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Abstract 

Background:  Plant nitrogen use efficiency (NUE) is an important ecological indicator that reflects the capacity of a 
plant to transform nitrogen into production, which is essential for further elucidating plant growth and terrestrial eco-
system productivity. Although there are a growing number of studies that address NUE changes at local scales, the 
variations of NUE over large spatial scales remain unclear. In this study, we analyzed the geographic patterns of NUE 
and explored its phylogenic and environmental drivers across 1452 species at 1102 sites in China.

Results:  NUE tended to decrease with latitude (r = − 0.56), whereas it increased with longitude (r = 0.54), and varied 
widely in different ecosystems and plant life forms. Furthermore, NUE was negatively correlated with plant foliar 
phosphorus concentration (r = − 0.53), soil pH (r = − 0.10), soil total phosphorus (r = − 0.13) and available phos-
phorus (r = − 0.05), but positively with the mean annual temperature (r = 0.32), annual precipitation (r = 0.27), and 
aridity index (r = 0.26). NUE was significantly altered with phylogeny and evolved toward a lower value (r = − 0.28), 
which may have been due to increasing nitrogen deposition and fixation in biogeochemical evolution. Overall, the 
combination of foliar phosphorus concentration, phylogeny, climate, and soil properties accounted for 52.7% of the 
total variations of NUE. In particular, foliar phosphorus concentration was the most important factor, whereas plant 
evolutionary history was second in contributing to NUE variations.

Conclusions:  Our study emphasizes the pivotal role of plant stoichiometry and phylogeny in nitrogen cycling and 
suggests incorporating them into earth system models to better understanding plant growth and nitrogen cycling in 
the context of environmental changes.

Keywords:  Nitrogen use efficiency, Foliar phosphorus, Geographic pattern, Stoichiometry, Plant phylogeny, Climate, 
Soil properties
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Introduction
The efficient use of nitrogen (N) is essential for plants, 
as it is one of the most limiting factors for plant growth 
(Pellegrini 2016). Plant nitrogen use efficiency (NUE) 
is defined as the net dry mass production per unit of N 
uptake, which is extensively employed for research into 

plant N use strategies (Hirose 2011). Plants with higher 
NUE can better integrate limited N resources to gain 
advantages in barren environments (Vitousek 1982). Cur-
rently, human-generated N is continuously introduced 
into the environment, which has led to a general increase 
in atmospheric N deposition (Canfield et al. 2010; Peñue-
las et  al. 2012). Simultaneously, increasing global car-
bon dioxide (CO2) levels promote plant photosynthesis, 
which induces plants to absorb additional N from the 
soil to support their growth (Ainsworth and Rogers 2007; 
Reich et al. 2006a, b). Hence the effects of global CO2 fer-
tilization largely depend on the availability of nutrients 
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(LeBauer and Treseder 2008; Reich et al. 2006a, b; Wang 
et  al. 2020). However, the correlation between the 
increased atmospheric N deposition and plant N demand 
is uncertain, which increases the complexity of plant N 
use strategies.

The limitation of N on primary plant productivity is 
common in most ecosystems worldwide (Agren et  al. 
2012; Du et  al. 2020; Elser et  al. 2007; Zhu et  al. 2016). 
Thus, plant N use strategies play a critical role in deter-
mining primary plant productivity and ecosystem 
responses to global environmental changes. Several pre-
vious studies have examined NUE and its responses to 
climate and soil factors in some ecosystems (Fu et  al. 
2019; Hirose 2012; Yin et al. 2021; Zuo et al. 2016). How-
ever, exactly how NUE changes at large scales and what 
are its determinants remain unknown for the most part.

The NUE of wild plant species varies greatly in the 
natural environment (Chapin 1980), which may be due to 
changes in soil properties, climate conditions, and other 
environmental factors. Among these factors, the relation-
ship between NUE and the availability of soil N has been 
extensively explored. Studies on coniferous pine at vari-
ous sites found that NUE decreased as the availability of 
N increased (Vitousek 1982), as well as when plants were 
subjected to high N concentrations (Aerts and Decaluwe 
1994). These observations appeared to confirm that 
plants growing in soils with poor N can adapt to these 
environments by improving their NUE; however, this rule 
is not always the case. In addition to the availability of 
soil nutrients, when plant growth is limited by other fac-
tors, NUE will also change (Chapin 1980; Yasumura et al. 
2002). For example, several studies reveal that tempera-
ture can affect both the foliar N content and NUE (Chad-
wick et al. 1999). Plant nitrogenase reduces activity at low 
temperatures and inactivates at high temperatures (Weih 
2001). Precipitation can also impact NUE by modifying 
both plant and soil moisture conditions, as appropriate 
water conditions benefit N exchange and use (Fu et  al. 
2019; Wright et  al. 2001; Yuan et  al. 2006). Conversely, 
NUE will be limited under drought conditions although 
N is available. In the future, global warming and drought 
will continue to affect NUE (Estiarte and Peñuelas 2015).

In addition to environmental factors, stoichiometry 
constraints may also impact NUE. There are specific 
proportional relationships between the various ele-
ments of plants that enable them to maintain stable 
stoichiometric characteristics when they are subjected 
to environmental changes (McGroddy et al. 2004; Zeng 
et  al. 2013). In particular, the N and phosphorus (P) 
of plants have a strict proportional relationship. For 
instance, most plants have a close N:P ratios and N–P 
scaling exponents (Reich and Oleksyn 2004; Reich 
et  al. 2010; Tian et  al. 2017), to keep their nutrient 

composition relatively constant regardless of chang-
ing supplies of nutrients in the environment, which is 
referred to as stoichiometric homeostasis (Sterner and 
Elser 2002; Wang et  al. 2018). This relationship limits 
the nutrient cycling process of plants (Elser and Ham-
ilton 2007; Gressel and McColl 1997; Vitousek and 
Hobbie 2000). Changes in the availability of P will sig-
nificantly influence plant growth and NUE (Hong et al. 
2013). Nevertheless, the relative importance of plant 
stoichiometry constraints versus environmental factors 
on NUE remains unclear.

Many biologists have assumed negligible evolution-
ary effects on plant ecology as evolution occurs over 
such long time scales (Lewontin 2000; Orians 1962). 
However, evidence has revealed that evolution can 
operate over a range of temporal and spatial scales 
(Urban et al. 2020). Recently, the impacts of plant phy-
logeny on plant traits have been observed in many 
studies (Caruso et al. 2020; Ma et al. 2018; Zhang et al. 
2020). The conservative phylogenetic hypothesis pro-
poses that related species have higher trait similarities 
than distant evolutionary species (Losos 2008). Hirose 
(1975) compared the NUE of different plant species and 
found that the NUE of perennial plants was higher than 
that of annual plants, and are generally more common 
than annual plants in poor nutrient environments. This 
type of natural selection for plant traits is widespread 
(Caruso et  al. 2020; Zhan et  al. 2018). A recent study 
found a significant phylogenetic signal in the C:N stoi-
chiometry of plant leaves and branches, and they both 
showed a low C:N evolutionary trend (Zhang et  al. 
2020). However, current research on NUE associated 
phylogeny has focused more on crop cultivation from 
the perspective of genetic engineering (Cormier et  al. 
2016; Liu et  al. 2020). The large-scale phylogenetic 
study of NUE in wild plants is still lacking.

China is suitable for conducting large-scale NUE 
research as it is home to various types of terrestrial 
ecosystems and plant species across tropical and cold 
regions. This study was designed to investigate the spa-
tial patterns of NUE and its controlling factors at the 
national scale. We analyzed the NUE of 1452 species 
at 1102 sites in China, and collected relevant climate 
and soil data to address the following questions: (1) 
how does NUE change geographically, or across differ-
ent ecosystem types, or plant life forms at large spatial 
scales? (2) Are there any specific observable phyloge-
netic signals or evolutionary directions for NUE vari-
ations that occur when plants interact with their 
environment? (3) What are the main controlling factors 
of NUE: climate, soil properties, plant stoichiometry, or 
phylogeny?
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Materials and methods
Data collection and preprocessing
We developed a paired N and P concentrations database 
that was derived from fully developed green leaves, with 
detailed site information in China (Tian et al. 2019a). This 
data set was partly compiled from an open data source 
the TRY-Plant Trait Database (Fraser 2020), an inte-
grated data set of China established by Han et al. (2005) 
and four major original sampling studies (He et al. 2008; 
Chen et al. 2013; Yang et al. 2016; Luo 2017). The data-
base provides paired records of N and P concentrations 
in green leaves from July to August 2000–2016, which 
contains matched information of geographical location 
(longitude, latitude), environmental factors [mean annual 
temperature (MAT), mean annual precipitation (MAP)], 
life forms (ferns, woody plants, herbs, shrubs, vines, and 
subshrubs), and taxonomic data (family, genus, and spe-
cies). The MAT ranged from −  10.4 to 24.8  °C, whereas 
the MAP ranged from 18 to 2366  mm. Furthermore, to 
represent soil water conditions more comprehensively, 
we added the Aridity Index (AI) from the Global Arid-
ity Index and Potential Evapotranspiration (ET0) Climate 
Database v2 with a grid resolution of 0.5° × 0.5° accord-
ing to the latitude and longitude (Trabucco and Zomer 
2019). According to database methodology, AI was cal-
culated as

where MA-Pr = mean annual precipitation, 
MA-ET0 = mean annual reference evapotranspira-
tion. Therefore, lower AI values indicated drier climatic 
conditions.

We also extracted soil data, including soil texture (per-
centage content of clay, sand, and silt), soil pH, total 
nitrogen content (TN), total phosphorus content (TP), 
available nitrogen content (AN), available phosphorus 
content (AP), exchangeable cation content (CEC) and 
soil organic matter content (SOM) from The Soil Data-
base of China for Land Surface Modeling database with a 
grid resolution of 0.5° × 0.5° according to the latitude and 
longitude (Shangguan et al. 2013). Since the physical and 
chemical properties of topsoil are most related to plant 
physiological activities, we extracted the soil data at the 
depth of 0–4.5 cm.

Data pertaining to the Chinese terrestrial ecosystem 
types were derived from The Spatial distribution data of 
China’s terrestrial ecosystem types (http://​www.​resdc.​cn/​
data.​aspx?​DATAID=​105), which includes seven ecosys-
tem categories: forest, desert, grassland, farmland, settle-
ment, wetland, and others (Additional file 1: Fig. S1).

To analyze the geographical patterns of plant traits, the 
geometric means of foliar N and P concentrations data 

(1)AI =
MA-Pr

MA-ET0

for each species at each site under three taxonomic lev-
els (family, genus, species) were initially calculated (Han 
et  al. 2005; Reich and Oleksyn 2004). As all leaf traits 
and soil nutrients data were approximately log-normally 
distributed, we converted the data to natural logarithms 
for plant and soil N and P concentrations to attain the 
approximate normality and homogeneity of residuals. 
The final data set contained 1102 sites from seven dif-
ferent ecological regions (Additional file 1: Fig. S1), with 
1452 species in 628 genera and 123 families (Additional 
file 1: Fig. S2).

Statistical analysis
First, we used the definition of plant N use efficiency 
(NUE) as the flux ratio between plant dry matter produc-
tion (ΔW) and N uptake (ΔN) (Chapin 1980; Yin et  al. 
2021). This definition is also known as N utilization effi-
ciency (the ratio of plant yield to plant N) (Congreves 
et al. 2021; Dobermann et al. 2007; Moll et al. 1982):

Though plant N uptake could be allocated to different 
organs, such as leaves, roots, branches, and stems, most 
of plant N is allocated to leaves and is directly involved 
in photosynthesis (Evans 1989). Leaf N concentration 
influences the entire plant N concentration consequently 
plant growth. Thus, an analysis of N use at the leaf level 
facilitates its elucidation at the plant level NUE (Hirose 
2012; Heberling and Fridley 2013). Here, we assume that 
the N concentration of leaves is NC, the dry matter is 
ΔW, and the N uptake is:

Then, a useful index of NUE can be derived (i.e., the 
inverse of nitrogen concentration of leaves) (An et  al. 
2005; Vitousek 1982; Zuo et al. 2016):

Second, we tested differences of NUE between eco-
systems and between plant life forms using one-way 
ANOVA analysis. General linear regression models were 
employed to analyze the relationship between NUE and 
foliar phosphorus, geographic factors (latitude and lon-
gitude), climatic factors (MAT, MAP, AI), soil proper-
ties (pH, Clay, Sand, Silt, TN, TP, AN, AP, CEC, SOM), 
and plant evolution time, respectively. Following regres-
sion analysis, the random forest algorithm was utilized 
to explore the relative importance of different explana-
tory variables to NUE (Wang et  al. 2019), which was 
performed with the R package “randomForest” (Breiman 
2001). Random forest has been proven to be an effective 

(2)NUE =

�W

�N

(3)�N = �W× NC

(4)NUE = 1/NC

http://www.resdc.cn/data.aspx?DATAID=105
http://www.resdc.cn/data.aspx?DATAID=105
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machine learning tool due to its ability to identify com-
plex nonlinear or multicollinearity relationships between 
variables (Reichstein et  al. 2019) and deal with overfit-
ting (Xu et al. 2018). Then, we used “IncNodePurity” as 
a measure of variable importance (this method is based 
on the total decrease in node impurities from splitting 
on the variable, averaged over all trees). The significance 
level of all analyses was α = 0.05.

We employed phylogenetic analysis to test the rela-
tionship between NUE and its phylogeny/evolution. We 
first used the R package “plantlist” (Zhang 2018) to con-
firm the species names followed by the APG III phylo-
genetic system. Next, the family/genus/species list data 
were imported into the R package “phytools” (Revell 
2012) to construct the phylogenetic trees (Qian and Jin 
2016), which was visualized by the iTOL tool (Interactive 
Tree Of Life) (Letunic and Bork 2019). Subsequently, we 
defined the evolution time of a given plant family using 
the earliest diverging genus within that family (Ma et al. 
2018; Zhang et  al. 2020). We calculated Blomberg’s K 
statistic using the ‘Picante’ package in R and evaluated 
the strength of the phylogenetic signal for NUE (Kem-
bel et al. 2010). A large Blomberg’s K value was thought 
to indicate phylogenetic conservatism (Blomberg et  al. 
2003). Data preprocessing and statistical analyses were 
performed using R software (version 3.6.1) and ArcMap 
10.5.

Results
Spatial pattern of NUE in China
NUE tended to decrease from low to high latitudes 
(r = −  0.56, p < 0.05; Fig.  1a), whereas NUE increases 

with the longitude in China (r = 0.54, p < 0.05; Fig.  1b). 
The mean NUE in terrestrial plants in China was 
53.28 g g−1 N (SD = 24.11).

There were significant differences in the NUE between 
different ecosystems (p < 0.05) (Fig.  2a). The mean NUE 
was 65.08  g  g−1  N (SD = 32.64) in the settlement eco-
system, which was higher than those of the farmland 
ecosystem (58.71  g  g−1  N, SD = 31.40), forest ecosys-
tem (54.22  g  g−1  N, SD = 21.54), wetland ecosystem 
(53.11  g  g−1  N, SD = 17.53), and grassland ecosystem 
(49.53 g g−1 N, SD = 21.24). The mean NUE was lowest in 
the desert ecosystem (48.48 g g−1 N, SD = 21.72).

There were also significant differences in the NUE 
between different life forms (p < 0.05) (Fig. 2b). The aver-
age NUE was the greatest in fern plants (98.64 g  g−1 N, 
SD = 34.20), and the average NUE was lowest in her-
baceous plants (49.85  g  g−1  N, SD = 21.42). The aver-
age NUE of other life forms were: subshrub plants 
(73.22 g g−1 N, SD = 31.36), woody plants (59.27 g g−1 N, 
SD = 26.73), vine plants (53.39 g  g−1 N, SD = 50.11) and 
shrub plants (51.45 g g−1 N, SD = 20.29).

Changes in NUE with plant phylogeny
We constructed a phylogenetic tree using NUE data 
(Additional file  1: Fig. S2). Species shown at closer dis-
tances on the tree represent a closer genetic relationship, 
where the lengths of the tree branch indicate the evolu-
tionary history of the species. Blomberg’s K method was 
employed to calculate the phylogenetic signals of NUE. 
At the taxonomic level of genera, significant phylogenetic 
signals of NUE were observed (K = 0.746, p < 0.05), which 
indicated that NUE and plant evolutionary history were 
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intimately linked. We then tested the role of evolution-
ary history in NUE and found that NUE decreased tem-
porally with evolution, that is, the plant evolved toward a 
lower NUE (r = − 0.28, p < 0.05) (Fig. 3).

Controlling factors for the variations of NUE
NUE was negatively related to the concentration of plant 
foliar P (r = – 0.53, p < 0.05). Of the climatic factors, NUE 
significantly increased with MAT (r = 0.32, p < 0.05) and 

MAP (r = 0.27, p < 0.05). In addition, NUE was positively 
related to AI (r = 0.26, p < 0.05) (Fig. 4; Additional file 1: 
Figs. S3, S4).

Of the soil properties, NUE decreased slightly with soil 
pH (r = − 0.10, p < 0.05) and soil sand content (r = − 0.11, 
p < 0.05). Moreover, NUE significantly increased with soil 
clay content (r = 0.17, p < 0.05), but did not significantly 
change with soil silt content (Additional file  1: Figs. S5, 
S6).

Specifically, NUE was slightly decreased with TP 
(r = −  0.13, p < 0.05), AP (r = −  0.05, p < 0.05), and CEC 
(r = −  0.09, p < 0.05). There was no significant relation-
ship between NUE and TN, AN, or SOM (all p > 0.05) 
(Additional file 1: Figs. S7, S8).

Random forest analysis revealed that plant foliar P was 
the most dominant predictor that affected NUE, while 
the second most important factor was the evolution time, 
and climatic factors slightly predicted it. However, all soil 
properties explained little in the way of NUE variations 
(Fig. 5).

Discussion
This study revealed the large-scale variations and con-
trolling factors of the NUE across different ecosystems 
and plant life forms in China. The mean NUE in Chi-
na’s terrestrial ecosystem was 53.31 ± 24.40  g  g−1  N, 
which indicated that every unit of N uptake produced 
about 53 units of dry matter. Significant changes in 
NUE along latitude and longitude suggested that the 
spatial variations of NUE were related to zonal fac-
tors, such as temperature, moisture, and other climate 
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factors (Liu et  al. 2020; Reich and Oleksyn 2004). In 
China, temperature gradually decreases from low lati-
tude to high latitude and precipitation becomes less as 
longitude decreases (Piao et al. 2010), while low tem-
perature and low precipitation significantly inhibit 
NUE (Fig.  4). Among different ecosystems, the spa-
tial patterns of NUE were similar to the net primary 
productivity (NPP) in China (Chen et  al. 2011). Eco-
systems with a high NUE may have high NPP. Thus, 
the NUE may be an important ecological indicator 
that reflects a plant’s capacity to transform N into 
production. The difference in NUE between differ-
ent life forms may be related to the plant root: shoot 
ratios (Jackson et  al. 1996). For example, herbaceous 
plants often have large root:shoot ratios and tend to 
be nutrient conservative (Guerrero-Ramirez et  al. 
2021); thus, the NUE of herbaceous plants was low, 

while fern plants and woody plants exhibited higher 
NUE (Fig. 2).

Distinct from the traditional viewpoint that soil N 
availability determines NUE, we observed that the plant 
foliar P concentration contributed the most. The evolu-
tionary history of plants contributed indirectly to the var-
iation in NUE, whereas climate and soil properties played 
a less significant role. Our results emphasized the neces-
sity of incorporating plant stoichiometry constraints and 
phylogenetic data into biogeochemical models to better 
predict N cycling.

Foliar phosphorus content primarily impacted NUE
Among all of the factors that affected NUE, plant foliar 
P content was the most important determinant (Fig. 5). 
Plant foliar P was negatively correlated to NUE (Fig. 4a; 
Additional file  1: Figs. S3a, S4), which may be due to 
the following mechanisms. First, plant P content was 

Fig. 4  Bivariate relationships between NUE and foliar P (a), MAT (b), MAP (c) and AI (d). The green line is the mean slope and shaded grey areas are 
95% confidence intervals of the slope by a linear model
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intimately related to N content due to their stoichiomet-
ric homeostasis (Koerselman and Meuleman 1996). This 
is because N is allocated to protein synthesis, whereas P 
is allocated to rRNA for maintaining any specific quantity 
of protein (Niklas et al. 2005). Therefore, the ratio of N to 
P in plants has a limited range (Reich and Oleksyn 2004), 
where the geometric means of N:P ratios was 15.8 glob-
ally, although it had both biological and ecological varia-
tions (SD = 5.2) (Tian et al. 2017, 2019b), while N:P ratios 
in our database were 16.49 ± 7.29 (Additional file 1: Fig. 
S9). Thus, plants with high P content generally maintain 
a high N content, which translates to a low NUE (Chapin 
1980; Yin et al. 2021). Second, there is a cooperative rela-
tionship between N and P, which together limit the nutri-
ent cycling processes of plants (Elser and Hamilton 2007; 
Gressel and McColl 1997; Vitousek and Hobbie 2000). 
P is an essential element for the synthesis of ATP and 
plants consume much energy to absorb N through active 
transport (Reed et  al. 2010; Simpson and Burris 1984). 
Therefore, the P content of plants affects their capacity 
to absorb N. For example, an efficient P-acquisition strat-
egy, carboxylate release can promote soil P mobilization 
(Lambers et al. 2013, 2015) and may also affect N cycling 

through accelerating soil organic matter decomposition 
which is called a priming effect (Zhu et al. 2014). Besides, 
P can directly control NUE by affecting N processes, such 
as mineralization, organic matter decomposition (Yu 
et al. 2017), and fixation (Pons et al. 2007). Thus, P-rich 
plants have better N uptake capacity. While the increase 
in total N content of plant is not as fast as the increase in 
N uptake, which causes the N mean residence time (the 
ratio of total N to N uptake) to decrease (Hirose 2011; 
Zhu et  al. 2020). Low mean residence time means that 
the same N can only fix C for a shorter time, which leads 
to a decrease in NUE. Otherwise, when plants lack P they 
may absorb less N, which induces them to improve N use 
efficiency to overcome this disadvantage.

Another view suggests that the interactions between 
N and P do not always exist. For example, Schleuss et al. 
(2020) found that P had no significant impact on the 
aboveground N stocks or N fixation processes of plants. 
This may have been due to that the effects of P on NUE 
being dependent on different levels of N limitation. 
Although the addition of P had no significant effects on 
foliar N and NUE under low N conditions, its addition 
enhanced the plant N content as plant growth gradually 
transitions from N limitation to P limitation under high 
N conditions (Long et al. 2016).

Currently, imbalances in N:P ratios initiated by cli-
mate change and anthropogenic activities were found in 
the global ecosystems, which affected a series of ecosys-
tem structures and functionalities (Delgado-Baquerizo 
et  al. 2013; Peñuelas et  al. 2013). In general, N:P ratios 
are increasing, and ecosystems tend to be P limited 
rather than N limited (Du et  al. 2020; Peñuelas et  al. 
2020) (Additional file  1: Fig. S9). In this case, NUE will 
be more dependent on the availability of P, as revealed in 
this study. Therefore, in the future, the important role of 
foliar P should be considered more in the study of NUE 
and N cycles.

Plants evolved toward lower NUE
Evolutionary history is the second most important driver 
of NUE. In our results, different life forms of plants have 
significantly different NUE (Fig.  2). Furthermore, there 
are significant phylogenetic signals (K = 0.746, p < 0.05) 
and evolutionary direction for NUE (Fig. 3). These results 
indicated that the variations in the NUE of wild plants 
are intimately related to the phylogenetic process, which 
has seldom been revealed previously.

The evolutionary history of plants reflects their active 
adaptation to environmental changes during growth and 
development. The results of this study show that plants 
have evolved toward a lower NUE (Fig.  3). Plants and 
the terrestrial environment have been co-evolving for 
millennia. Since the establishment of Earth’s biosphere, 
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plant communities have interacted with the soil environ-
ment. Soil provides plants with the water and nutrients 
required for growth and development. Meanwhile, plants 
can alter the physical and chemical properties of the 
soils through their root systems and litter (Chapin et al. 
2011). During the early evolution of terrestrial ecosys-
tems, due to the parent material not weathering further, 
most soils remained in a barren state with a low nutri-
ent content (Chadwick et  al. 1999). The low availability 
of soil N largely limited plant growth; thus, plants with 
high NUE were more competitive (Zhang et  al. 2020). 
However, over time, plants continuously release organic 
matter into the soil, and the continuous weathering of 
the parent material increases the nutrient content (Chad-
wick et al. 1999). Particularly in the modern environment 
following the Industrial Revolution, immense quanti-
ties of anthropogenic N was introduced into the ecosys-
tems, which significantly enhanced the availability of soil 
N (Canfield et  al. 2010; Galloway et  al. 2004). For these 
reasons, plants with high NUE have gradually lost their 
competitive advantage, and plants have evolved toward a 
low NUE.

Although a few recent studies have found decreas-
ing leaf N and 15N isotope concentrations in locations, 
such as the Qinghai-Tibet Plateau (Kou et al. 2020) and 
North America (Brookshire et  al. 2020), these phenom-
ena may be anomalies caused by biomass accumulation 
under increasing atmospheric CO2 concentrations since 
the Industrial Revolution (Chapin et al. 2011; Finzi et al. 
2007). Conversely, increasing leaf N and 15N isotope have 
been observed in tropical forests due to the continuous 
increases in N inputs (Hietz et  al. 2011). Ecosystem N 
concentrations will continually increase via anthropo-
genic N inputs that occurs across China and the world 
(Fowler et  al. 2013; Xu et  al. 2020). We also tested the 
evolution trend of leaf 15N isotope through a global data-
base (Carine et al. 2018) and found that leaf 15N isotope 
evolved toward a higher value (Additional file 1: Fig. S10), 
which indicated the N availability is increasing. A simi-
lar study revealed that the C:N ratios of plants gradually 
decreased through evolution under such a background 
(Zhang et  al. 2020). In summary, the availability of N 
tends to increase and NUE tends to decrease over the 
long history of plant evolution. We thus projected that in 
the future, with increasing atmospheric N deposition and 
anthropogenic terrestrial N inputs, plants may reduce N 
investments by reducing their NUE and turn to secure 
other limited resources, such as P.

Climate factors affect NUE more than soil
Although being less important than plant P content 
and phylogenetic impacts, climate factors (MAT, MAP, 
AI) are also critical in influencing NUE. The rise in 

temperature helps the movement of water and nutrients 
in soil and plant cells (Schulze et  al. 2019). In addition, 
appropriate high temperatures also lead to high microbial 
activity and enzyme activity which are related to vari-
ous physiological activities of plants (Reich and Oleksyn 
2004; Romero-Olivares et  al. 2017). Higher temperature 
is beneficial for the transfer of N in some processes, such 
as absorption, assimilation, and transportation, which 
ultimately improves NUE (Bai et al. 2013; Xu et al. 2012). 
Tian et al. (2019b) also found that leaf nitrogen content is 
negatively correlated with MAT and MAP across global 
terrestrial plants, which was corroborated with our 
results. NUE also increases with higher MAP and has a 
significantly negative correlation with drought (smaller 
AI index), which aligns with previous studies (Lv 2010; 
Su and Shangguan 2020). For example, NUE of grassland 
plants in Inner Mongolia increased with higher rainfall 
levels (Lv 2010). Moreover, the significant relationship 
between NUE and MAT or MAP could be explained by 
the growth rate of plants in different environments. The 
slower growth under low MAT or MAP tends to con-
dense N inside the plants, while faster growth results in 
lower N concentration and higher NUE (Chapin 1980; 
Hirose 2011; Lambers and Poorter 2004). In addition, 
more frequent drought events result in a significant 
decrease in the NUE of leaves and roots (Fu et al. 2019). 
With increased humidity, NUE is higher as more precipi-
tation alleviates plant water restrictions, while stimulat-
ing plant growth and N utilization (Yuan et  al. 2006). 
Conversely, humid conditions are of benefit for N trans-
port from soil to plants, which increases the possibility of 
plants N use; however, drought limits the above process 
(Gupta et al. 2020).

Soil factors had a negligible effect on NUE in our 
study. The weak negative correlation between NUE and 
pH (Additional file  1: Figs. S5a, S6a) indicates soil pH 
is not a pivotal factor determining NUE variation. Luo 
et al. (2021) found globally positive responses of photo-
synthetic leaf nitrogen to soil pH, because soil pH influ-
ences the soil nutrients availability. A higher pH means 
more available nutrient cations for plant use as acid soils 
replace nutrient cations with H+. Besides, soil P is more 
available at high pH, since P can be easily fixed by some 
cations (e.g., Fe, Al) at low pH (Lambers and Plaxton 
2018), which may explain the low NUE in high pH. Other 
factors, including soil texture [the percentage content of 
sand (20–2000  μm), clay (2–20  μm) and silt (0–2  μm)], 
are also related to NUE. Our results show a positive cor-
relation between NUE and soil clay (Additional file  1: 
Figs. S5d; S6d), because soils with less clay (means 
tighter or looser soil) tend to have low permeability and 
absorption rates, which reduces water and nutrient use 
efficiency (Ishaq et  al. 2001; Liu et  al. 2020). Another 



Page 9 of 13Liao et al. Ecol Process           (2021) 10:69 	

explanation is that low permeability caused by less clay 
would affect the processes of nitrification and denitrifica-
tion to control the ratio of ammonium to nitrate which is 
also related to NUE (Chapin et al. 2011).

Several previous studies have revealed that the NUE 
is reduced with higher soil N content (Enoki et al. 1997; 
Vitousek 1982), and proposed the hypothesis that plants 
have higher NUE in locations with lower N availability 
to adapt to the low nutrient environments. However, our 
study failed to find the above relationship between NUE 
and N availability (Fig. 5; Additional file 1: Figs. S7; S8). In 
addition, many other investigations have also come to a 
different conclusion and posited that there is not neces-
sarily a significant correspondence between NUE and the 
availability of soil N (Bridgham et al. 1995; Su et al. 2000). 
The relationship between N availability and NUE is not 
a simple linear relationship. Only when the availability 
N drops to a certain level, NUE is positively related to N 
availability (Bridgham et al. 1995). When N availability is 
at a higher level, the response of NUE is reduced or even 
disappears (De Aldana and Berendse 1997). Instead, soil 
P content in this study had a more significant impact on 
NUE (Additional file  1: Fig. S7b, d). It had been shown 
that soil P significantly promoted plant N and P content 

due to increased P supply (Chen et  al. 2013), and they 
both have strong control effects on plant NUE.

Implications and limitations
According to our results, we proposed a hypothesis 
regarding NUE determinants: NUE is mostly affected 
by both plant P content and evolutionary history that 
reflects the long history of N supply conditions due to 
continuous weathering during evolution. However, these 
two factors dominate the changes in NUE at different 
stages (Fig. 6).

First, at a historically low N supply period (point a), 
plants tend to have a higher NUE. At that time, the N 
supply dominates NUE changes rather than the P avail-
ability. As the N supply continues to increase and meets 
plant demand, NUE begins to decrease (a → b, c, d). 
When N is gradually abundant, or even attains the satu-
ration stage (points b, c, and d), plants are limited by P, 
where the plant P content begins to dominate changes in 
NUE. Plants under high P conditions are more proficient 
at obtaining N; thus, their NUE is lower, whereas a low P 
content limits N access, leading to a higher NUE. Under 
this basic framework, climate factors and soil properties 
regulate the variations in NUE to a certain extent.

Fig. 6  Conceptual diagram of the influence of P, phylogeny, climate factors, and soil properties on NUE. This mechanism emphasizes the important 
effects of plant phosphorus content and evolutionary history that reflects the long history of environmental nitrogen supplies due to continuous 
weathering during evolution. a Refers to low nitrogen conditions at the onset of evolution, and b–d refers to an ample nitrogen environment under 
different phosphorus conditions
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Disentangling the drivers of NUE can improve the 
elucidation and prediction of plant–soil N cycling. 
Since plant foliar P and phylogeny play important roles 
in determining NUE changes, plant stoichiometry and 
phylogeny should be incorporated within ecosystem 
N cycle models. Furthermore, we are aware that there 
may be some additional critical factors, such as mycor-
rhizal fungi (Han et al. 2020; Wooliver et al. 2018) and 
soil microorganisms (Kuypers et al. 2018; Moreau et al. 
2019) that affect NUE. Due to data scarcity, we were 
unable to quantify their impact in this study; however, 
they certainly warrant examination in future studies.

Conclusion
To the best of our knowledge, this study is among the 
first to quantify the large-scale patterns, long evolu-
tionary history, and drivers of NUE. We found that the 
foliar P content was the main driving factor for the var-
iations in NUE, whereas plant evolutionary history was 
the second most important factor for its regulation. In 
contrast to our original expectation, climate and soil 
properties contributed relatively less to this large-scale 
variation in NUE. Our findings provide a new perspec-
tive of NUE and we suggest that future studies should 
pay more attention to plant N–P stoichiometric rela-
tionships and phylogeny to further understand the bio-
geographic mechanisms underlying NUE variations.
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