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Abstract

Background: Biodiversity supports multiple ecosystem services, whereas species loss endangers the provision of
many services and affects ecosystem resilience and resistance capacity. The increase of remote sensing techniques
allows to estimate biodiversity and ecosystem services supply at the landscape level in areas with low available data
(e.g. Southern Patagonia). This paper evaluates the potential biodiversity and how it links with ecosystem services,
based on vascular plant species across eight ecological areas. We also evaluated the habitat plant requirements and
their relation with natural gradients. A total of 977 plots were used to develop habitat suitability maps based on an
environmental niche factor analysis of 15 more important indicator species for each ecological area (n = 53 species)
using 40 explanatory variables. Finally, these maps were combined into a single potential biodiversity map, which
was linked with environmental variables and ecosystem services supply. For comparisons, data were extracted and
compared through analyses of variance.

Results: The plant habitat requirements varied greatly among the different ecological areas, and it was possible to
define groups according to its specialization and marginality indexes. The potential biodiversity map allowed us to
detect coldspots in the western mountains and hotspots in southern and eastern areas. Higher biodiversity was
associated to higher temperatures and normalized difference vegetation index, while lower biodiversity was related
to elevation and rainfall. Potential biodiversity was closely associated with supporting and provisioning ecosystem
services in shrublands and grasslands in the humid steppe, while the lowest values were related to cultural
ecosystem services in Nothofagus forests.
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(e.g. livestock).

services, Landscape modelling

Conclusions: The present study showed that plant species present remarkable differences in spatial distributions
and ecological requirements, being a useful proxy for potential biodiversity modelling. Potential biodiversity values
change across ecological areas allowing to identify hotspots and coldspots, a useful tool for landscape
management and conservation strategies. In addition, links with ecosystem services detect potential synergies and
trade-offs, where areas with the lowest potential biodiversity are related to cultural ecosystem services (e.g.
aesthetic values) and areas with the greatest potential biodiversity showed threats related to productive activities

Keywords: Habitat suitability, Environmental variables, Ecosystem functions, Conservation management, Ecosystem

Introduction

Biodiversity is critical to support multiple ecosystem ser-
vices (ES) (MEA 2005; Cardinale 2012; Mace et al.
2012). Several studies agree that plant biodiversity
strongly affects supporting and regulating ES, e.g. soil
nutrients cycling, productivity, and erosion control
(Chen et al. 2018; Peri et al. 2019a; Ma et al. 2020). Fur-
thermore, plant communities provide essential habitats
for a wide range of species (Wen et al. 2020). Traditional
management only focused on few provisioning ES, which
is one of the main threats to biodiversity (Kohler et al.
2017). As a consequence, biodiversity loss endangers the
provision of many other ES (MAES 2013; Shih 2020), af-
fecting ecosystem resilience and resistance capacity to
face climate change or species invasions (Kohler et al.
2017; Pires et al. 2018). Nevertheless, understanding
these complex interactions represent a challenge, due to
the multiple roles that biodiversity plays in the delivery
of ES (MAES 2013; Mori et al. 2017).

Different factors affect species diversity distribution,
where environmental heterogeneity (e.g. climate, soil,
and topography) is the main driver for landscape vari-
ation in species composition across different taxa and bi-
omes (Stein et al. 2014; Li et al. 2020). In consequence,
plant biodiversity changes according to the different eco-
system types, e.g. temperate forests present unique
understory species associated with tree canopy structure
and composition (Barbier et al. 2008; Lencinas et al.
2008), while grasslands present characteristic species as-
sociated with temperature and rainfall gradients (Peri
et al. 2016a; Li et al. 2020). In addition, soil characteris-
tics as stock carbon and water balance, and topography
as elevation and slope, influence plant distribution, rich-
ness, and diversity (e.g. Dubuis et al. 2013; Pottier et al.
2013; Peri et al. 2019a; Jordan et al. 2020). However, it is
not totally understood how plant species distribution is
linked with regional environmental variables (Kreft and
Jetz 2007; Xu et al. 2016; Martinez Pastur et al. 2016a)
and how biodiversity is related to ES supply (Schneiders
et al. 2012; Martinez Pastur et al. 2017). Remote sensing
techniques became a powerful tool for qualitative and
quantitative modelling of plant species distribution and

habitat prediction at the landscape level (Wiersma et al.
2011). One of the most employed methods is based on
the combination of field plots with satellite data (Dubuis
et al. 2013; Pottier et al. 2013), where the Biomapper
software showed its advantage to the development of po-
tential habitability suitability (PHS) models (Hirzel et al.
2001, 2006) in areas with scarce data as Southern Pata-
gonia (Rosas et al. 2017). These models relate regional
environmental characteristics (e.g. climatic, topographic,
landscape) with the occurrence of species in one particu-
lar area (Guisan and Zimmermann 2000; Hirzel et al.
2002) determining the PHS of each species. During the
last years, studies in plant species distribution were sig-
nificantly increased (Bradley et al. 2012), mostly related
to woody species (Silva et al. 2017), and invasive (Chai
et al. 2016; Wan and Wang 2018) or endangered plant
species (Abdelaal et al. 2020). Nevertheless, few studies
combined multiple PHS to create a unique potential bio-
diversity map (PBM) that synthetizes the information for
multiple species at the landscape level (e.g. Martinez
Pastur et al. 2016a; Rosas et al. 2019a). PHS maps allow
to understand the ecology of ecosystem communities
(Martinez Pastur et al. 2016a), recognize environmental
predictors of species distribution (Dubuis et al. 2013;
Pottier et al. 2013), identify potential hotspots of bio-
diversity (Wulff et al. 2013), and analyse the natural pro-
tected area network effectiveness and representativeness
(Rosas et al. 2019a). However, few studies have linked
the biodiversity and the ES supply to understand their
relationship and support landscape management and
conservation planning (Martinez Pastur et al. 2017; Shih
2020).

Southern Patagonia, specifically Santa Cruz Province,
has a well-conserved wilderness landscape with a unique
ecosystem variety, where temperature and rainfall pat-
terns strongly defined the natural vegetation types. The
region can be classified into eight main ecological areas,
where dry steppes dominate in the northeast (central
plateau, shrub-steppe of San Jorge Gulf, and mountains
and plateaus), and shrublands and humid steppes
(humid and dry Magellanic grass steppe) prevail in the
southeast, while sub-Andean grasslands, Nothofagus



Rosas et al. Ecological Processes (2021) 10:53

forests, and alpine vegetation occupy a narrow strip in
the west (Oliva et al. 2004) (Fig. 1). The vegetation types
influence the provisioning ES delivery, generating several
trade-offs between biodiversity and other ES supplies
(Peri et al. 20164, 2018, 2019b). Traditionally, steppe and
shrubland areas present provisioning ES related to live-
stock production, where different management proposals
have been implemented (Peri et al. 2016b). Peri et al.
(2013) also showed that different grazing strategies influ-
ence plant communities at the landscape level, where in-
tensive management using mechanical shredding to
remove shrubs significantly modified the arthropod
community (Sola et al. 2016). Besides, extreme climatic
conditions and overgrazing in dry steppes determined
the highest values of desertification (Del Valle et al.
1998; Peri et al. 2016b; Gaitan et al. 2019). Recently,
it was possible to map cultural ES (Martinez Pastur
et al. 2016b), where higher values were related to cit-
ies close to protected areas and touristic routes
(Rosas et al. 2019b). Forestry was conducted in the
forests close to Los Andes; N. antarctica forests are
related to livestock grazing in private lands (Peri
et al. 2016c¢), while N. pumilio and evergreen forests
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are mainly under protected areas (Peri et al. 2019c).
These studies also determined the impact of forest
management alternatives on N. antarctica forests,
where some multi-objective strategies (e.g. silvopas-
toral systems) allowed to maintain biodiversity values
and increase ES delivery on time.

Regional plant diversity studies stand out for defining
dominant vegetation types (Oliva et al. 2004; Oyarzabal
et al. 2018) at the coarse resolution level and were used
to identify potential negative trade-offs with different
management activities at the local scales (Peri et al
2016a, 2016b, 2016c). The efforts to increase landscape
ecology studies represent a challenge in remote areas
such as Santa Cruz Province, where available data is
scarce. Biodiversity mapping was studied through endan-
gered species (Rosas et al. 2017), as well as lizards and
darkling beetles (Rosas et al. 2018, 2019c), which repre-
sent good proxies for specific vegetation types. Martinez
Pastur et al. (2016a) proposed understory plants as prox-
ies of potential biodiversity in Tierra del Fuego forests,
because they have a wider distribution than other taxo-
nomic groups, and Rosas et al. (2019a) also apply this
methodology for Santa Cruz forests. However, these

0 200 km

Fig. 1 Characterization of the study area. a Location of Argentina (dark grey) and Santa Cruz Province (black). b Mean annual temperature (8.6 to
13.5°C) where blue is low and red is high. ¢ Mean annual rainfall (136 to 1681 mm year’]) where dark blue is higher values. d normalized
difference vegetation index (NDVI) (0-1) where red is low and green is high. e Main ecological areas, where light grey is dry steppes (central
plateau, shrub-steppes of San Jorge Gulf, and mountains and plateaus), grey is humid steppes (humid and dry Magellanic grass steppes), medium
grey is shrublands, dark grey is sub-Andean grasslands, and black is forests and alpine vegetation (modified from Oliva et al. 2004)
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efforts for mapping biodiversity are not enough to com-
pare the different vegetation types at the regional level,
e.g. lizards and darkling beetles occurred in arid environ-
ments and not in forests. To understand the role that
biodiversity plays in the ES delivery (MAES 2013), it is
necessary to link biodiversity and ES supply at the land-
scape level, using the same proxy taxonomic group.
With one unique map, it will be possible to analyse the
potential trade-offs with other ES deliveries at the re-
gional level (e.g. Martinez Pastur et al. 2017). In this
context, the objective was to evaluate the potential bio-
diversity of the entire Santa Cruz Province (Argentina)
and their linking with ES delivery, based on vascular
plant species distribution as a proxy along the different
ecological areas of the region. We also define the follow-
ing specific objectives: (i) determine how much variation
presents the habitat for indicator plants across the differ-
ent ecological areas, (ii) relate PBM and environmental
variables, and (iii) link PBM and ES supply. We hypothe-
sized that (i) the distribution of the species is related to
environmental gradients (Riesch et al. 2018), which to-
gether with other factors (e.g. biotic factors such as pre-
dation risk) define the potential biodiversity of one
particular ecosystem; (ii) the provision of the different
ES is not independent, interaction among them accord-
ing to the species assemblage and biophysical character-
istics of the ecosystems (Martinez Pastur et al. 2016a;
Martinez Pastur et al. 2017); and (iii) human pressures
on natural ecosystems due to economic activities (e.g.
livestock use, silvopastoral management, forestry) gener-
ates synergies and trade-offs between provisioning ES
and the other ES and biodiversity conservation (e.g. Peri
et al. 2016b; Martinez Pastur et al. 2017). We expect to
bring some evidences about these links between ES and
biodiversity and provide tools for managers and
decision-makers to propose more effective conservation
alternatives at the regional level.

Methods

Study area

The study area includes Santa Cruz Province (Argentina)
between 46° 00" and 52° 30" S, and between 66° 00" and
73° 00" W (Fig. 1a). The annual temperature increases
from south to north (6.1 to 9.6 °C, Fig. 1b) with a mean
annual range from - 2.6 to 19.5 °C (coldest and warmest
months), while precipitation increases from east to west
(204.1 to 899.7 mmyear ', Fig. 1c) with a mean annual
range from 13.7 to 30.3 mm month ™" (driest and wettest
months). This environmental pattern strongly influences
the normalized difference vegetation index (NDVI),
where the highest values were detected in the west,
medium values in the south, and lowest values in the
northeast (Fig. 1d). As was described before, the prov-
ince was classified in different ecological areas
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considering soil qualities, regional climate, and the dom-
inant plant communities (modified from Oliva et al.
2004) (Fig. 1e): (i) Dry steppes (DS) are located in the
north including central plateau steppes (CP), shrub-
steppe San Jorge Gulf (SSJG), and steppes in mountains
and plateaus (MP), covering an area of 156,764 km?.
This area presents the lowest vegetation cover, mainly
associated with small shrubs (e.g. Nassauvia glomeru-
losa) and grasses (e.g. Stipa spp.). (ii) Shrublands (SL)
cover 28,373 km? and are dominated by Mulguraea tri-
dens. (iii) Humid steppes (HS) are divided into humid
and dry Magellanic grass steppes (HMGS and DMGS,
respectively), covering an area of 17,831km? and are
composed mainly by grasses (e.g. Festuca spp. and Carex
spp.) in the south. Finally, other two ecological areas are
located near to the Andes Mountains in the west, (iv)
sub-Andean grasslands (SAG) that cover 8473 km? and
are dominated by Festuca pallescens and (v) Nothofagus
forests and alpine vegetation (FAV) that cover 6658 km?.

Database

A total of 53 plant species were selected for PHS model-
ling (Appendix 1). We used 977 plot surveys, where 235
plots belong to the PEBANPA network (Parcelas de Eco-
logia y Biodiversidad de Ambientes Naturales en Patago-
nia Austral) (Peri et al. 2016a), and 742 plots belong to
FAMA laboratory (Forestal, Agricola y Manejo del Agua
of INTA EEA-Santa Cruz). This database includes vas-
cular plant species, bare soil, and inferior plants (e.g.
bryophytes and lichens) based on cover (%) and fre-
quency of occurrence (%). We calculated a cover-
occurrence index selecting the 15 most important plant
species for each ecological area. Each species must
present at least 20 presence points following the meth-
odology described in Rosas et al. (2019a). Then, the
database was complemented with the available data for
the selected species in the Sistema Nacional de Datos
Biolégicos of Ministerio de Ciencia, Tecnologia e Inno-
vaciéon Productiva (www.datosbiologicos.mincyt.gob.ar)
(final presence points = 5914). Additionally, we explored
40 potential explanatory variables, which were rasterized
at 90 x 90 m resolution using the nearest resampling
technique on the ArcMap 10.0 software (ESRI 2011),
where all variables (climate, topography, landscape) used
in this study were previously described in Rosas et al.
(2017, 2018).

Potential biodiversity was analysed considering the oc-
currence across the landscape and their links with the
ES type supply through the comparison of the selected
environmental variables in the PHS modelling (Appen-
dix 2) and the main ecological areas. In addition, to link
PBM values with ES supply (CICES V5.1, Haines-Young
and Potschin 2018) we used different proxies to discuss
potential trade-offs, according to available maps (grids)
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for the study area: (i) Supporting and regulating ES were
related to soil quality and carbon sequestration through
soil organic carbon and nitrogen (Peri et al. 2018,
2019b), annual net primary productivity (Zhao and Run-
ning 2010), and desertification index (Del Valle et al
1998) as a reverse proxy of soil control erosion. Soil or-
ganic carbon and nitrogen, as well desertification index,
were modelled by related field data with climate and
topographic variables. Annual net primary productivity
was modelled using global productivity data of different
ecosystems and remote sensing. (i) Provisioning ES were
related to food production through the probability of
sheep occurrence (Pedrana et al. 2010), which were
modelled according to climate and other bio-physical
variables. Finally, (iii) cultural ES were related to spirit-
ual, symbolic, and other interactions with the natural en-
vironment including aesthetic, existence, local identity,
and recreational values (Martinez Pastur et al. 2016b;
Rosas et al. 2019b). The cultural ES (aesthetic value, ex-
istence value, recreation, and local identity) were
mapped using geo-tagged digital images that local people
and visitors posted on web platforms, which were related
to social and biophysical landscape features.

Models and statistical analyses

For modelling, we follow previous regional proposals for
forests in Tierra del Fuego (Martinez Pastur et al. 2016a)
and Santa Cruz (Rosas et al. 2019a) and methodological
analyses of trade-offs to compare biodiversity and ES
(Martinez Pastur et al. 2017) (see the chart flow pre-
sented in Fig. 2). PHS models for each plant species were
based on the environmental niche factor analysis (ENFA)
(Hirzel et al. 2002) using the Biomapper 4.0 software
(Hirzel et al. 2004). ENFA employed the concept of eco-
logical niche (Hutchinson 1957), comparing the eco-
geographical variable distribution of presence dataset
(locations of plant species) with the predictor distribu-
tion for the whole study area (Hirzel et al. 2001). ENFA
summarizes all predictor variables and calculates two
specific ecological relevance indexes: (i) Marginality (0
to 1) describes how far the optimum species habitat is
from the mean environmental conditions of the study
area, where higher values indicate that species grow in
extreme environmental conditions. And (ii) global toler-
ance or specialization (tolerance™) varied from 0 to in-
finite and describes the narrowness of the species niche,
where higher values indicate that species tend to live in
a narrow range of environmental conditions (Hirzel
et al. 2002; Martinez Pastur et al. 2016a). We used a dis-
tance of geometric-mean algorithm to perform each
PHS, which provides a good generalization of the niche
(Hirzel and Arlettaz 2003). Each ENFA model results in
a continuous PHS map with a range from 0 (minimum)
to 100 (maximum habitat suitability). We used only the
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presence data in order to assess the statistical fit of each
PHS model. ENFA used a cross-validation (Hirzel et al.
2006), evaluating the robustness and the predictive
power of the models through Boyce index (B), continu-
ous Boyce index (Bcont), proportion of validation points
(P), absolute validation index (AVI), and contrast valid-
ation index (CVI) (Boyce et al. 2002; Hirzel and Arlettaz
2003; Hirzel et al. 2004, 2006). All these indices were de-
scribed in Rosas et al. (2017, 2018).

We visualized PHS maps for each species into a geo-
graphical information system (GIS) with a resolution of
90 x 90 m, and we combined them with a mask based
on NDVI <0.05 to detect bare soil, ice fields, and water
bodies (Lillesand and Kiefer 2000). Then, the 53 PHS
maps were combined (average values for each pixel) to
obtain the final PBM. This map had scores that varied
from 1 to 46% (average values of PHS for all the studied
species), and it was re-scaled by a lineal method from 0
to 100%. PBM was analysed using one-way ANOVAs.
For this, we extracted the data from PBM using the hex-
agonal binning processes (each hexagonal = 250,000 ha)
and calculated the average of potential biodiversity (PB)
for each hexagon. After that, we classified each hexagon
according to its PB values: (i) low was <51% (32 hexa-
gons), (ii) medium was 52-62% (44 hexagons), and (iii)
high was >63% (41 hexagons). The thresholds for each
category were defined considering an equal number of
pixels in the PBM. Finally, we analysed the extracted PB
values considering the variables employed in the model-
ling, the main ecological areas, and ES proxies for each
hexagon.

Results

Potential habitat suitability of vascular plant species

The selected relevant indicator plant species belong to
twenty-one different families (Appendix 1), mainly Poa-
ceae (n = 18), Asteraceae (n = 9), and Cyperaceae (n =
4). Other families presented two different species, as
Apiaceae, Berberidaceae, Ericaceae, and Rosaceae (n =
8), while other families only were represented by one
species (Blechnaceae, Calceolariaceae, Caryophyllaceae,
Ephedraceae, Escalloniaceae, Fabaceae, Lamiaceae,
Plumbaginaceae, Polemoniaceae, Ranunculaceae, Rubia-
ceae, Solanaceae, Verberaceae, Violaceae) (1 = 14).

The species with the highest presence points was
Osmorhiza chilensis (n = 357), while the lowest was Poa
ligularis (n = 21) (Table 1). Three species presented a
wide distribution and were related to six different eco-
logical areas, e.g. Festuca pallescens was the most im-
portant species in SAG (frequency = 60%), P. spiciformis
was the second important species in SL (frequency =
72%), and Pappostipa chrysophylla was the third import-
ant species in CP and MP (frequency = 61 and 60%, re-
spectively). Another three species were related to five
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different ecological areas, e.g. Berberis microphylla was
the second important species in SAG (frequency = 50%),
while Carex andina was the second (frequency = 88%)
and Nardophyllum bryoides was the third important spe-
cies (frequency = 63%) in DMGS. Four species were re-
lated to four ecological areas, e.g. Festuca gracillima was
the most important species in DMGS (frequency = 81%),
as well as Nassauvia glomerulosa in CP (frequency =
72%) and N. wulicina in SSJG (frequency = 62%), and Se-
necio filaginoides was the third important species in
SAG (frequency = 54%). Eight species (Acaena poeppigi-
ana, Avenella flexuosa, Bromus setifolius, Carex
argentina, Empetrum rubrum, Mulguraea tridens, Pap-
postipa  ibarii, P. sorianoi) were related to three

ecological areas, e.g. four presented high-ranking values
(up to third): Avenella flexuosa was the most important
species in HMGS (frequency = 59%), as well as Mulgur-
aea tridens in SL (frequency = 52%) and Pappostipa sor-
ianoi in MP (frequency = 70%), while Empetrum rubrum
was the second important species in FAV (frequency =
33%). Twelve species (Acaena magellanica, Azorella pro-
lifera, Chiliotrichum diffusum, Chuquiraga aurea, Clino-
podium darwinii, Festuca magellanica, Galium aparine,
Gaultheria mucronata, Hordeum comosum, Osmorhiza
chilensis, Pappostipa chubutensis, Rytidosperma vires-
cens) were related to two ecological areas, e.g. O. chilen-
sis presented high-ranking value in FAV (frequency =
48%) and Ch. diffusum the third important species in
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Table 1 Code for vascular plant species, number of presence point (N), mean cover (%), and frequency of occurrence (%) between
brackets, followed by the rank (1 to 15) for the most important species of each ecological area (FAV forests and alpine vegetation,

SAG sub-Andean grasslands, HMGS humid Magellanic grass steppes, DMGS = dry Magellanic grass steppes, SL shrublands, CP central
plateau steppes, SSJG shrub-steppes of San Jorge Gulf, MP mountains and plateaus)

Code N FAV SAG HMGS DMGS SL CcpP SSJG MP

ACMA 106 054 (12) 15 - 0.69 (25) 7 - - - - -

ACPO 83 - - - - - - - 0.56 (30) 14
ADVO 34 - - - - - - - 2.75 (40) 7
AGCA 62 - - 1.88 (16) 5 - - - - -

AGPE 54 - 0.65 (15) 15 - - - - - -

ANMU 75 - 081 (42) 6 - - - - - -

ARMA 100 - - 0.24 (20) 15 - - - - -

AVFL 308 1.62 (36) 3 143 (40) 4 267 (59) 1 - - - - -

AZPR 68 - 091 (42) 5 - - - - - 253 (50) 5
BAMA 148 066 (17) 12 - - - - - - -

BEEM 82 - - 062 (12) 1 - - - - -

BEMI 335 087 (37) 4 1.57 (50) 2 0.66 (25) 9 1.27 (63) 5 - - 0.72 (29) 14 -

BLPE 147 1.04 (20) 9 - - - - - - -

BRSE 177 - 0.50 (23) 14 041 (16) 13 - 1.25 (54) 6 - - -

CAUN 88 - - - 061 (69) 10 - - - -

CAAN 160 057 (16) 14 062 (23) 11 043 (16) 12 754 (88) 2 144 (30) 9 - - -

CAAR 86 - - - - 1.04 (43) 7 1.26 (52) 8 - 0.72 (60) 9
CAMA 31 - - - - 1.70 (13) 13 - - -

CHDI 195 096 (24) 8 - 1.25(27)3 - - - - -

CHAU 55 - - - - - 3.07 (50) 5 203 (52) 7 -

CHAV 35 - - - - - - 511 (67) 2 -

CLDA 40 - - - 0.88 (75) 6 0.62 (30) 15 - - -

COosuU 41 - - - 038 (75) 13 - - - -

EMRU 250 317 (33) 2 0.85 (15) 13 039 (16) 14 - - - - -

EPCH 69 - - - - - 0.57 (53) 13 - -

ESRU 118 1.25 (16) 10 - - - - - - -

FEAR 26 - - - - - - 146 (24) 13 -

FEGR 133 0.99 (13) 11 - 337 (16) 2 18.02 (81) 1 227 (20) 8 - - -

FEMA 215 1.00 (24) 6 - - 0.70 (31) 14 - - - -

FEPA 167 087 (13) 13 530 (60) 1 25186 - 6.83 (37) 3 1.89 (13) 14 - 1451 (51) 2
GAAP 118 - 083 (27) 7 045 (24) 10 - - - - -

GAMU 154 1.36 (19) 5 0.64 (29) 9 - - - - - -

HOCO 108 - - - - 0.59 (33) 14 0.33 (52) 15 - -

HOPU 59 - - 087 (20) 8 - - - - -

JUBA 24 - - - - 252 (15) 10 - - -

LYCH 21 - - - - - - 1.16 (43) 11 -

MIGR 48 - - - - - - - 0.56 (30) 15
MUTR 65 - - - 348 (19) 7 1137 (52) 1 31925 6 - -

NABR 113 - - - 545 (63) 3 1.94 (48) 5 1.09 (39) 12 1.23 (24) 14 1.14 (70) 8
NAGL 156 - - - - 1.74 22 1 10.76 (72) 1 4.53 (33) 5 2.03 (20) 10
NAUL 70 - - - 1.13(19) 15 - 381 (41) 4 6.73 (62) 1 1.05 (30) 12
OSCH 357 230 (48) 1 - 1.08 (29) 4 - - - - -
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Table 1 Code for vascular plant species, number of presence point (N), mean cover (%), and frequency of occurrence (%) between
brackets, followed by the rank (1 to 15) for the most important species of each ecological area (FAV forests and alpine vegetation,
SAG sub-Andean grasslands, HMGS humid Magellanic grass steppes, DMGS = dry Magellanic grass steppes, SL shrublands, CP central
plateau steppes, SSJG shrub-steppes of San Jorge Gulf, MP mountains and plateaus) (Continued)

Code N FAV SAG HMGS DMGS SL CcpP SSJG MP

PACHR 98 - 139 (15) 8 - 0.78 (38) 12 439 (41) 4 682 (61) 3 261 (43)6 8.37 (60) 3
PACH 42 - - - - - 1.22 (41) 10 1.02 (33) 12 -

PAIB 69 - - - - 0.67 (37) 12 1.18 (55) 9 - 0.59 (40) 13
PASO 48 - - - - - 1.68 (39) 7 321 (48) 4 13.50 (70) 1
PERE 171 - - - 0.90 (63) 8 - - - -

POLA 51 - - - - - - 140 (38) 9 -

POLI 21 - - - - - - - 233 (50) 6
POSP 182 - 0.78 (19) 10 - 4.23 (63) 4 398 (72) 2 6.02 (89) 2 4.50 (67) 3 1.35 (30) 11
RYVI 77 - 0.72 (19) 12 - 1.15 (44) 9 - - - -

SEFI 169 - 140 (54) 3 - - - 1.08 (45) 11 194 (33) 8 3.83 (90) 4
VIMA 205 0.86 (27) 7 - - - - - - -

HMGS (frequency = 27%). Finally, twenty-three species
(Adesmia volckmannii, Agrostis capillaris, A. perennans,
Anemone multifida, Armeria maritima, Baccharis
magellanica, Berberis empetrifolia, Blechnum penna-
marina, Calceolaria uniflora, Carex macloviana, Chu-
quiraga avellanedae, Colobanthus subulatus, Ephedra
chilensis, Escallonia rubra, Festuca argentina, Hordeum
pubiflorum, Juncus balticus, Lycium chilense, Microsteris
gracilis, Perezia recurvata, Poa lanuginosa, P. ligularis,
Viola magellanica) were related to only one ecological
area, where only Chuquiraga avellanedae presented the
highest-ranking value in SSJG (frequency = 67%).

In the modelling of PHS maps, nine variables were the
most appropriate to include in the analyses due to lower
correlation values among all variables, and where only
four variables presented higher values (> 0.80) based on
Pearson’s correlation index (Appendixes 3 and 4). The
most useful variables in the 53 PHS-adjusted maps were
annual mean temperature (AMT), annual precipitation
(AP), and normalized difference vegetation index
(NDVI). The correlation index among the nine selected
variables varied between 0.03 and 1.00. The lowest cor-
relation was detected between the minimum
temperature of the coldest month (MINCM) and the
distance to rivers (DR) (0.03), and the highest was be-
tween the maximum temperature of the warmest month
(MAXWM) and the global potential evapotranspiration
(EVTP) (1.00), AMT and MAXWM (0.98), AMT and
EVTP (0.96), and MINCM and elevation (ELE) (- 0.85).

The outputs of the 53 PHS models explained 100% of
the information in the first four axes. Ephedra chilensis,
Nassauvia ulicina, and Senecio filaginoides explained
95% of the information in the first axis, while Viola
magellanica, Chuquiraga avellanedae, Carex maclovi-
ana, and Baccharis magellanica explained less than 30%

in the same axis (Appendix 5). Cross-validation indi-
cated that the best statistics were obtained for Blechnum
penna-marina, Festuca gracillima, and Gaultheria
mucronata (B > 0.90, P(B = 0) <0.10, Bcont > 0.64, AVI
>0.49, CVI >0.48). These outputs indicated that these
species were mainly specialists. Nevertheless, the lower
performances of cross-validation were obtained for Hor-
deum comosum and Juncus balticus (B < 0.13, P(B = 0)
> 0.44, Bcont < —0.04, AVI >0.51, CVI <0.39), indicat-
ing that these other species were more generalists than
specialists (Appendix 6).

PHS maps presented remarkable differences in the
spatial distribution (Appendix 7) and the habitat require-
ments (e.g. marginality and specialization) for each spe-
cies (Fig. 3). Some species presented higher values of
PHS in the steppes of the eastern areas of the province,
showing the lowest specialization (1.60 to 7.54) and mar-
ginality (0.52 to 0.97) values. Among these species, nine
(ADVO, CHAV, COSU, EPCH, FEAR, LYCH, MIRG,
POLA, POLI) were related to a single ecological area,
while four species (CLDA, PACH, CHAU, HOCO) were
associated to two ecological areas, and ten species
(ACPO, CAAR, MUTR, NABR, NAGL, NAUL, PACHR,
PAIB, PASO, POSP) were associated to more ecological
areas. Moreover, another species presented the highest
PHS values in the western steppes near the ecotone,
close to the mountain forests, showing low specialization
values (2.06 to 6.76) and middle marginality values (1.35
to 2.16). Among these species, seven (AGPE, ARMA,
BAMA, CAMA CAUN, HOPU, JUBA, PERE) were re-
lated to only one ecological area, while three species
(AZPR, FEMA, RYVI) were associated to two ecological
areas and six species (BEMI, BRSE, CAAN, FEGR, FEPA,
SEFI) to more ecological areas. Finally, thirteen species
showed the highest PHS values in a narrow area close to
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Fig. 3 Specialization (low species’ variance compared to the global variance of all sites) vs. marginality (large difference of species’ mean
compared to the mean of all sites) of indicator vascular plant species, classified according to the number of times that the species were selected
for each ecological area (blue = one ecological area, green = two ecological areas, orange = more than three ecological areas)

Los Andes Mountains, presenting the highest
specialization (5.54 to 14.75) and marginality (1.85 to
2.89) values. Among these species, six (AGCA, ANMU,
BEEM, BLPE, ESRU, VIMA) were related to only one
ecological area, while five species (ACMA, CHDI,
GAAP, GAMU, OSCH) were associated to two eco-
logical areas and two species (AVFL, EMRU) to more
ecological areas.

Potential biodiversity map of vascular plant species

The fitted PHS maps were combined into a single map,
integrating all the selected vascular plant species (Fig. 4).
The PBM presented the lowest values (1-51%) near the
mountain forests and ice fields in the west, and medium
values (52-62%) in the dry steppes in the east. The high-
est PBM values (63—100%) occurred in three different
steppe areas: (i) one important area of sixteen hexagons
in the south (4.00 million ha), (ii) eleven hexagons in the
north area of the province (2.75 million ha), and (iii) the
smaller area with five hexagons located in the central-
east (1.25 million ha).

The analyses of the modelled environmental variables
allowed us to understand the occurrence of different PB
levels in the landscape (Fig. 5). Temperature variables
greatly influenced PB (AMT: F = 14.25, p < 0.001;
MAXWM: F = 14.58, p < 0.001; MINCM: F = 8.69, p <
0.001), e.g. medium and high PB qualities occurred in
areas where the mean annual temperature was higher
(8.0°C) than the mean value of the whole province.

Annual precipitation negatively influenced PB (F =
14.24, p < 0.001), e.g. low PB quality occurred in areas
where rainfall was above the mean value of the province
(246 mm year ). The higher rainfall was related to the
upper mountains above the tree-line and closeness to ice
fields. Elevation (F = 21.64, p < 0.001) followed the same
pattern, while other landscape variables (distance to
lakes and rivers) did not significantly influence PB qual-
ities. Finally, PB qualities increased with the global po-
tential evapotranspiration (F = 13.20, p < 0.001), while
extreme values (low and high qualities) were presented
in areas with higher NDVI values (F = 4.57, p = 0.012).
PB greatly changed through the main ecological areas
(F = 19.93, p < 0.001), where shrublands (SL) presented
the highest values followed by humid (HS) and dry
steppes (DS). The lowest PB values were found in the
sub-Andean grasslands (SAG) and in the mountain for-
ests and alpine vegetation (FAV) (Fig. 6). Considering
the supporting and regulating ES proxies, soil organic
carbon stock (F = 2.73, p = 0.069), soil total nitrogen
stock (F = 3.16, p = 0.046), annual net primary product-
ivity (F = 4.00, p = 0.021), and desertification index (F =
9.61, p < 0.001) greatly varied according to PB qualities.
The highest ES values were related to soil nutrient stock
and carbon sequestration, which were mainly associated
with low and high PB qualities. The desertification index
(reverse proxy of soil control erosion) increased with PB
qualities. The provisioning ES proxy, sheep presence
probability, significantly changed across PB qualities (F =
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Fig. 4 Potential biodiversity map (PBM) based on 53 indicator vascular plant species for Santa Cruz Province (a) and summarized hexagons of 250
thousand ha (b). In the left graph, higher intensity colour represents greater potential biodiversity, while in the right graph, hexagons are
classified in three levels of mean potential biodiversity: low potential = pale green (1-51%), medium potential = green (52-62%), and high

18.97, p < 0.001), increasing with PB quality. Finally, cul-
tural ES proxies presented different connections with PB
qualities: aesthetic (F = 6.84, p = 0.002), existence (F =
0.71, p = 0.492), and local identity (F = 3.14, p = 0.047)
values decreased with PB qualities, and higher recre-
ational values (F = 3.47; p = 0.035) were associated with
higher PB qualities.

Discussion

Potential habitat suitability of vascular plant species

The interest to understand species distribution at differ-
ent scales (e.g. regional level) had been increased during
the last years (Chen et al. 2018; Peri et al. 2019a). Never-
theless, the need of big data is a challenge in remote
areas as Southern Patagonia (Martinez Pastur et al.
2016a). In this context, PHS modelling based on ENFA
is one feasible alternative (Hirzel et al. 2002) that links
the presence data with environmental variables (Hirzel
and Le Lay 2008), which was used for understory plant
species in forests of Patagonia (Martinez Pastur et al.
2016a; Rosas et al. 2019a). In our study, data presence
belonged from different database networks (e.g. local
and national) covering all the landscape and the different

ecological areas of the Santa Cruz Province and include
the most relevant species of the local flora (e.g. 15 indi-
cator plants for each ecological area).

The PHS maps support previous vegetation studies
(e.g. Oliva et al. 2004; Oyarzabal et al. 2018), where dif-
ferent climate and environmental drivers strongly influ-
enced plant species distribution (Fig. 1). Besides this,
these studies also determine that some species are repre-
sentative of multiple ecological areas (Table 1), e.g. Fes-
tuca pallescens is one of the most conspicuous and
wide-dispersed species in Patagonia, whereas some auto-
ecological studies (e.g. seed germination) associate this
species with cold environments (Lépez et al. 2019) and
under 400 mm year ' (Mancini et al. 2012). These find-
ings support our results, where high PHS values were re-
lated to sub-Andean grasslands in the west. In addition,
Mancini et al. (2012) indicated that shrub species (e.g.
Empetrum rubrum and Gaultheria mucronata) grow
close to Nothofagus forests in the west, while Garga-
glione et al. (2014) showed that Avenella flexuosa were
associated to N. antarctica forests in open environments
(e.g. ecotone between grasslands and mountain forests).
Despite the species associated to different ecological
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Fig. 5 One-way ANOVAs comparing the potential biodiversity (L < 51, M = 51-62, H > 62) for the nine explanatory environmental variables used
for habitat modelling of plant species. The dotted line indicates the mean value for Santa Cruz Province. F-value and probability (between
brackets) are presented for each analysis, where different letters showed significant differences among categories of potential biodiversity using
the Tukey test at p < 0.05. The numbers in the boxes indicate how many times the variable was used for modelling each plant species. AMT,
annual mean temperature (°C); MAXWM, max temperature of the warmest month (°C); MINCM, min temperature of the coldest month (°C); AP,
annual precipitation (mm year”) In brown colour: ELE, elevation (m.a.s.l); DLK, distance to lakes (km); DR, distance to rivers (km); EVTP, global
potential evapotranspiration (mm year™"); NDVI, normalized difference vegetation index
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areas, our ENFA results showed that their high margin-
ality and specialization values indicated that these spe-
cies tend to live in a narrow range of environmental
conditions and where their optimum habitat differed
from the mean environmental values of the province
(Fig. 3). Rainfall gradient, which decreases from west to
east, also influences vegetation distribution, e.g. Bertiller
et al. (1995) identified in the extra-Andean steppes of
Northern Patagonia that Festuca pallescens decreases
while shrubs increases (e.g. Senecio filaginoides and Nas-
sauvia glomerulosa) their cover along the rainfall gradi-
ent (from 600 to 170 mm year '). In humid Magellanic
grass steppes in the south, F. pallescens is also associated
with Poa spiciformis and Carex andina (Peri and
Lasagno 2010). However, in dry Magellanic grass
steppes, F. gracillima is the dominant species accompan-
ied by Nardophyllum bryoides and Nassauvia ulicina
(Mancini et al. 2012). These distinct plant communities

of steppes were mainly due to long-term differences in
water availability (Peri et al. 2013). These studies support
our results, where most of the species presented similar
ecological requirements (e.g. low specialization and mid-
dle marginality values); however, N. bryoides, Nassauvia
glomerulosa, and N. ulicina presented lower marginality
values indicating that their optimum habitat is near to
the mean environmental conditions of the province.
Other species presented a narrow distribution (e.g.
two ecological areas) (Table 1), e.g. Acaena magellanica,
Chiliotrichum diffusum, Galium aparine, and Osmorhiza
chilensis. These species were identified by Huertas Her-
rera et al. (2018) growing in deciduous forests at lower
elevations in Tierra del Fuego, Argentina. This is coinci-
dent with our results, where similar ecological require-
ments (e.g. high specialization and marginality values)
and high PHS values were shown in forested areas and
near humid steppes in the west. Other species presented
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The dotted line indicates the mean value for Santa Cruz Province; F-value and probability between brackets are presented for each analysis,
where different letters showed significant differences among categories of potential biodiversity using the Tukey test at p < 0.05. Proxies for
supporting ES were as follows: SOC, soil organic carbon (kg m™); STN, soil total nitrogen (kg m~2); ANPP, annual net primary productivity (gr C m?
year'w); and DES, desertification index (dimensionless). Proxy for provisioning ES was as follows: SPP, sheep presence probability (sheep presence
probability km~2). Proxies for cultural ES were as follows: AES, aesthetic values (dimensionless): EXS, existence values (dimensionless); LI, local
identity values (dimensionless); and REC, recreational values (dimensionless)
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a more restricted habitat (e.g. Baccharis magellanica),
showing a middle specialization and high marginality
values. Gargaglione et al. (2014) associated this species to
open environments, e.g. gap grasslands surrounding N. ant-
arctica forests. Other species presented the highest margin-
ality values (e.g. Blechnum penna-marina and Viola
magellanica) and were related to evergreen forest in humid
areas, close overstory canopies (Martinez Pastur et al.
2012), and other forested areas where some shrub species
(e.g. Escallonia rubra) occurred (Mancini et al. 2012).
Some species with high specialization values (e.g. Ber-
beris empetrifolia) were related to extreme xeric condi-
tions near the Andean Mountains (Bottini et al. 2000),
while others (e.g. Agrostis capillaris) were associated to
ecotone areas between grasslands and N. antarctica for-
ests (Alonso et al. 2019). Lépez et al. (2019) found that
Poa ligularis was associated to steppes in Northern Pata-
gonia due to some of their ecological requirements (e.g.
seed germination was related to a higher temperature
than Festuca pallescens). In our study, this species was
related to the steppes in the north-west of the province
(mountains and plateaus), where high PHS values were
related to the dry steppe ecological area. In addition,

Chuquiraga avellanedae, Pappostipa chrysophylla, P.
sorianoi, Nassauvia ulicina, Lycium chilense, and Festuca
argentina have been also described in these extreme nat-
ural environments (Oliva et al. 2004; Peri et al. 2013;
Oyarzabal et al. 2018), where ENFA analyses showed
low specialization and marginality values, and PHS
values associated to the dry steppes.

Potential biodiversity map of vascular plant species

Usually, PHS maps of plants species have been used to link
species occurrence with environmental variables (Dubuis
et al. 2013; Pottier et al. 2013). Recently, new studies com-
bine multiple maps to synthetizes the information of mul-
tiple species (Martinez Pastur et al. 2016a; Rosas et al.
2018), and particularly, Rosas et al. (2019a) create one PBM
of understory species of forests in Santa Cruz. However,
those studies focalized the analyses in particular ecosystems
(e.g. forests), and not allowed the comparisons among dis-
tinct ecological areas. For example, most of the conserva-
tion efforts were focused on forests (Rosas et al. 2019b),
due to the lack of information about the importance of
grasslands and shrublands for conservation in the Patagonia
(Peri et al. 2021). This study considered the entire region



Rosas et al. Ecological Processes (2021) 10:53

and included the different ecosystem types across all the
ecological areas (n = 8, from dry steppes to alpine vegeta-
tion) and a greater number of plant species (fifteen indica-
tor species per ecological area). Different studies in
Patagonia have focused on floristic heterogeneity descrip-
tion (e.g. physiognomy, dominant species, structural hetero-
geneity) (Paruelo et al. 2004), e.g. Oyarzabal et al. (2018)
have re-described the main vegetation types of Patagonia,
and Oliva et al. (2004) made an update for Santa Cruz
Province. However, the available information is still scarce
about plant biodiversity and their relationships with the re-
gional environmental variables. One useful study character-
ized Patagonian ecosystem based on different approaches
using climate as the main proxy, e.g. life zones or functional
variables (e.g. NDVI) (Paruelo et al. 2001; Derguy et al.
2019). These approaches refer to vegetation physiognomy
but not to the observed vegetation cover in the field, where
more particular drivers (e.g. environmental heterogeneity)
can influenced local biodiversity (Li et al. 2020). Our PHS
maps were coincident with different vegetation cover stud-
ies (Oliva et al. 2004; Oyarzabal et al. 2018), where our
PBM allowed to improve ecosystem characterization by
capturing potential biodiversity changes according to the
different indicator species. In a general trend, PBM values
increased with temperature (south to north) and evapo-
transpiration values, where shrublands and steppes were
predominant, while decreased with precipitation and eleva-
tion (west to east), where forests and alpine vegetation pre-
vail (Fig. 1). At the global scale, rainfall is strongly
correlated with species richness along latitudinal gradients
(Kreft and Jetz 2007), e.g. more richness was observed in
rainy areas at lower tropical latitudes. In our study, low PB
values were associated with higher precipitation values,
while medium and high values of PB were related to low
precipitation values. In our study area, the lowest biodiver-
sity was related to dry steppes with the lower rainfall values
located in the inner land. PB values increased across the
rainfall gradient and closeness to seashores. However,
below the close canopy of the mountain forest, the richness
decreased despite the rainfall amounts, and in the upper
mountains, the temperature becomes the limiting factor, in-
fluencing the number of plant species that can survive. Cle-
land et al. (2013) found a positive relationship between
species richness and mean annual precipitation in grass-
lands of the USA. However, in Patagonia (46° 00°'—52° 30"
S), biodiversity is more controlled by the availability of en-
vironmental temperature, where Kreft and Jetz (2007)
found a significant positive effect for vascular plant species
richness, supporting the described results.

Another challenge of this study was to link PB values with
ES supply (e.g. Martinez Pastur et al. 2017) that can help to
understand the role that plant biodiversity plays in the deliv-
ery of these services (MAES 2013) at the regional scale. Bio-
diversity is assumed to be critical for ES supply (MEA 2005),
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where services can be obtained only if ecosystems include
the species richness that guarantees the functional processes
(Cardinale et al. 2011; Thompson et al. 2011; Mori et al.
2017). In fact, some authors indicated that biodiversity is it-
self an ES, because it is the basis for nature-based tourism or
regulation of diseases (Mace et al. 2012). Supporting ES also
had been demonstrated to present a strong relationship with
plant biodiversity (Cardinale et al. 2011; Chen et al. 2018;
Peri et al. 2019a). In this study, the proxies used for each ES
type were soil organic carbon stock (Peri et al. 2018), soil
total nitrogen stock (Peri et al. 2019b), annual net primary
productivity (Zhao and Running 2010), and desertification
index (Del Valle et al. 1998). These proxies were previously
proposed by several authors for similar studies (e.g. Stephens
et al. 2015; Martinez Pastur et al. 2017; Chen et al. 2018;
Wen et al. 2020) and were related with ecosystem functions
and plant biodiversity considering different management sce-
narios (Wang et al. 2017), e.g. Peri et al. (2019a) found that
soil carbon was a powerful predictor for threatened vascular
plant biodiversity in Southern Patagonia. In our study, the
higher values of ES proxies occurred at both extremes of PB
qualities (low and high), e.g. low qualities were related to
Nothofagus forests and high qualities to humid steppes and
shrublands. Experimental studies showed that plant diversity
increased their ES by improving soil microbial diversity and
activity of grasslands (Fornara and Tilman 2008). Native
Patagonian forests presented lower PB values, where high ES
values were mainly related to the environmental conditions
that improve organic residues and soil microbial biomass
(Peri et al. 2016¢, 2018, 2019b). In this context, Peri et al.
(2017) found that N. antarctica forests presented more soil
organic carbon stock than other temperate forests. Provision-
ing ES were mainly related to regional economic activities
(MEA 2005) and were represented here by sheep presence
probability (Pedrana et al. 2010). This proxy increased with
PB values, where humid steppes and shrublands prevail. Both
areas support sheep and cattle livestock grazing (Peri et al.
2016a), where some plant species (e.g. Festuca gracillima)
constitutes about one-third of forage intake during winter
(Oliva et al. 2005). Livestock grazing reduces plant species di-
versity, productivity, and vegetation cover and induces
changes in soil structure and nutrient contents (Jiang et al.
2011; Dlamini et al. 2016). Peri et al. (2016b) indicate a nega-
tive effect on plant biodiversity due to continuous overgraz-
ing in heterogeneous large paddocks in Patagonia. The
steppe vulnerability is widely recognized (Gaitan et al. 2019),
where intensive grazing decreases carbon and nitrogen stocks
and increases desertification, generating losses in the ES sup-
ply (Del Valle et al. 1998; Peri et al. 2016b). The supply of
cultural ES presented complex relationships with biodiversity,
where particular vegetation types (e.g. forests) are closely re-
lated with high provision levels (Martinez Pastur et al. 2016a)
contributing to different dimensions of human well-being
(Vilardy et al. 2011; Russell et al. 2013). In our study,
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aesthetic, existence and local identity were lower than rec-
reational values at high PB qualities. Martinez Pastur et al.
(2016b) identified that most of the cultural ES in Santa
Cruz were influenced by the closeness to water bodies and
mountains (low PB values), while recreational values were
influenced by the accessibility to cities and main routes in
the steppes (low PB values) (Rosas et al. 2019b). Accord-
ing to these results, provisioning ES can generate trade-
offs with the biodiversity conservation at the regional
scale, while cultural ES can produce synergies with the
biodiversity, allowing the creation of natural reserves
(Rosas et al. 2019a).

Several human-related activities in Southern Patagonia
(e.g. livestock) negatively influenced the original ecosys-
tems by modifying the plant biodiversity, soil properties,
and structure (Peri et al. 2013, 2016b, 2016c¢). At the re-
gional level, most of the natural reserves are located
close to the Andes Mountains, protecting mainly native
forests (N. pumilio and N. betuloides) and specific ES re-
lated to tourism (e.g. aesthetic ES) (Martinez Pastur
et al. 2016b). However, N. antarctica forests presented
the highest PB values (Rosas et al. 2019a), and less than
20% of these forests are under formal protection (e.g.
National Parks or Provincial Reserves). This highlights
the importance of conservation strategies on private
lands (e.g. land-sharing strategy), where most of the eco-
nomic activities influence plant biodiversity (Peri et al.
2016b). There is an increasing interest to integrate ES
arguments within management plans, where new strat-
egies (e.g. silvopastoral systems) have been developed to
reconciles the productive needs and requirements of
local people with biodiversity conservation (Peri et al.
2016c). In the other extreme, Patagonian steppes pre-
sented lower natural reserves than any other ecological
region (e.g. Bosques Petrificados Natural Monument and
Monte Le6én National Park), and where most of them
are located near the sea coast. Steppe areas presented
more complex interactions with the environment and
ES; however, a general trend showed that high PB values
are coincident with high values of different ES supplies
(provisioning, regulating, and supporting). For more
than 100 years, livestock grazing influenced and mod-
elled the region (Peri 2011) in large paddocks that varied
from 1000 to 20,000 ha (Ormaechea and Peri 2015), in-
creasing the desertification processes (Del Valle et al
1998). Bjerring et al. (2020) experimentally demonstrated
that the adjustment of the stocking rate or rotational
grazing had a more positive effect on plant biodiversity
and biomass growth than continuous grazing in the
steppes. Some grazing managements, as warm-season
grazing, improve ES delivery and biodiversity conserva-
tion in temperate steppes of northern China (Wang
et al. 2017). This sustainable management reduces graz-
ing intensity using specific areas during summer and
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autumn, and it is considered as an appropriate manage-
ment strategy for maintaining plant species diversity and
soil texture (Cingolani et al. 2005; Bjerring et al. 2020).
In addition, this type of management is more efficient
when some paddocks were excluded (throughout the
year by fencing) due to degradation of ES delivery and
biodiversity in the temperate steppes (Wang et al. 2016).
To date, there are no management strategies that protect
the biodiversity (e.g. land sharing) (Fischer et al. 2014),
where shrublands are identified as an obstacle for live-
stock, e.g. some management proposals promote the re-
moval of the shrubs to increase grass cover (Sola et al.
2016). It is necessary to reconcile these management
proposals and the maintenance of the biodiversity in the
hotspot areas identified in this work. The regional ap-
proach of PBM of the most relevant plants for each re-
gional vegetation type allows us to improve the
knowledge about plant potential habitat suitability and
supports other studies about vegetation description at
the regional level. Moreover, PBM allowed us to relate
plant biodiversity and ES supply and help us to under-
stand their relationships to identify potential negative
impacts and trade-offs with economic activities.

Conclusions

Potential habitat suitability models using the Biomap-
per software allowed us to develop maps of relevant in-
dicator vascular plant species at the landscape level
using the presence data only and environmental vari-
ables (e.g. climate, topography) free availability on the
public internet. ENFA indexes (marginality and
specialization) allowed us to characterize plant habitat
requirements and link them to environmental gradients
of the landscape, helping in categorizing the plants ac-
cording to its distribution in the landscape. The final
map of potential biodiversity synthetized the informa-
tion of the different plant species and assisted to iden-
tify hotspot areas across the province (e.g. mainly in
humid steppes and shrublands). These areas were out-
side of the formal reserve network, and they are not in-
cluded in the conservation strategies implemented in
the region. In addition, the link between potential bio-
diversity and ES allowed us to understand potential
trade-offs and synergies across the landscape and for
the different ecological areas (e.g. from dry steppes to
alpine vegetation). Areas with the greatest biodiversity
values also showed high provisioning ES, and this
spatial congruence determinates potential trade-off
with conservation and other ES supply. The proposals
explored in this paper is an effective tool for areas with
low availability of databases to detect biodiversity hot-
spots and potential trade-offs that can be rapidly incor-
porated into decision-making to raise better spatial
planning for plant biodiversity conservation.
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Appendix 1
Table 2 Codes and taxonomy of the vascular plant species selected for the modelling of potential habitat suitability in Santa Cruz

Province

Species Code Family
Acaena magellanica ACMA Rosaceae
Acaena poeppigiana ACPO Rosaceae
Adesmia volckmannii ADVO Fabaceae
Agrostis capillaris AGCA Poaceae
Agrostis perennans AGPE Poaceae
Anemone multifida ANMU Ranunculaceae
Armeria maritima ARMA Plumbaginaceae
Avenella flexuosa AVFL Poaceae
Azorella prolifera AZPR Apiaceae
Baccharis magellanica BAMA Asteraceae
Berberis empetrifolia BEEM Berberidaceae
Berberis microphylla BEMI Berberidaceae
Blechnum penna-marina BLPE Blechnaceae
Bromus setifolius BRSE Poaceae
Calceolaria uniflora CAUN Calceolariaceae
Carex andina CAAN Cyperaceae
Carex argentina CAAR Cyperaceae
Carex macloviana CAMA Cyperaceae
Chiliotrichum diffusum CHDI Asteraceae
Chuquiraga aurea CHAU Asteraceae
Chuquiraga avellanedae CHAV Asteraceae
Clinopodium darwinii CLDA Lamiaceae
Colobanthus subulatus COsu Caryophyllaceae
Empetrum rubrum EMRU Ericaceae
Ephedra chilensis EPCH Ephedraceae
Escallonia rubra ESRU Escalloniaceae
Festuca argentina FEAR Poaceae
Festuca gracillima FEGR Poaceae
Festuca magellanica FEMA Poaceae
Festuca pallescens FEPA Poaceae
Galium aparine GAAP Rubiaceae
Gaultheria mucronata GAMU Ericaceae
Hordeum comosum HOCO Poaceae
Hordeum pubiflorum HOPU Poaceae
Juncus balticus JUBA Cyperaceae
Lycium chilense LYCH Solanaceae
Microsteris gracilis MIGR Polemoniaceae
Mulguraea tridens MUTR Verbenaceae
Nardophyllum bryoides NABR Asteraceae
Nassauvia glomerulosa NAGL Asteraceae
Nassauvia ulicina NAUL Asteraceae

Osmorhiza chilensis OSCH Apiaceae
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Table 2 Codes and taxonomy of the vascular plant species selected for the modelling of potential habitat suitability in Santa Cruz

Province (Continued)

Species Code Family
Pappostipa chrysophylla PACHR Poaceae
Pappostipa chubutensis PACH Poaceae
Pappostipa ibarii PAIB Poaceae
Pappostipa sorianoi PASO Poaceae
Perezia recurvata PERE Asteraceae
Poa lanuginosa POLA Poaceae
Poa ligularis POLI Poaceae
Poa spiciformis POSP Poaceae
Rytidosperma virescens RYvI Poaceae
Senecio filaginoides SEFI Asteraceae
Viola magellanica VIMA Violaceae

Appendix 2

Table 3 Variables used to analyse the map of potential biodiversity of vascular plant species in Santa Cruz Province

Type Variables Code Unit Data source
Environmental variables Annual mean temperature AMT °C WorldClim™
Max temperature of the warmest month MAXWM °C WorldClim™
Min temperature of the coldest month MINCM °C WorldClim™
Annual precipitation AP mm year’] WorldClim™
Elevation ELE m.asl. DEM@
Distance to lakes DLK km SIT Santa Cruz®®
Distance to rivers DR km SIT Santa Cruz®®
Global potential evapotranspiration EVTP mmyear ' csI@
Normalized difference vegetation index NDVI Addimensional MODIS®
Ecological areas Categories Oliva et al. (2004)
Ecosystem services proxies Soil organic carbon SOC kg m™ Peri et al. (2018)
Soil total nitrogen STN kg m~? Peri et al. (2019b)
Annual net primary productivity ANPP gr Cm? year™' MODIS®
Desertification DES Addimensional Del Valle et al. (1998)
Sheep presence probability SPP SPP km™2 Pedrana et al. (2010)
Aesthetic values AES Addimensional Martinez Pastur et al. (2016b)
Existence values EXS Addimensional Martinez Pastur et al. (2016b)
Local identity values LI Addimensional Martinez Pastur et al. (2016b)
Recreational values REC Addimensional Martinez Pastur et al. (2016b)

(”Hijmans et al. (2005)
@Farr et al. (2007)

®ISIT - Santa Cruz (http://www.sitsantacruz.gob.ar)
“Consortium for Spatial Information (CSI) (Zomer et al. 2008)

JORNL DAAC (2008)
©Zhao and Running (2010)
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Table 4 Environmental variables used for each plant species modelling of the potential habitat suitability in Santa Cruz Province

Code

Variables

AMT MAXWM MINCM

>
h

ELE

DR

NDVI

ACMA
ACPO
ADVO
AGCA
AGPE
ANMU
ARMA
AVFL
AZPR
BAMA
BEEM
BEMI
BLPE
BRSE
CAUN
CAAN
CAAR
CAMA
CHD
CHAU
CHAV
CLDA
COosu
EMRU
EPCH
ESRU
FEAR
FEGR
FEMA
FEPA
GAAP
GAMU
HOCO
HOPU
JUBA
LYCH
MIGR
MUTR
NABR
NAGL
NAUL
OSCH

X X X X X X X X X X X X X X X X X X Xx

X X X X X X X X X X X X X X

<X X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X xX X

X X X X X X

X

<X X X X X X X X X X

<X X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X xX X
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Table 4 Environmental variables used for each plant species modelling of the potential habitat suitability in Santa Cruz Province

(Continued)
Code Variables

AMT MAXWM MINCM AP ELE DLK DR EVTP NDVI
PACHR X X X X X
PACH X X X X
PAIB X X X X X
PASO X X X X X
PERE X X X X
POLA X X X X
POLI X X X X X
POSP X X X X
RYVI X X X X X X
SEFI X X X X X
VIMA X X X X X
Appendix 4

Table 5 Correlation indices among the variables used in the modelling of the potential habitat suitability of plant species in Santa
Cruz Province. Significant correlation values (> 0.80) were identified with one asterisk

MAXWM MINCM AP ELE DLK DR EVTP NDVI
AMT 0.98* -025 043 0.32 063 061 0.96* 0.58
MAXWM - -044 0.54 048 067 0.56 1.00% 0.66
MINCM - -0.59 —-0.85* —041 0.03 -049 —0.55
AP - 0.69 0.39 0.22 0.56 0.51
ELE - 045 0.09 0.53 045
DLK - 0.34 0.68 043
DR - 0.55 0.19
EVTP - 067

AMT annual mean temperature (°C), MAXWM maximum temperature of the warmest month (°C), MINCM = min temperature of the coldest month (°C), AP annual
precipitation (mm year™'), ELE elevation (m.a.s.l), DLK distance to lakes (km), DR distance to rivers (km), EVTP global potential evapotranspiration (mm year™"), NDVI
normalized difference vegetation index
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Table 6 Outputs for each potential habitat suitability model of plant species in Santa Cruz Province. Eigenvalues and percentage of
explained information corresponded to the first four axes

Code E1 E2 E3 E4 Total
ACMA 367.14 (0.67) 174.09 (0.32) 8.80 (0.01) 1.77 (0.00) (1.00)
ACPO 39.73 (0.86) 439 (0.10) 0.99 (0.02) 053 (0.01) (0.99)
ADVO 132.10 (0.80) 26.39 (0.16) 379 (0.02) 1.65 (0.01) 0.99)
AGCA 817.90 (0.75) 250.35 (0.23) 11.88 (0.01) 6.13 (0.01) (1.00)
AGPE 50.86 (0.42) 63.73 (0.53) 4.06 (0.03) 0.79 (0.01) 0.99)
ANMU 170.19 (0.54) 136.21 (0.44) 4.51 (0.01) 1.99 (0.01) (1.00)
ARMA 2 (0.88) 20.80 (0.10) 242 (0.01) 1.70 (0.01) (1.00)
AVFL 376.28 (0.65) 187.52 (0.33) 8.80 (0.02) 2.22 (0.00) (1.00)
AZPR 6 (0.68) 43.83 (0.29) 3 (0.01) 1.71 (0.01) (0.99)
BAMA 16.23 (0.13) 96.34 (0.79) 7.96 (0.06) 1.51 (0.01) (0.99)
BEEM 655.38 (0.76) 19532 (0.23) 643 (0.01) 1.01 (0.00) (1.00)
BEMI 167.51 (0.92) 9.31 (0.05) 3.87(0.02) 1.62 (0.01) (1.00)
BLPE 202.91 (0.60) 125.95 (0.37) 9.71 (0.02) 1.98 (0.01) (1.00)
BRSE 2313 (0.74) 354 (0.11) 2.26 (0.07) 1.05 (0.03) (0.95)
CAUN 19.16 (0.44) 21.05 (048) 241 (0.06) 0.86 (0.02) (1.00)
CAAN 8045 (0.84) 9.53 (0.10) 3.00 (0.03) 1.52 (0.02) (0.99)
CAAR 65.15 (0.87) 7.35 (0.10) 7 (0.01) 047 (0.01) 0.99)
CAMA 13.26 (0.16) 64.91 (0.80) 2.28 (0.03) 1.02 (0.01) (1.00)
CHDI 164.78 (043) 210.76 (0.55) 7.17 (0.02) 1.03 (0.00) (1.00)
CHAU 423 (0.30) 92.55 (0.66) 298 (0.02) 225 (0.02) (1.00)
CHAV 45.04 (0.20) 176.50 (0.78) 322 (0.01) 237 (0.01) (1.00)
CLDA 19.05 (0.45) 19.64 (0.47) 7 (0.05) 1.27 (0.03) (1.00)
COsuU 13.87 (0.75) 2.80 (0.15) 1 (0.06) 0.77 (0.04) (1.00)
EMRU 442.73 (0.67) 204.03 (0.31) 8.64 (0.01) 1.35 (0.00) (0.99)
EPCH 88.87 (0.95) 2.04 (0.02) 3(0.02) 0.50 (0.01) (1.00)
ESRU 419.94 (0.70) 173.28 (0.29) 5.82 (0.01) 2.37 (0.00) (1.00)
FEAR 144.56 (0.91) 11.55 (0.07) 1(0.01) 0.45 (0.00) (0.99)
FEGR 5045 (0.74) 12.90 (0.19) 2.71 (0.04) 1.25 (0.01) (0.98)
FEMA 13.26 (0.39) 1462 (043) 442 (0.13) 143 (0.04) 0.99)
FEPA 88.61(0.92) 447 (0.05) 7 (0.01) 0.88 (0.01) (0.99)
GAAP 448.05 (0.72) 166.46 (0.27) 8.73 (0.01) 1.49 (0.00) (1.00)
GAMU 134.73 (0.61) 79.67 (0.36) 367 (0.02) 1.34 (0.01) (1.00)
HOCO 7.59 (0.74) 1.36 (0.13) 0.84 (0.08) 049 (0.05) (1.00)
HOPU 21342 (0.93) 747 (0.03) 368 (0.02) 2.75(0.01) (0.99)
JUBA 37.86 (0.80) 461 (0.10) 2.06 (0.05) 0.77 (0.02) 0.97)
LYCH 53.84 (0.73) 11.63 (0.16) 778 (0.11) 1 (0.00) (1.00)
MIGR 58.96 (0.89) 5.18 (0.08) 8 (0.02) 0.83 (0.01) (1.00)
MUTR 55.68 (0.78) 12.56 (0.18) 2.56 (0.03) 1.02 (0.01) (1.00)
NABR 60.12 (0.89) 540 (0.08) 093 (0.01) 0.65 (0.01) 0.99)
NAGL 94.87 (0.93) 3.38 (0.03) 2.31(0.02) 1.07 (0.01) (0.99)
NAUL 88.22 (0.95) 243 (0.03) 2 (0.01) 1.11 (0.01) (1.00)
OSCH 342.00 (0.57) 249.13 (041) 897 (0.02) 1.70 (0.00) (1.00)
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Table 6 Outputs for each potential habitat suitability model of plant species in Santa Cruz Province. Eigenvalues and percentage of
explained information corresponded to the first four axes (Continued)

Code E1 E2 E3 E4 Total
PACHR 7637 (0.91) 4.02 (0.05) 1.97 (0.02) 1.03 (0.01) (0.99)
PACH 35.90 (0.38) 53.25(0.57) 2.92 (0.03) 143 (0.02) (1.00)
PAIB 97.69 (0.90) 6.92 (0.06) 3.02 (0.03) 1.08 (0.01) (1.00)
PASO 122.34 (0.82) 20.28 (0.14) 361 (0.02) 1.49 (0.01) (0.99)
PERE 11.68 (0.69) 2.56 (0.15) 1.53 (0.09) 1.10 (0.07) (1.00)
POLA 32.29 (0.89) 263 (0.07) 22 (0.03) 036 (0.01) (1.00)
POLI 168.24 (0.94) 7.89 (0.04) 1.33 (0.01) 1.07 (0.01) (1.00)
POSP 14.25 (0.72) 357 (0.18) 1.37 (0.07) 0.57 (0.03) (1.00)
RYVI 63.77 (0.90) 3.12 (0.04) 52 (0.02) 1.01 (0.01) 0.97)
SEFI 80.81 (0.95) 2.20 (0.03) 1.32 (0.01) 0.56 (0.01) (1.00)
VIMA 4231 (0.28) 100.94 (0.66) 7.01 (0.05) 2.70 (0.01) (1.00)
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Appendix 6
Table 7 Cross-validation values for each potential habitat suitability model of plant species of Santa Cruz Province

Code B P(B =0) Bcont(20) AVI Cvi
ACMA 0.76 0.20 0.53 0.51 0.50
ACPO 0.21 0.33 0.04 049 0.15
ADVO 0.29 047 0.04 048 0.30
AGCA 046 048 0.37 0.53 0.52
AGPE 061 0.35 0.40 0.55 0.52
ANMU 0.58 0.27 0.22 0.55 0.54
ARMA 0.84 0.17 0.60 0.50 047
AVFL 0.74 0.26 0.57 0.52 0.51
AZPR 0.84 0.17 044 0.55 0.51
BAMA 0.74 0.22 0.55 049 048
BEEM 0.74 0.22 041 051 0.50
BEMI 0.72 0.28 0.55 049 047
BLPE 0.94 0.06 0.64 052 052
BRSE 0.23 0.39 -003 035 0.10
CAUN 0.50 042 0.12 044 0.29
CAAN 053 039 0.61 051 049
CAAR 042 0.50 0.05 048 0.22
CAMA 0.18 049 -005 0.53 0.51
CHDI 0.52 048 0.30 048 047
CHAU 033 0.54 0.21 051 037
CHAV 0.29 047 0.05 0.60 046
CLDA 0.15 0.57 0.12 040 0.19
COsuU 0.34 0.52 0.13 047 0.30
EMRU 0.39 047 0.15 042 041
EPCH 052 0.40 0.09 051 0.28
ESRU 0.78 0.22 0.63 0.52 0.51
FEAR 0.20 045 0.12 0.52 0.31
FEGR 0.90 0.10 0.68 0.50 048
FEMA 042 0.46 0.55 0.50 048
FEPA 047 0.15 0.37 0.52 045
GAAP 0.65 0.35 037 049 048
GAMU 0.90 0.10 0.74 049 049
HOCO 0.10 0.50 -0.10 0.51 0.12
HOPU 052 0.29 0.28 0.55 053
JUBA 0.13 044 -0.04 0.52 0.39
LYCH 0.16 0.60 0.04 0.65 0.50
MIGR 0.23 043 0.20 0.53 0.30
MUTR 0.26 0.58 0.08 048 0.26
NABR 0.32 041 0.19 0.53 0.28
NAGL 048 0.36 0.10 0.50 0.25
NAUL 0.26 0.62 -0.15 047 0.21
OSCH 0.36 0.64 -007 042 041

PACHR 0.23 063 -003 049 0.20
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Table 7 Cross-validation values for each potential habitat suitability model of plant species of Santa Cruz Province (Continued)

Code B P(B =0) Bcont(20) AVI Cvi
PACH 0.18 0.59 0.06 0.57 0.35
PAIB 042 043 0.20 0.53 0.32
PASO 0.35 0.59 0.07 0.54 0.35
PERE 0.76 0.20 047 0.35 0.25
POLA 0.19 0.40 -007 053 0.17
POLI 0.16 049 -0.14 0.53 0.22
POSP 0.19 0.19 -007 0.51 0.15
RYVI 0.25 063 0.02 043 0.24
SEFI 0.62 0.26 0.18 044 0.22
VIMA 0.84 0.16 0.63 0.50 0.50

Values were presented as mean and standard deviation
B Boyce index, P(B = 0) proportion of validation points, Bcont(20) continuous Boyce index, AV/ absolute validation index, CV/ contrast validation index



Rosas et al. Ecological Processes

Appendix 7

(2021) 10:53

Page 23 of 26

70°0'W 70°0'W

70°0'W

50°0'S
50°0'S

50°0'S

50°0'S

50°0'S

70°0'W

70°0'W

50°0'S

50°0'S

50°0'S

50°0'S
50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

70°0'W 70°0'W

70°0'W

70°0'W

50°0'S
50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

70°0'W

50°0'S

50°0'S

70°0'W 70°0'W

50°0'S
50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

70°0'W

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S
50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S

50°0'S
50°0'S

50°0'S

50°0'S

70°0'W

AR <l .r‘

50°0'S
50°0'S

50°0'S

Fig. 7 Potential habitat suitability (PHS) maps of plants species in Santa Cruz province, where light grey showed the lowest potential and black
showed the highest potential areas (0-100%). A, Acaena magellanica; B, Acaena poeppigiana; C, Adesmia volckmannii; D, Agrostis capillaris; E,
Agrostis perennans; F, Anemone multifida; G, Armeria maritima; H, Avenella flexuosa; |, Azorella prolifera; J, Baccharis magellanica; K, Berberis
empetrifolia; L, Berberis microphylla; M, Blechnum penna-marina; N, Bromus setifolius; O, Calceolaria uniflora; P, Carex andina; Q, Carex argenting; R,
Carex macloviana; S, Chiliotrichum diffusum; T, Chuquiraga aurea; U, Chuquiraga avellanedae; V, Clinopodium darwinii; W, Colobanthus subulatus; X,
Empetrum rubrum; Y, Ephedra chilensis; Z, Escallonia rubra; AA, Festuca argentina; AB, Festuca gracillima; AC, Festuca magellanica; AD, Festuca
pallescens; AE, Galium aparine; AF, Gaultheria mucronata; AG, Hordeum comosum; AH, Hordeum pubiflorum; Al, Juncus balticus; AJ, Lycium chilense;
AK, Microsteris gracilis; AL, Mulguraea tridens; AM, Nardophyllum bryoides; AN, Nassauvia glomerulosa; AO, Nassauvia ulicina ; AP, Osmorhiza chilensis;
AQ, Pappostipa chrysophylla; AR, Pappostipa chubutensis; AS, Pappostipa ibarii; AT, Pappostipa sorianoi; AU, Perezia recurvata; AV, Poa lanuginosa;
AW, Poa ligularis; AX, Poa spiciformis; AY, Rytidosperma virescens; AZ, Senecio filaginoides; BA, Viola magellanica
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Abbreviations

AES: Aesthetic values; AMT: Annual mean temperature; ANOVA: Analysis of
variance; ANPP: Annual net primary productivity; AP: Annual precipitation;
AVI: Absolute validation index; B: Boyce index; Bcont: Continuous Boyce
index; CP: Central plateau steppes; CVI: Contrast validation index;

DES: Desertification index; DLK: Distance to lakes; DMGS: Dry Magellanic
grass steppes; DR: Distance to rivers; DS: Dry steppes; ELE: Elevation;

ENFA: Environmental niche factor analysis; ES: Ecosystem services;

EVTP: Global potential evapotranspiration; EXS: Existence values;

FAMA: Forestal, Agricola y Manejo del Agua of INTA EEA-Santa Cruz;

FAV: Forests and alpine vegetation; HMGS: Humid Magellanic grass steppes;
HS: Humid steppes; LI: Local identity values; MAXWM: Max temperature of
the warmest month; MINCM: Min temperature of the coldest month;

MP: Mountains and plateaus; N: Presence points; NDVI: Normalized difference
vegetation index; P: Proportion of validation points; PB: Potential biodiversity;
PBM: Potential biodiversity map; PEBANPA: Parcelas de Ecologia y
Biodiversidad de Ambientes Naturales en Patagonia Austral; PHS: Potential
habitability suitability; REC: Recreational values; SAG: Sub-Andean grasslands;
SL: Shrublands; SOC: Soil organic carbon; SPP: Sheep presence probability;
SSJG: Shrub-steppe San Jorge Gulf; STN: Soil total nitrogen
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