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Abstract

Background: The effects of biodiversity on community function and services are frequently studied in the history
of ecology, while the response of individual species to biodiversity remains great elusive. In this study, we
determined the biodiversity effects on community productivity as well as species level plant mass and carbon (C)
and nitrogen (N) metabolism of eight submerged plants. These macrophytes in Lake Erhai were selected and
planted in a water depth of one meter along a diversity gradient of 1, 2, 4 or 8 species. Then, the community
productivity or species level plant mass, soluble protein, free amino acid and soluble carbohydrate were correlated
to species richness to determine the biodiversity effects on community and single species.

Results: The results showed that the community level biomass was positively correlated to plant species richness
although the species level plant mass of individual species responded differently to the overall plant species
richness. Namely, only one plant mass positively correlated to species richness and the others decreased or showed
no significant correlation with the increase of species richness. The soluble proteins of most macrophytes were
positively correlated to species richness; however, both the free amino acid and soluble carbohydrate of the plants
were negatively or not significantly correlated to species richness.

Conclusions: These results indicated that the selection effects might dominate in our aquatic communities and the
negative impacts of biodiversity on C and N metabolism of the macrophytes increased with the increase of species
richness, which might result from the strong competition among the studied species. The biodiversity effects on
the plant mass, and C and N metabolism of individual submerged species were first reported in this study, while
more such field and control experiments deserve further research.
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Introduction

The growth and reproduction of submerged macro-
phytes are determined by many biotic and abiotic factors
(Bornette and Puijalon 2011; Geist 2011; O’Hare et al.
2018), and there is a wealth of research on this topic.
For example, abiotic factors as light, temperature, nutri-
ent, sediment, CO, availability, water current, water level
fluctuation, global change and biotic factors as inter-
action between plants, invasive species, herbivores, an-
thropogenic disturbance, biodiversity are always involved
in these research programmes (Bornette and Puijalon
2011; Bakker et al. 2016; Hussner et al. 2017; Hilt et al.
2018; Sagerman et al. 2020). The ecosystem function
and services affected by biodiversity are frequently
assayed (Jiang et al. 2008; Emmerson et al. 2001; Giller
et al. 2004; Hassler et al. 2014; Duffy et al. 2017;
Ampoorter et al. 2020). For example, a positive
diversity-productivity relationship is predominant in
large scale studies or meta-analyses (Liang et al. 2016;
Dufty et al. 2017; Ampoorter et al. 2020), which is usu-
ally explained by complementarity or sampling effects
(Loreau and Hector 2001; Lefcheck et al. 2015). How-
ever, the pattern of species level plant mass over a spe-
cies richness gradient remains largely unknown,
although the average species level plant mass of individ-
ual plants in different species richness was measured in
some previous studies (Hector et al. 2002; Hille Ris
Lamber et al. 2004; Roscher et al. 2007; Marquard et al.
2009). In this type of experiments, the whole communi-
ties consist of the single plant species, which is indeed in
the species pool. In addition, each species may respond
differently to species richness because of the great differ-
ences among species (Firn et al. 2007; Jacob et al. 2010;
Roscher et al. 2013). For this reason, some species may
benefit from the increase of biodiversity to promote their
plant mass, some species may suffer from the increase of
biodiversity to reduce their plant mass, and some species
may keep their plant mass stable with the increase of
biodiversity (Wu et al. 2018). Accordingly, the responses
of species level plant mass of individual plants to differ-
ent species richness deserve further attention (Marquard
et al. 2009; Wu et al. 2018).

For plant species, their growth is affected and reflected
by their carbon (C) and nitrogen (N) metabolism (Cao
et al. 2009; Yuan et al. 2016; Yu et al. 2017). Therefore,
the growth conditions of plants can be indicated by their
C and N metabolism. However, the effects of biodiver-
sity on plant C and N metabolism are not well docu-
mented to our best knowledge, although other factors
affecting plant C and N metabolism are frequently re-
ported, such as NH," stress and low light availability
(Cao et al. 2009), water depth (Yuan et al. 2016), high ni-
trogen loading (Yu et al. 2017), etc. To address this
knowledge gap, it is necessary to determine the effects of
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biodiversity on plant C and N metabolism. Furthermore,
whether C or N metabolism of the individual plant spe-
cies responds differently to species richness, as species
level plant mass of individual plants does because species
are species-specific (Firn et al. 2007; Jacob et al. 2010;
Wu et al. 2018, 2020). Moreover, whether the patterns
of biodiversity effects on C or N metabolism of the indi-
vidual plant species are in accordance with those of their
species level plant mass.

We determined the C and N metabolism of the stud-
ied submerged macophytes through measuring the con-
tents of the soluble protein, free amino acid and soluble
carbohydrate of these plants as former researchers (Cao
et al. 2009; Yuan et al. 2016; Yu et al. 2017). In this
study, we hypothesize that (1) species level plant mass of
individual species increases with overall species richness
as community biomass due to complementarity effects
(Loreau and Hector 2001; Lefcheck et al. 2015); and (2)
all of the soluble protein, free amino acid and soluble
carbohydrate of the submerged plants increase with
overall species richness because of complementarity ef-
fects (Loreau and Hector 2001; Lefcheck et al. 2015). To
test these hypotheses, we conducted a field pot experi-
ment in 2018 to study the effects of biodiversity on spe-
cies level plant mass as well as C and N metabolism of
submerged plants in a biodiversity experiment in Lake
Erhai. Furthermore, we discussed the feasibility of
explaining the relationship between diversity and prod-
uctivity (hereafter DPR) through the change of species
level plant mass responding to species richness.

Materials and Methods

DPR experiment

The field experiment was conducted from August to
October in 2018 (16 weeks), at Hongshan Bay (25°86'N,
100°14°E) in Lake Erhai, Dali City, Yunnan Province,
China. This bay is characterized by light winds and
waves. The study area is located in a warm plateau cli-
mate with an average annual temperature of 15.7 °C, a
maximum temperature of 34 °C and a minimum
temperature of —2.3 °C. The annual precipitation, sun-
shine duration and frost free period are 1024 mm, 2345
hours and 228 days, respectively. Eight common native
submerged species in Lake Erhai were selected in this
experiment (Ye et al. 2018). They are Ceratophyllum
demersum,  Myriophyllum  spicatum,  Potamogeton
maackianus, Stuckenia pectinata, Hydrilla verticillata,
Vallisneria natans, Potamogeton nodosus and Potamoge-
ton lucens. All collected submerged macrophytes were
washed and brushed softly with enough tap water and
then the apical unbranched shoots (15 cm in length and
similar in morphology) (clonal ramet with three leaves
for V. natans) were then cut for planting. The number
of plant species was controlled in every pot with a
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circular area of 706.5 cm? (soil surface), 25 c¢cm depth
and pre-weighed 8 kg of sediment in the west littoral
zone of Lake Erhai (Organic matter: 15.3-19.4 g kg'’;
total nitrogen: 1.52-1.78 g kg, total phosphorus:
0.16-0.23 g kg' and pH: 6.12-6.93, about 15 cm
thick soil layer). Each plant was planted in 5 cm
depth. Plants were randomly cultivated with 1, 2, 4 or
8 selected species in communities (pots). Each diver-
sity level was replicated eight times. In this experi-
ment, we used four levels of diversity (1, 2, 4 and 8
species) and eight replicates, resulting in a total of 32
pots. Every pot was received 12 g plant cuttings,
where the plant biomass was equally divided for each
kind of species. All pots were suspended at one meter
water level using a vinyl coated chain. The depth was
measured from the top of the pot to the water sur-
face. The pots were protected from fishes and other
big aquatic animals by nets. Moreover, other appro-
priate care was carried out to minimize any disturb-
ance. For example, other weeds (all plants not planted
initially) were carefully removed from the pots when
they were still small enough. For each pot, plants
(roots and shoots) were harvested sixteen weeks later
when roots were separated from soil by soaking the
pot in water for 40 minutes and gently washing the
soil away. Individual plant in each pot was dried at
70 °C for 72 h and measured as its species level plant
mass. The total weight of all species level plant mass
in each pot was considered its community level bio-
mass. During experiment phase, the water level fluc-
tuated between —10 ¢cm and +20 cm.

Physiological analysis

For the single plant in every pot, the dry plant was
ground into powder with a pestle and mortar. About 30
mg of the powder was extracted with 10 ml 80% ethanol
at 80 °C. After centrifugation, the supernatant was used
for free amino acid (FAA) and soluble carbohydrate (SC)
determination. The FAA was determined by ninhydrin
colorimetry method using alanine as a stand (Yemm and
Willis 1954). The SC was determined by phenol method
using glucose as a standard (Yemm and Cocking 1955).
The soluble protein (SP) was determined using Coomas-
sie brilliant blue G-250 (Bradford 1976) with bovine
serum albumin as a stand.

Data analysis

Statistical analyses were conducted using the software
package R 3.52 (R Core Team 2018). Although linear
fitting is often used to indicate the relationship be-
tween biodiversity and productivity for most of DPR
experiments, we used best fit curve to describe their
correlation as some non-linear relationships were
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observed in some previous research (Waide et al.
1999; Duffy et al. 2017; Ampoorter et al. 2020; Wu
et al. 2021). The best model was selected by using
the Akaike's information criterion (AIC) procedure
through comparing the AIC values of the six common
models (Linear, Quadratic, Exponential growth,
Power, Rational and Logarithm). Accordingly, Spear-
man's Rank Correlation Coefficient was used to
analyze the relationships between community biomass
or plant species level mass and plant species richness.
Relationships between SP, FAA and SC of the individ-
ual plant species and the species richness in the ex-
periment were also analyzed by Spearman's Rank
Correlation Coefficient.

Results

Responses of Community productivity and species level
plant mass

Our results showed that the species richness was signifi-
cantly positively correlated to community biomass
(productivity) (Fig. 1; R* = 0.57, p < 0.0001). With regard
to the species level plant mass, only plant mass of C.
demersum was positively correlated with the species
richness (Fig. 2A). However, plant masses of P. maackia-
nus and P. [ucens were not significantly correlated to the
species richness (Fig. 2C, H, R* = 0.01, p = 0.51 and R* =
0.01, p = 0.64, respectively) and plant masses of the
other five macrophytes were negatively correlated with
the species richness (Fig. 2B, D-G, p < 0.05).

C and N metabolism

The SP contents of most submersed plants, especially of
S. pectinata, were markedly positively correlated to spe-
cies richness (Fig. 3B—G, p < 0.05) except those of C.
demersum and P. maackianus, which demonstrated no
significant correlation with the species richness (Fig. 3A,
3C, R* = 0.14, p = 0.37 and R* = 0.13, p = 0.17, respect-
ively). However, the FAA contents of most submersed
macrophytes, especially of S. pectinata, were promin-
ently negatively correlated to the species richness (Fig. 4,
p < 0.05) except that of P. maackianus, which exhibited
no significant correlation with the species richness (Fig.
4C, R* = 0.19, p = 0.26), and that of P. nodosus, which
increased firstly and then dropped with the species rich-
ness (Fig. 4G, R? = 051, p = 0.01). Similarly, the SC con-
tents were distinctly negatively correlated to the species
richness for M. spicatum and P. nodosus (Fig. 5B, 5G, p
< 0.05) or displayed no significant correlation with the
species richness for C. demersum, P. maackianus and H.
verticillata (Fig. 5A, 5C, 5E, p > 0.05), while the SC con-
tents of V. natans increased firstly and then dropped
with the species richness (Fig. 5F, R* = 0.65, p = 0.01).
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Fig. 1 The relationship between community productivity and plant biodiversity in an aquatic macrophytes experiment, which was conducted
from August to October 2018 at Hongshan Bay in Lake Erhai, Dali City, Yunnan Province, China
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Discussion

Positive linear pattern of DPR

In this experiment, the results imply that community
level biomass is significantly positively correlated with
the species richness in the aquatic environment. These
positive relationships are in accordance with most of the
results of previous studies and recent meta-analyses
(Tilman et al. 1996; Loreau and Hector 2001; Adler et al.
2011; Lefcheck et al. 2015; Grace et al. 2016; Mandal
et al. 2018; Luo et al. 2019; Rita and Borghetti 2019).
The positive linear pattern of DPR results from the over-
yielding usually caused by complementarity effects or se-
lection effects in high biodiversity communities (Loreau
and Hector 2001). However, contrary to Wu et al
(2018), our results clearly suggest that the selection
effect is dominated in this aquatic experiment as the
plant mass of only one species increased with plant bio-
diversity, while those of other species decreased or kept
static with plant biodiversity (Fig. 2). The results obvi-
ously indicate that strong competition increases among
the studied species with species richness. But we do not
know when complementarity effects or selection effects
occur. So, which factor(s) determine either the comple-
mentarity effects or the selection effects, which play an
important role in the over-yielding in DRP experiments,
might be an ecological hotspot in the near future.

Competition among species

As stated above, only plant mass of C. demersum in-
creased with plant biodiversity, while those of other spe-
cies decreased or kept static with plant biodiversity (Fig.
2). In this sense, plant mass of individual species may

benefit from or suffer from or keep relative stable with
the increase of biodiversity. We can speculate that the
over-yielding in high biodiversity is the trade-off of all
species. This result agrees well with the obversations of
Ye et al. (2018) in Lake Erhai, where they suggested that
the dominant species at the depth of one meter in the
west littoral zone of Lake Erhai was C. demersum, which
has the most competitive ability and can outperform
other submerged species. Therefore, we can speculate
that only the biomass of C. demersum increased with
species richness and those of the other species declined
with plant biodiversity is due to either the strong com-
petition stress of C. demersum or the strong competition
stress among the study species. Generally, plants firstly
develop physiological adaptations responding to adverse
environments (Hessini et al. 2009; Yuan et al. 2016;
Sasidharan et al. 2018), such as the changes of many
kinds of antioxidant enzymes, SC and FAA. Under stress
conditions, the defense systems of plants can be over-
whelmed and many types of antioxidant enzymes are in-
duced to remove reactive oxygen species in plant cells
(Alscher et al. 2002; Wu et al. 2009). Accordingly, the
contents of SP in plant species increase with the increase
of stress because all antioxidant enzymes are SPs. The
SP contents of our study species were positively corre-
lated with species richness (Fig. 3), which indicates that
both the competition stress (suffered by these sub-
merged macrophytes) and antioxidant enzymes (pro-
duced by these submerged macrophytes) increase with
plant biodiversity. On the contrary, the FAA and (or) SC
concentrations of the study species declined with the
species richness (Figs. 4 and 5). This suggests that the
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Fig. 2 The species level plant masses of individual species along an aquatic plant biodiversity gradient in Lake Erhai. Eight common native
submerged species were selected in this experiment, see Materials and Methods

production of FAA and (or) SC is inhibited in the study
macrophytes when the competition stress, resulting from
high plant biodiversity, is strong (Cao et al. 2009; Yuan
et al. 2016; Yu et al. 2017). Thus, the biomass produc-
tion and growth of the plants can be greatly affected, as
observed in our study, because FAA and SC are import-
ant intermediates and buffering pool of C and N

metabolism (Myers and Kitajima 2007; Yuan et al. 2016).
These results are partially opposite to our two hypoth-
eses, indicating most studied macrophytes suffered from
the increase of biodiversity in our experiment. This
might because that the light competition among these
submerged species in this mesotrophic lake (Geist 2011;
Ji et al. 2017; Ye et al. 2018) increased with biodiversity
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Fig. 3 The plant soluble protein of individual species along an aquatic plant biodiversity gradient in Lake Erhai. Note: No data means that the
sample is too small to be measured and the follows are the same

due to over-yielding (Clark and Tilman 2008; Borer
et al. 2014; Cerabolini et al. 2016), as observed in our
study.

Different responses of individual species

Our results showed that different species responded dif-
ferently to species richness and even the different mea-
sured parameters of the same species responded

diversely to the species richness in our aquatic commu-
nities, which agrees well with much previous research
(Hector et al. 2002; Hille Ris Lamber et al. 2004; Roscher
et al. 2007; Marquard et al. 2009; Wu et al. 2018, 2020).
This result therefore implies that both plant species and
plant variables cannot equally benefit from high plant
species richness because of the great differences among
species and the index-specificity within a species (Firn
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Fig. 4 The plant free amino acid of individual species along an aquatic plant biodiversity gradient in Lake Erhai
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et al. 2007; Jacob et al. 2010; Roscher et al. 2013; Wu
et al. 2018, 2020). This might be a good explanation of
the formation of distinct function species (Whittaker
1965; Odum 1983), such as dominant, sub-dominant,
companion, keystone, rare and redundant species, within
a community in real nature because of their different
benefits from biodiversity. However, this phenomenon
cannot be observed within such a short experimental

period and more extensive and intensive studies are
needed to prove this. Accordingly, the four DRP patterns
are very reasonably and frequently observed because the
pattern is determined by tradeoffs between the plant
masses of all species, which are actual species in the spe-
cies pool consisting of the whole communities (Wu et al.
2018). Furthermore, the interplay of multiple particular
abiotic and biotic experimental conditions makes the
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Fig. 5 The plant soluble carbohydrate of individual species along an aquatic plant biodiversity gradient in Lake Erhai

pattern of the DPR more complicated (Byrnes et al
2014; Lefcheck et al. 2015). This might be the reason
that there are no explicit explanations of the other three
DPR patterns except the positive linear DPR pattern. How-
ever, the pattern of species level plant mass over the bio-
diversity gradients can be readily obtained whatever the
abiotic or biotic factors change. This might make species
level plant mass a great advantage over others in terms of

mechanic explanations of DPR patterns though there are
some little design flaws (e.g. less species) in our experi-
ment. Therefore, we argue that a type of DPR pattern
could be interpreted by analyzing the trends of species level
plant mass over the biodiversity gradient. This might be a
good alternative mechanism explaining the complicated
DPR patterns and more extensive experiments are needed
to further prove our hypothesis.
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Conclusion

Community productivity was significantly positively cor-
related with plant biodiversity due to the selection effect.
However, the relationships between species level plant
mass, plant SP, FAA and SC and species richness are
more complicated. The negative effects of biodiversity
on the most of the studied species are attributed to the
strong competition, especially light competition, among
these submerged macrophytes. The analyses of the plant
species level response to species richness might be a
good alternative mechanism explaining the complicated
DPR patterns, which are affected by many intricate
factors.
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