

Herbeck et al. (2013), Herbeck et al.
(2011)

Shrimp ponds, Can Gio, Vietnam ↑: pH, POC, TN, DIN
↓: SS, POC:PON

Vivier et al. (2019)

↑: SS, pH, TN, TP, BOD, COD
→: DO, NH4

+
Anh et al. (2010)

Shrimp ponds, the Bay of Bengal, Bangladesh ↑: TN, NO3
−, NO2

−, NH4
+, Chl a

→: DO, pH
↓: SS, TP, PO4

3−

Islam et al. (2004)

Shrimp ponds, Cardwell, Queensland, Australia ↑: TN, PON, DON, NH4
+, Chl a Jackson et al. (2003)

↑: SS, TN, NO3
−, NH4

+, TP, DIN:DIP, Chl a
→: PO4

3−
Costanzo et al. (2004)

Shrimp ponds, Saint Vincent Bay, New Caledonia ↑: TN, PON, DON, TDN, NH4
+, TP, PP, TDP,

PO4
3−

Molnar et al. (2013)

Shrimp ponds, Teremba Bay, Chambeyron Bay, New Caledonia ↑: SS, turbidity, POC, TN, PON, TP, Chl a
→: DIN, DIP

Thomas et al. (2010)

Fish and shrimp ponds, Hawaii, USA ↑: SS, turbidity, TN, NH4
+, TP, Chl a

↓: NO3
−, NO2

−

↑↓: PO4
3−

Ziemann et al. (1992)
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cultured shrimp released a mixture of NH4
+ and DON

(including urea), formulated feed pellets released more
DON compounds than shrimp (Burford and Williams
2001). Because these pellet-derived DON compounds
would be chemically more complex than urea (e.g., pro-
teins and peptidoglycan remnants), the DON leached
from feed pellets was less degradable for microbial com-
munities in the water than shrimp-derived DON (mainly
urea). These results suggest that when aquacultural
wastewaters are discharged to adjacent rivers or estuar-
ies, the impact of pellet-derived DON may be different
from that of organism-derived DON and may reach far-
ther downstream from the source (Thuy et al. 2011;
Vivier et al. 2019).
Among inorganic N species in aquaculture ponds,

NH4
+ usually constitutes the largest proportion, and

NO3
− and NO2

− are much lower (Jackson et al. 2003;
Costanzo et al. 2004; Thomas et al. 2010; Herbeck et al.
2013). NH4

+ is directly excreted from cultured organ-
isms and is also produced through the degradation of la-
bile DON, such as urea, contained in their feces
(Ziemann et al. 1992; Burford and Williams 2001). Rela-
tively low proportions of NO3

− and NO2
− in aquaculture

ponds indicate that (1) NH4
+ is quickly absorbed by

phytoplankton or discharged from the pond before nitri-
fication proceeds (Jackson et al. 2003), (2) nitrification is
not a major process of N transformation in aquaculture
ponds because the process mainly occurs only at the aer-
obic sediment surface (Hargreaves 1998), and/or (3)
even if NO3

− is produced through nitrification, NO3
− is

again reduced through dissimilatory nitrate reduction
into NH4

+ (DNRA) in anoxic pond sediment (Molnar
et al. 2013). DNRA is generally enhanced by high
temperature, high organic matter, and sulfate availability,
all of which are likely to occur in the sediment of
tropical aquaculture ponds in brackish and coastal
areas (Christensen et al. 2003; Nizzoli et al. 2006;
Dong et al. 2011). In fact, the proportion of DNRA to
total NO3

− reduction (DNRA + denitrification) in-
creased in the sediment receiving effluents from
shrimp ponds in New Caledonia, which resulted in a
higher retention of N within the sediment due to the
coupling of nitrification and NO3

− reduction (Molnar
et al. 2013).
It should be noted that the concentration of NH4

+

often increased, but PO4
3− was relatively constant or

even decreased in some aquaculture ponds, leading to
elevated N:P ratios of dissolved inorganic nutrients in
the pond water (Ziemann et al. 1992; Costanzo et al.
2004; Islam et al. 2004; Table 6). For example, the N:P
ratio of dissolved inorganic nutrients increased from 14
(influent) to 214 (effluent) in shrimp ponds in Queens-
land, Australia (Costanzo et al. 2004). Increased N:P ra-
tios would be caused by the retention of P in the pond

sediment and microbes (Reddy et al. 1999). While N is
relatively mobile and transformed by bacteria through
nitrification or reduction (e.g., DNRA and denitrifica-
tion), P needs to be stored in bacterial cells (e.g., nucleic
acids and phospholipids) to maintain their basic cellular
structures. In addition, inorganic P tends to be chem-
ically bound with minerals such as Ca2+, and the formed
particulate solids are deposited on the sediment under
low water turbulence. These processes would lead to the
accumulation of P in aquaculture pond sediments, grad-
ually increasing the N:P ratio of dissolved inorganic nu-
trients in the water column. In the sediment receiving
aquacultural effluents in New Caledonia, the N:P ratio of
dissolved inorganic nutrient fluxes from sediment to the
overlying water was 42, which was much higher than the
N:P ratio of organic matter fluxes (8.2), indicating that
PO4

3− was retained in the sediment (Molnar et al. 2013).
In downstream aquatic ecosystems receiving aquacul-
tural effluents with high N:P ratios, the growth of phyto-
plankton might be limited by the availability of P
(Costanzo et al. 2004).
However, even if P tends to be trapped in the pond

compared to N, this does not mean that aquacultural
practices do not cause P enrichment in the downstream
environment; providing feed pellets basically has the po-
tential to increase the enrichment of both N and P (Zie-
mann et al. 1992; Herbeck et al. 2013; Molnar et al.
2013; Table 6). In fact, the water quality in aquaculture
ponds is affected by many factors: the chemical compos-
ition and feeding amount of feed pellets (Rout and Ban-
dyopadhyay 1999; Correia et al. 2014), the density and
species of cultured organisms (Ziemann et al. 1992;
Thomas et al. 2010), and the aeration and water resi-
dence time (exchange rate) in the pond (Hopkins et al.
1993; Martinez-Córdova et al., 1997). Modifications of
aquacultural systems using microbial activities or engin-
eering techniques to minimize environmental impacts
have been reviewed in previous articles (Hargreaves
2006; Mook et al. 2012; van Rijn 2013; Martínez-Cór-
dova et al. 2015; Li et al. 2020).
To summarize this section, a considerable portion of

feed pellets may be discharged from aquaculture ponds
as organic matter. While organism-derived urea is
quickly decomposed, pellet-derived organic matter might
be less degradable, and the impact of the effluent might
reach far downstream from the aquaculture site. The
discharge of NH4

+ derived from cultured organisms sup-
plies another major impact on the downstream ecosys-
tem because the nutrients contained in the freshwater
provided from tropical primary forests are mainly NO3

−.
Because inland aquacultural practices are rapidly
expanding in tropical regions, especially in Southeast
Asia, these changes in aquatic processes will further in-
crease in the future.
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Urbanization
With the increasing human population, tropical regions
have urbanized faster than other climate regions (Mont-
gomery 2008). Deforested tropical lands may be used for
building private houses, commercial facilities, and indus-
trial plants, where wastewaters are sometimes directly
discharged into the adjacent environment without
proper treatment. The chemical compositions of these
wastewaters differ depending on the source, but various
types of wastewaters from different sources are com-
monly mixed in urbanized rivers and estuaries (Davis
and Koop 2006; Cunha et al. 2011; Fontana et al. 2014;
Peyman et al. 2017). Even if wastewater is treated at a
treatment plant, it is technically difficult to remove all
dissolved inorganic nutrients from the water, which
could cause eutrophication of the downstream aquatic
ecosystem (Burford et al. 2012b). Other sources reviewed
in the above sections, such as agricultural lands, may still
affect urbanized areas through surface water runoff and/
or groundwater seepage if the source is located
upstream.
The effects of urbanization on riverine and estuarine

water quality have been studied at many sites in tropical
regions (Table 7). Because these previous studies have
already reported water quality variables such as nutrient
concentration, this section mainly focuses on the charac-
teristics of biogeochemical or microbial processes in
tropical regions that could differ from those in cooler re-
gions. Typically, the organic matter contained in eu-
trophic riverine or estuarine water is first decomposed
by aerobic bacteria if DO is available, where nutrients
such as NH4

+ are regenerated and DO is consumed
(Pérez-Villalona et al. 2015). Because the temperature is
usually higher in tropical regions than in other climate
regions, bacterial respiration (DO consumption) and or-
ganic matter decomposition proceed more rapidly in
tropical waters (Scofield et al. 2015; Follstad Shah et al.
2017). While DOM is mainly consumed in the water
column, POM tends to sink down to the river or estuary
floor and undergo decomposition at the bottom. The
different patterns of water properties and biological ac-
tivities with depth would be especially obvious in estuar-
ies, where a halocline and stratification often occur
(Martin et al. 2010; Shivaprasad et al. 2013). The tenden-
cies toward stratification formation and DO depletion
are highly dependent on the physical structure of the
water path (e.g., depth, flow rate, and vertical mixing). A
water body is easily stratified in a warm, deep, calm estu-
ary, but not in a fast-flowing, shallow, upstream river.
The degree of autotrophy or heterotrophy and the
resulting DO concentration and pCO2 in the water are
also controlled by these physical factors (Cotovicz Jr
et al. 2015; Guenther et al. 2017; Santos and De Paula,
2019). Because nutrient-enriched wastewater is quickly

flushed downstream in the latter case, eutrophication
and subsequent algal blooms or hypoxia usually become
apparent in the former case, where the residence time of
water is sufficient (Perez et al. 2011; Romo et al. 2013;
John et al. 2020).
Under hypoxic or anoxic conditions, anaerobic micro-

bial processes such as denitrification become dominant.
Because denitrification proceeds faster under warmer
temperatures (e.g., 25−35 °C; Myrstener et al. 2016;
Meng et al. 2019), eutrophic tropical rivers and estuaries
(especially sediment) experience active denitrification
throughout the year. In an urbanized estuary in Puerto
Rico, 21% of N was lost from the sediment through de-
nitrification when organic matter was decomposed
(Pérez-Villalona et al. 2015). However, denitrification
might be gradually limited by the availability of NO3

−

because the microbial production of NO3
− (= nitrifica-

tion) is expected to decrease under oxygen-depleted
conditions (Koop-Jakobsen and Giblin 2010). Moreover,
denitrification may be inhibited by sulfate-reducing bac-
teria because sulfide inhibits the final process of denitri-
fication (Gardner and McCarthy 2009). This inhibition is
likely to occur in the sediment of eutrophic estuaries be-
cause of the intrusion of seawater (Rysgaard et al. 1999).
Anammox (anaerobic ammonium oxidation) is an-

other process that potentially removes N from aquatic
ecosystems under oxygen-depleted conditions, where
NH4

+ and NO2
− are converted to N2. Because a high

NH4
+ availability and DO depletion are basic require-

ments for anammox, eutrophic rivers and estuaries (es-
pecially sediment) are expected to be a hotspot of this
bacterial activity (Liu et al. 2020). Moreover, most ana-
mmox bacteria prefer a warm temperature, which makes
tropical aquatic environments further suitable for ana-
mmox to actively proceed (Tomaszewski et al. 2017). Al-
though anammox was previously considered minor
compared to denitrification, the recently revised isotope
technique revealed that 64−86% of the total N loss in
the seagrass sediment at Shaws Bay, Australia, was
caused by anammox (Salk et al. 2017). A higher contri-
bution of anammox than denitrification to the total N
loss was also reported in the sediment from oyster farm-
ing in the Wallis Lake estuary, Australia (Erler et al.
2017), although the balance between anammox and de-
nitrification is not consistent among studies (Dong et al.
2011; Jiao et al. 2018; Tan et al. 2019). The proportion
of anammox and denitrification is affected by various
environmental factors, such as DO and salinity (Jiang
et al. 2017; Liu et al. 2020). Although relatively small
contributions of microbial N removal through anammox
and denitrification have been reported in cooler regions
(Mulholland et al. 2009; Hellemann et al. 2017; Liu et al.
2020), the removal of N may be more significant in trop-
ical environments because of the warmer temperature
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Table 7 A summary of the effects of urbanization on the downstream riverine and estuarine water properties. When most minerals
(e.g., Na+, Mg2+, Cl−, K+, Ca2+) increased, they were collectively described as EC increased. The arrows before the water properties
indicate that the subsequent water properties increased (↑), decreased (↓), or did not change (→). See the list of abbreviations for
the water properties

Study sites Effects on downstream water properties Sources

Malacca river, Malacca, Malaysia ↑: EC, pH, SS, turbidity, BOD, COD
↓: DO

Hua (2017)

Penchala River, Selangor, Malaysia ↑: EC, NH4
+, BOD, COD

→: pH
↓: DO

Mahazar et al. (2013)

Kuantan, Belat and Galing River, Malaysia ↑: EC, pH, DIN, NH4
+, TP, COD

↓: DO, NO3
−

Kozaki et al. (2016)

Day River, Red River Delta, Vietnam ↑: TN, NH4
+, TP, PO4

3−, Chl a
↓: TN:TP, DO

Hoang et al. (2018)

Day River, Red River Delta, Vietnam ↑: DOC, NH4
+, PO4

3−, pCO2, Chl a Duc et al. (2009)

Saigon-Dongnai Rivers, Vietnam ↑: POC, TN, NH4
+, TP, PO4

3−, Chl a Nguyen et al. (2019b)

Can Gio estuary, Vietnam ↑: pCO2

↓: DO
David et al. (2018)

Can Tho, Mekong Delta, Vietnam ↑: Turbidity, TN, NH4
+, PO4

3−, COD
→: NO3

−, NO2
−

↓: DO

Wilbers et al. (2014)

Brantas River Basin, Java, Indonesia ↑: DON, NO3
−, PO4

3− Jennerjahn et al. (2004)

Ciliwung watershed, Jakarta, Indonesia ↑: TP, BOD, COD
↓: DO

Permatasari et al. (2017)

Kholpetua-Arpangashia rivers,
Sundarbans, Bangladesh

↑: NH4
+, PO4

3−

→: NO3
−

↓: DO

Rahaman et al. (2013)

Manimala River, Kerala, India ↑: EC, NO3
−, NO2

−, TP, PO4
3−

↓: DO
Padmalal et al. (2012)

Piracicaba River, São Paulo, Brazil ↑: NH4
+, pCO2

→: SS, NO3
−

↓: DO

Ballester et al. (1999)
Martinelli et al. (1999)

Streams, São Paulo, Brazil ↑: PO4
3−

↓: DO, NO3
−

Silva et al. (2012)

Streams, São Paulo, Brazil ↑: TN, NH4
+, TP, BOD Cunha et al. (2011)

Monjolinho basin, São Carlos, Brazil ↑: EC, turbidity, TN, NO3
−, TP, PO4

3−, BOD
↓: DO

Bere and Tundisi (2011)

Guanabara Bay, Rio de Janeiro, Brazil ↑: DO, NH4
+, PO4

3−, Chl a
↓: pCO2

Cotovicz Jr et al. (2015)

Streams, Rio de Janeiro, Brazil ↑: TN, NH4
+, TP

↓: TN:TP
Tromboni and Dodds (2017)

Una River, São José da Vitória, Brazil ↑: EC, SS, turbidity, PON, DON, NO2
−, NH4

+,
PP, DOP, PO4

3−

→: pH
↓: DO

Santos and De Paula (2019)

Urban streams, Federal District, Brazil ↑: Turbidity, DOC, NO3
−, NO2

−, NH4
+

↓: DO
Silva et al. (2011)

Cachoeira River estuary, Bahia, Brazil ↑: NH4
+, PO4

3−, Chl a
↓: DO, DIN:DIP

Silva et al. (2013)

Madeira River, Rondônia, Brazil ↑: TDN, TDP Biggs et al. (2004)

Streams, Puerto Rico ↑: Turbidity, TN, TP
↓: DO

Uriarte et al. (2011)

Streams, Mayagüez, Puerto Rico ↑: EC
↓: DO

Wengrove and Ballestero (2012)

Río Pedras Watershed, Puerto Rico ↑: EC, DOC, DON, NH4
+, PO4

3−

↓: DO, NO3
−

De Jesús-Crespo and Ramírez (2011), Potter et al. (2013),
Ramírez et al. (2014)
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(Pérez-Villalona et al. 2015). However, it should also be
noted that N losses in the form of N2 (anammox and de-
nitrification) are usually much lower than nutrient re-
generation and would not considerably eliminate N from
the aquatic ecosystem (Gardner and McCarthy 2009;
Molnar et al. 2013; Erler et al. 2017; Salk et al. 2017;
Domangue and Mortazavi 2018).
While N follows a pathway of release into the atmos-

phere through anammox or denitrification, P tends to
remain in the aquatic system or to flow downstream by
attaching to sediment particles, and this property of P
sorption becomes stronger at higher temperatures
(Zhang and Huang 2011; Nguyen et al. 2019a). This dif-
ference between N and P gradually lowers the N:P ratio
in water or sediments in tropical estuaries (Cotovicz Jr
et al. 2013). Therefore, the discharge of wastewater from
urban areas would accelerate the decrease in the N:P ra-
tio because (1) sewage itself generally has a low N:P ratio
compared to freshwater from pristine forests, and (2)
after organic matter is decomposed, eutrophic, oxygen-
depleted conditions potentially promote microbial N re-
moval through anammox and denitrification (Sarma
et al. 2009; Dong et al. 2011; Hoang et al. 2018; Tan
et al. 2019). At the sites upstream of the Day River,
Vietnam, much lower TN:TP ratios (a minimum of 2.9)
than the Redfield ratio (N:P = 16) were measured and
were attributed to sewage discharge, agricultural and in-
dustrial water runoff, and denitrification (Hoang et al.
2018). In addition, a low TN:TP ratio (10) was detected
in the streams of the State of Rio de Janeiro, Brazil,
which was considered to be due to the discharge of
phosphate-based detergents from the ambient urbanized
area (Tromboni and Dodds 2017). Although many pris-
tine tropical rivers have high N:P ratios of dissolved in-
organic nutrients, where primary production is limited
by the availability of P (McDowell et al. 2019; Nguyen
et al. 2019b), these impacts of urbanization might grad-
ually shift the metabolic conditions to N limitation. The
potential to decrease N:P ratios with these microbial and
chemical processes would be basically higher in tropical
environments than in other climate regions due to the
warmer temperature.
To summarize this section, urbanized rivers and estuar-

ies that receive a variety of wastewaters typically have high
concentrations of nutrients and minerals and low concen-
trations of DO (Table 2). The TN:TP ratio in the water
would decrease with these eutrophication processes be-
cause excess P is often discharged as wastewater, and a
portion of the N is lost from the aquatic ecosystem
through anammox and denitrification under hypoxic or
anoxic conditions. The decline in N:P ratios would be
more severe in tropical regions than in other climate re-
gions because N removal and P sorption processes are fa-
cilitated under warm temperature conditions.

Conclusions and future research
The present review shows that the impact of tropical
land-use change on downstream rivers and estuaries is
specific to the land use and human practices carried out
on land, but overall, it appears that the impact is often
more serious, and the biogeochemical processes are
more enhanced in tropical regions than in temperate or
cold regions. This difference derives mainly from the
characteristics of the tropics: (1) tropical primary forests
have a higher biomass and nutrient stocks supported by
active photosynthesis and N fixation; (2) tropical regions
have a higher precipitation, more frequent episodic
flooding, and warmer temperatures; and (3) certain prac-
tices such as land-based aquaculture are rapidly expand-
ing in tropical regions.
The actual impacts that downstream rivers and estuar-

ies receive from changing land use depend on the inten-
sity of each land-use effect; therefore, it is not easy to
quantitatively evaluate the combined effects (Davis et al.
2016; Hapsari et al. 2020). For example, nutrient dis-
charge may not enhance downstream primary produc-
tion if sufficient light is not available for phytoplankton
due to high precipitation and subsequent discharge of
terrestrial soils (Burford et al. 2012a). The combined ef-
fects of land-use change and climate-related precipita-
tion change should also be considered in the actual
environment (Hapsari et al. 2020). Because these land-
use changes are usually extensive, and nonpoint sources
such as groundwater seepage also contribute to down-
stream water properties, it is challenging to understand
the proportions of each land-use impact and their com-
bination. The test of stable isotopes (e.g., δ13C and δ15N)
might be a useful tool to identify the source and contri-
bution of wastewater (Taillardat et al. 2020).
Impacts such as eutrophication or imbalanced nutrient

supplies due to these tropical land-use changes would
not recover quickly even if the cause was removed. A re-
cent meta-analysis showed that terrestrial biogeochem-
ical functions recovered more slowly after agricultural
practices than after logging, most likely due to fertilizer
use (Meli et al. 2017). Another meta-analysis on coastal
ecosystem restoration projects showed that even 10
years after the reduction or cessation of anthropogenic
nutrient inputs, the recovery completeness was only 24%
of the original baseline condition (McCrackin et al.
2017). Because most of the data used for this analysis
were from temperate climate regions such as Europe
and North America, there may be some differences at
tropical sites. For example, the high annual precipitation
and occasional intensive rainfall in tropical regions
would help eutrophic ecosystems flush away accumu-
lated nutrients downstream. Additionally, if denitrifica-
tion or anammox proceeds faster at warmer
temperatures, N might be removed from the eutrophic
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site more quickly than in temperate cases. However, as it
takes a longer time for tropical lands to recover their
original biodiversity than temperate lands (Meli et al.
2017), the aquatic processes in the downstream river
and estuary might also require a longer time for recovery
in tropical regions. To evaluate recovery from eutrophi-
cation or disturbance of nutrient balance, long-term
monitoring of more than 10 years is necessary, but such
cases cannot be found in tropical regions at this time.
Another important aspect for future research is the

change in elemental stoichiometry, such as the C:N:P ra-
tio. Most previous studies have measured the concentra-
tion of target variables, but reports of the impact on
element stoichiometry are relatively scarce. In temperate
estuaries, primary production was expected to shift from
N limitation to P limitation because of the increased in-
puts and retention of N (Howarth et al. 2011), although
the limiting nutrients would be highly affected by re-
gional factors. The present review has shown that the N:
P ratio in tropical estuaries may decline with changes in
land use due to different loading and removal processes
between N and P. Additionally, the C:N ratio of the
available organic matter predominantly affects microbial
processes of N transformation (e.g., DNRA, anammox,
denitrification) (Erler et al. 2017). Thus, more research
with accurate measurements of elemental ratios is
needed to evaluate the ecological impacts of tropical
land-use change on downstream aquatic processes.
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