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and drivers of soil bacterial communities 
across the continuous permafrost region 
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Abstract 

Background:  Soil microorganisms in the thawing permafrost play key roles in the maintenance of ecosystem func-
tion and regulation of biogeochemical cycles. However, our knowledge of patterns and drivers of permafrost micro-
bial communities is limited in northeastern China. Therefore, we investigated the community structure of soil bacteria 
in the active, transition and permafrost layers based on 90 soil samples collected from 10 sites across the continuous 
permafrost region using high-throughput Illumina sequencing.

Results:  Proteobacteria (31.59%), Acidobacteria (18.63%), Bacteroidetes (9.74%), Chloroflexi (7.01%) and Actinobacte-
ria (6.92%) were the predominant phyla of the bacterial community in all soil layers; however, the relative abundances 
of the dominant bacterial taxa varied with soil depth. The bacterial community alpha-diversity based on the Shannon 
index and the phylogenetic diversity index both decreased significantly with depth across the transition from active 
layer to permafrost layer. Nonmetric multidimensional scaling analysis and permutation multivariate analysis of vari-
ance revealed that microbial community structures were significantly different among layers. Redundancy analysis 
and Spearman’s correlation analysis showed that soil properties differed between layers such as soil nutrient content, 
temperature and moisture mainly drove the differentiation of bacterial communities.

Conclusions:  Our results revealed significant differences in bacterial composition and diversity among soil layers. 
Our findings suggest that the heterogeneous environmental conditions between the three soil horizons had strong 
influences on microbial niche differentiation and further explained the variability of soil bacterial community struc-
tures. This effort to profile the vertical distribution of bacterial communities may enable better evaluations of changes 
in microbial dynamics in response to permafrost thaw, which would be beneficial to ecological conservation of 
permafrost ecosystems.
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Introduction
Permafrost is soil that remains continuously frozen for 
at least two years and underlies about 25% of terrestrial 
area in the Northern Hemisphere (Doherty et al. 2020). It 
is estimated that permafrost soil contains approximately 
1300 Pg of carbon which is equal to half of the global soil 
organic carbon (Schuur et  al. 2015; Zhou et  al. 2020). 
During the past few decades, global warming has caused 
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widespread permafrost thawing, which has induced a 
significant reduction of soil organic matter and the sub-
sequent release of greenhouse gases (primarily carbon 
dioxide (CO2) and methane (CH4)) because of increased 
microbial activity, and potentially generate positive feed-
back to climate warming (Mackelprang et al. 2011; Gra-
ham et al. 2012; Heslop et al. 2019). Permafrost thaw has 
also led to the deepening of the active layer, which is the 
surface of permafrost that undergoes frequent environ-
mental disturbances via seasonal freezing and thawing 
(Kim et  al. 2016). Studies have reported that microbial 
biomass and metabolic activity were higher in the active 
layer of soil and decreased towards deeper soil layers 
(Frankfahle et al. 2014; Koyama et al. 2014). Even though 
deeper permafrost layer is considered to be an extreme 
environment with low temperature and nutrient avail-
ability, it is a relatively stable habitat for microbial com-
munities (Jansson and Taş 2014). Transition layer refers 
to soil above the permafrost interface and is the bound-
ary connecting the active layer and permafrost layer 
(Deng et  al. 2015; Aksenov et  al. 2021). Differences in 
physicochemical and biological properties imply that the 
factors shaping microbial communities may be differ-
ent among soil layers and the composition and diversity 
of microbial communities in different layers changes in 
response to thawing (Mackelprang et al. 2011; Deng et al. 
2015). Therefore, a better understanding of the changes 
in microbial communities in different soil layers and the 
factors that shape these communities is important to 
predict the potential microbial processes and permafrost 
ecosystem functions in a changing climate.

Soil depth profiles provide heterogeneous environmen-
tal conditions for microorganisms and therefore serve 
as a good model for predicting the variations in thawing 
permafrost. Investigations of the Tibetan Plateau and the 
Arctic have shown that microbial communities varied 
with soil depth, and that the abundance and diversity of 
soil microbial taxa declined with depth with the transi-
tion from the surface active layer to the underlying per-
mafrost layer (Steven et al. 2008; Mackelprang et al. 2011; 
Frankfahle et al. 2014; Koyama et al. 2014; Taş et al. 2014; 
Wei et  al. 2014; Deng et  al. 2015; Hu et  al. 2015, 2016; 
Frey et  al. 2016). These studies revealed that the verti-
cal distribution patterns of microbial communities were 
affected by corresponding soil properties such as soil 
nutrient availability and moisture content. Furthermore, 
recent studies have found that bacterial and fungal com-
munities occurring in the active layer and permafrost 
respond differently to permafrost thaws at different 
depths (Wu et  al. 2018; Sannino et  al. 2021). However, 
most of these available studies of permafrost microbial 
communities included only one or a limited number of 
soil cores from each location. Studies focusing on shifts 

in microbial communities along soil depth profiles across 
multiple sampling sites over broad geographic scales are 
less affected by the heterogeneity of the soil ecosystems 
themselves and are statistically more confident (Deng 
et al. 2015; Chen et al. 2017). Hence, such studies are still 
needed to assess the spatial variability and dynamics of 
permafrost ecosystems in light of anticipated climate 
change.

Distributed in the southeast margin of the Eurasian 
cryolithozone, the latitudinal permafrost in northeastern 
China is sensitive to climate change and has experienced 
degradation owing to recent climate warming (Jin et  al. 
2007). Permafrost thaw in this region has resulted in sub-
stantial increases in the mean annual ground tempera-
ture and the depth of the active layer (Wei et  al. 2011). 
Nevertheless, except for studies on the Sanjiang Plain 
(Zhou et al. 2017), in Mo-he (Dan et al. 2014), and along 
the China-Russia Crude Oil Pipeline (Yang et  al. 2012), 
the microorganisms and distribution patterns of micro-
bial communities in this unique permafrost soil remain 
relatively unexplored (Ren et al. 2018).

Therefore, in this study, we analyzed the vertical distri-
bution patterns and drivers of bacterial communities in 
different soil layers in the continuous permafrost region 
of northeastern China. A total of 90 samples collected 
from 10 sites across the whole region were used to char-
acterize the microbial communities by high-throughput 
Illumina sequencing. In agreement with previous stud-
ies, we hypothesized a decrease in both the number 
and genetic diversity of bacteria with the increase in 
soil depth. We further hypothesized that soil chemical-
physical properties would have substantial influences on 
the diversity and composition of the bacterial communi-
ties due to stratified soil abiotic conditions of different 
soil layers. To test these hypotheses, we aimed to deter-
mine: (1) the differences in the composition and diversity 
of bacterial community along the vertical depth, and (2) 
the main factors driving the distribution of the bacterial 
community in the permafrost soil.

Materials and methods
Soil sampling and analysis
The soils at 10 sites in the continuous permafrost region 
of northeastern China were sampled during August 2015 
(Fig.  1). The active layer thickness of the study sites we 
chosen were measured using a steel probe to reach the 
freezing solid and were all approximately 50 cm. At each 
site, three randomly selected 2 m × 2 m plots within an 
area of 20 m × 20 m were selected as replicates. In each 
plot, five 70 cm soil cores were collected, and soil sam-
ples were collected from three depth intervals represent-
ing the active layer (0–20 cm, refers to the surface thawed 
soil at the time of sampling within the organic horizon), 
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the transition layer (20–50  cm, contains soil within the 
seasonally thawed mineral horizon, that is above the per-
mafrost interface) and the permafrost layer (50–70  cm, 
refers to soil at or below the permafrost interface). The 
five subsamples from each depth within the same plot 
were pooled into a single soil sample, resulting in 90 soil 
samples (10 sites × 3 plots × 3 layers). Soil moisture, tem-
perature and salinity were synchronously measured using 
an in-situ soil testing device (TZS-PHW-4, China). The 
soil samples were immediately transported to the labo-
ratory while stored on ice. After being sieved through 
a 2  mm standard mesh, the soils were divided into two 
portions. One portion was stored at 4  °C for analysis of 
soil properties, and the other was stored at − 80  °C for 
microbial analyses (All permafrost layer soil were stored 
at − 80 °C).

Soil texture was measured using a particle size analyzer 
(Malvern Instruments, Malvern, UK) and classified by 
the universal criteria of soil particle size (clay < 0.002 mm, 
silt 0.02–0.002  mm, sand > 0.02  mm). Soil pH was 
determined by suspending soil in a 1:2.5 (w/v) aqueous 

solution and then analyzed by a pH electrode (Kalra 
1995). Soil total nitrogen content (TN) and total car-
bon content (TC) were measured with an element ana-
lyzer (EL Ш, Elementar, Germany). The mass ratio of 
soil carbon:nitrogen (C/N) was calculated based on the 
TC and TN. The Mo-Sb anti-spectrophotometry method 
was used to measure soil total phosphorus content (TP) 
after digestion of the samples with concentrated HClO4–
H2SO4. Soil total organic carbon (TOC) was determined 
by the K2Cr2O7 oxidation method as described in Walk-
ley (1947). Soil available phosphorus (AP) was extracted 
with 0.5 M NaHCO3 and measured using a colorimetric 
method. Soil available N (AN) was measured using a con-
tinuous flow analyzer (SAN++ , Skakar, Breda, Holland) 
after extraction with 2 M KCl (soil to water ratio of 1:5).

DNA extraction, amplification and sequencing
Genomic DNA of each soil sample was isolated using the 
PowerSoil DNA Isolation Kit (MO BIO, USA) according 
to the manufacturer’s instructions. The extracted DNA 
was qualitatively evaluated by agarose gel electrophoresis 

Fig. 1  Study area and location of the 10 sampling sites in the continuous permafrost region of northeastern China. The map in this figure was 
generated by ArcGIS 10.2 (ESRI, Redlands, CA, USA, http://​resou​rces.​arcgis.​com/​en/​home/)

http://resources.arcgis.com/en/home/
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and the concentration was determined using a Nanodrop 
2000 (Thermo, USA). To amplify the V4 hypervariable 
region of the 16S rRNA gene, we used the 515F (5′-GTG​
CCA​GCMGCC​GCG​GTAA-3′) and 909R (5′-CCC​CGY​
CAA​TTC​MTTTRA GT-3′) primers with unique bar-
codes. The PCR amplification process was performed 
as previously described (Gibson et al. 2014), after which 
the products were purified using an AxyPrepDNA Gel 
Extraction Kit (AXYGEN, California, USA). The resultant 
PCR products were then combined at equimolar concen-
trations before being sequenced using the Illumina Miseq 
platform at the Chengdu Institute of Biology, Chinese 
Academy of Sciences.

Processing of sequencing data
The obtained raw sequence data were analyzed using the 
Quantitative Insights into Microbial Ecology (QIIME) 
pipeline (QIIME v.1.8.0; http://​www.​qiime.​org). Paired-
end reads with at least a 50-bp overlap and < 5% mis-
matches were combined using FLASH (version 1.0.0). A 
threshold of average quality scores > 30 over 5-bp win-
dow size was used to trim the unqualified sequences 
using BTRIM (version 1.0.0; Kong 2011). Any joined 
sequences with ambiguous bases and lengths < 200  bp 
were discarded. After trimming of ambiguous bases, 
joined sequences with lengths between 240 and 260  bp 
were subjected to chimera removal by U-Chime (Edgar 
et  al. 2011). The resultant high-quality sequences were 
clustered into operational taxonomic units (OTUs) at 
the level of 97% similarity using UCLUST (Edgar 2010). 
Sequences were subsequently aligned using the PyNAST 
software, after which OTUs were classified against the 
13_8 Greengenes database and taxonomic assignments 
were based on their respective taxonomy files (Werner 
et  al. 2012). A taxon filtering script provided by QIIME 
was applied to separate the OTU tables of individual 
microbial taxa, which were then used to analyze the 
abundance of specific taxa. The community composi-
tions were then described by the relative abundance of 
sequences that were assigned to each taxon. To compute 
the alpha diversity, we calculated the Shannon diver-
sity index and the phylogenetic diversity index (Faith 
1992). Beta-diversity metrics were introduced by the 
unweighted UniFrac distance (Lozupone and Knight 
2005). All the diversity calculations were performed in 
QIIME.

Statistical analyses
One-way analysis of variance (ANOVA) followed by Tuk-
ey’s post-hoc HSD (Honest Significant Difference) was 
performed to identify differences in soil properties, the 
relative abundance of the major microbial phyla, Shan-
non index and phylogenetic diversity index among the 

three different soil layers. The relationships between the 
Shannon index and phylogenetic diversity index with soil 
physicochemical factors were tested by Spearman’s cor-
relation analysis. All analyses were conducted using the 
SPSS 20.0 software (IBM Co., Armonk, NY, USA).

A permutation multivariate analysis of variance (PER-
MANOVA) was conducted to identify significant dif-
ferences in community composition variance among 
soil layers. Venn diagrams for graphical descriptions of 
unique and shared bacterial genera between different soil 
layers were calculated using the “VennDiagram” pack-
age in R (Team RDC 2016). Nonmetric multidimensional 
scaling (NMDS) analysis based on the unweighted Uni-
Frac distance matrix was conducted to identify variations 
in bacterial communities among soil layers using the 
nmds.py script in QIIME. Redundancy analysis (RDA) 
was employed to measure the effects of environmen-
tal variables on bacterial community structures in the 
CANOCO 4.5 software (Microcomputer Power, Ithaca, 
NY, USA). A Monte Carlo test (999 permutations) based 
on the RDA was used to assess the effects of each vari-
able. We implemented a variation partitioning analysis 
to assess the relative importance of each factor (Distance 
factor: Latitude, Longitude; Environment factor: Tem-
perature, Moisture, Salinity, TC, TN, TP, C/N, TOC, AN, 
AP, pH, Clay, Silt and Sand; Depth factor) in explaining 
the microbial community compositions with the “vegan” 
package in R.

Results
Soil physicochemical characterization
In general, soil properties changed with depth (Table 1). 
Soil temperature decreased sharply with depth, dropping 
from 6.27 °C in the active layer to −0.45 °C in the perma-
frost layer. The TC, TN and TP contents were all high-
est in the active layer. TC contents decreased significantly 
with depth and TN and TP contents decreased signifi-
cantly from active layer to transition layer. Neverthe-
less, soil moisture and AP greatly increased with depth, 
reaching their maximum values in the permafrost layer. 
The soil was acidic, but the pH values did not vary signifi-
cantly by depth. The distribution of clay, silt and sand did 
not vary significantly with depth. However, the soil salin-
ity, C/N ratio, TOC content and AN value did not show 
obvious changes among depths.

Vertical distribution of soil bacterial communities
High-throughput Illumina sequencing yielded a total of 
934,181 high-quality 16S rRNA gene sequences across 
all examined samples. The sequences were binned into 
185,574 OTUs belonging to 63 phyla at 97% sequence 
identity. The microbial community composition was pro-
filed according to their relative abundance at the phylum 

http://www.qiime.org
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level (Fig.  2). Among those taxa examined, Proteobac-
teria (31.59%), Acidobacteria (18.63%), Bacteroidetes 
(9.74%), Chloroflexi (7.01%) and Actinobacteria (6.92%) 
were dominant, and these phyla accounted for > 70.95% 
of the bacterial sequences from all soils. Each sample also 
contained a number of sequences that could not be clas-
sified (5.19%), even at the phylum level. Although most 
bacterial groups were present in all samples, the relative 
abundances of the dominant bacterial taxa varied among 
soil depths. Overall, the abundance of Proteobacteria and 
Planctomycetes decreased significantly with soil depth, 
whereas Chloroflexi, Verrucomicrobia, Gemmatimona-
detes, Crenarchaeota, Chlorobi and Firmicutes increased 
with depth.

The number of detected genera also varied across the 
three soil layers (Fig. 3). For example, a total of 957 gen-
era were detected in the active layer, 910 in the transition 
layer and 872 in the permafrost layer. Overall, 132 unique 
genera were detected in the active layer, 56 in the transi-
tion layer and 58 in the permafrost layer. When the three 
soil layers were compared, we found that they shared 722 
genera.

The bacterial community alpha-diversity based on the 
Shannon index and the phylogenetic diversity index both 
decreased significantly with soil depth (Fig.  4). Non-
metric multidimensional scaling (NMDS) analysis was 

Soil depth layer Proteobacteria Chloroflexi Verrucomicrobia Gemmatimonadetes Planctomycetes Crenarchaeota Chlorobi Firmicutes

active layer a a a a a a a a

transition layer b a b ab b b b a

permafrost layer b b ab b c b b b

Fig. 2  Relative abundance of dominant microbial phyla in different soil layers. The differences in relative abundance for each phyla among soil 
layers were analyzed using a one-way analysis of variance. Values of microbial phyla significantly different (P < 0.05, Tukey’s HSD) are shown in the 
table with contrasting letters

Fig. 3  Venn diagram showing the number of unique and 
overlapping genera between different soil layers
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performed to illustrate the bacterial community vari-
ance (beta-diversity) along soil layers (Fig. 5). Communi-
ties from the same soil layer tended to cluster together. 
Moreover, a PERMAVONA test based on the unweighted 
UniFrac distance matrix was performed to further test 

the significance of differences in microbial community 
composition between soil layers, and the results indi-
cated that the composition of bacterial communities var-
ied significantly among layers (PERMANOVA, P < 0.01).

Fig. 4  Box plot based on diversity analysis of soil microbes along soil layers as characterized by (a) Shannon diversity index and (b) Phylogenetic 
diversity index
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dissimilarities among bacterial communities from the three soil layers: active (red), transition (yellow), and permafrost (blue)
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Relationships between bacterial communities 
and environmental properties
The relative importance of each individual environmen-
tal variable on bacterial community composition was 
measured by redundancy analysis (Fig.  6). The first and 
second axis of the RDA explained 49.4% and 31.2% of the 
variance in the bacterial community, respectively. Of all 
soil properties examined, soil temperature (27.8%), TC 
(16.7%), TN (13.9%), TP (11.1%), soil moisture (8.3%) 
and clay content (5.6%) were the most significant fac-
tors underlying the variations in the bacterial commu-
nity composition. Moreover, RDA ordination revealed 
distinct differences in bacterial community composition 
between soil layers. Bacterial communities of the active 
layer soils tended to be distributed in environments with 
high soil temperature and high TC, TN and TP contents, 
whereas bacterial communities of the permafrost layer 
soils were more concentrated in areas with high soil 
moisture and high clay content.

The effects of soil physicochemical factors on bac-
terial diversity were tested by Spearman’s correlation 
analysis (Table  2). The Shannon index was significantly 
positively correlated with soil temperature, TC, TN, TP, 
AN and sand content and negatively correlated with soil 
moisture, salinity, clay and silt content. The phylogenetic 
diversity index was significantly positively correlated with 
soil temperature, TC, TN, TP, AN, pH and sand content 
and negatively correlated with soil clay and silt content.

A variance partitioning analysis was carried out to 
assess the relative contributions of distance factor, envi-
ronment factor and depth factor to microbial community 
composition (Fig. 7). The combination of these variables 
explained 45.92% of the observed variation in soil micro-
bial community composition. Environmental factors 
explained the largest fraction of the variation (31.52%), 
with a pure effect of 17.59%. Depth factor and distance 
factor explained 21.22% and 4.59% of the variation, 
respectively.

Discussion
To our knowledge, this study provides a comprehensive 
comparison of patterns and drivers of bacterial com-
munities among soil depth layers across the continuous 
permafrost region of Northeastern China. The dominant 
bacterial taxa phyla of Proteobacteria and Chloroflexi 
exhibited obvious changes in their relative abundance 
with soil depths (Fig.  2). The higher abundance of Pro-
teobacteria and Planctomycetes in the active layer could 
be related to their preference for carbon- and nutrient-
rich environments (higher TC, TN in the active layer, 
Table 1). This is in agreement with the studies in the Arc-
tic (Saul et  al. 2005) and on the Qinghai-Tibet Plateau 
(Zhang et  al. 2017) reported that the predominant Pro-
teobacteria comprised a higher percentage of the total 
bacterial population in carbon-rich soils. An important 
driver of species’ ecological functions differentiation is 
nutrient availability, leading to a spectrum of microbial 
lifestyles: at opposite ends, copiotrophs dominate in envi-
ronments with greater nutritional opportunities, whereas 
oligotrophs prevalent in chronic starvation environ-
ments (Koch, 2001; Norris et  al. 2021). The subdivision 
of Betaproteobacteria has been proposed as copiotrophs 
that prefer nutrient-rich environments (Fierer et al. 2007). 
Planctomycetes have large genomes that show features of 
copiotrophs based on genomic insight (Lauro et al. 2009). 
In the present study, Oligotrophic and anaerobic-like 
bacteria of Chloroflexi were more abundant in perma-
frost layers with relatively lower nutrient availability and 
higher soil moisture content (Table 1). This result is gen-
erally agreed with Fierer et al. (2012) reporting a decrease 
in relative abundance of Chloroflexi after N addition. 
Moreover, Chloroflexi were found to be well adapted 
to survive in a water-saturated permafrost wetland of 
Lake Namco (Yun et al. 2014). Because of their ability to 
resist long-term exposure to low temperatures and lim-
ited nutrient availability, Gemmatimonadetes, Chlorobi 
and the spore-forming Firmicutes have frequently been 
detected in deeper soil and permafrost (Debruyn et  al. 
2011; Wilhelmroland et  al. 2011; Jansson and Taş 2014; 
Deng et  al. 2015; Schostag et  al. 2015). The observed 
abundance patterns could be related to the different 

Fig. 6  Redundancy analysis based on the microbial community 
structures and environmental factors. (TC, soil total carbon; TN, 
soil total nitrogen; TP, soil total phosphorus; C/N, soil C:N; TOC: soil 
total organic carbon; AN: soil available nitrogen; AP, soil available 
phosphorus)
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resource availability of each bacterial group and suggest a 
close association with the corresponding soil conditions. 
Marked changes in soil parameters with depth have been 
found in this study (Table 1) and also in studies of other 
permafrost regions (Wu et al. 2012, 2017a; Dörfer et al. 
2013), and such variations in soil properties are expected 
to influence the composition and diversity of bacterial 
communities inhabiting soils at different depths.

Our results showed that bacterial community structure 
and diversity showed obvious variations with soil depth 
in the studied region (Figs. 3, 4 and 5). Previous studies 
have indicated that microbial abundance and diversity 
were highest in the surface active layer soil and declined 
towards deeper layers to underlying permafrost soil (Yer-
geau et  al. 2010; Wilhelmroland et  al. 2011; Frankfahle 
et al. 2014; Koyama et al. 2014; Taş et al. 2014; Deng et al. 
2015; Kim et al. 2016), and microbial community struc-
tures were significantly different between the active layer 
and the permafrost layer on the Tibetan Plateau (Hu 
et  al. 2015, 2016) and in the Arctic (Steven et  al. 2008; 
Mackelprang et al. 2011). Different environmental prop-
erties between soil depth layers could be responsible for 
the observed differences in microbial communities. The 
near-surface active layer experiences seasonal thawing 
and freezing and larger environmental fluctuations than 
permafrost, providing more probabilities for the growth 
of micro-organisms (Deng et  al. 2015). In contrast, 
deeper soil layers are characterized by restraining factors 

of low temperature and limited oxygen and nutrient con-
tents, which causes environmental stress to indigenous 
microorganisms and makes the layers less hospitable 
for microbial communities (Jansson and Taş 2014). Our 
results implied that the heterogeneous habitats might 
cause niche separation and subsequent variations in 
microbial communities between horizons.

Our results suggested that nutrient contents of TC, TN 
and TP had the greatest influence on both soil microbial 
community compositions (Fig.  6) and diversity patterns 
(Table 2) in the permafrost region of northeastern China. 
Previous studies have indicated that nutrient availability 
was strongly correlated with microbial mineralization 
and subsequently caused shifts in the bacterial commu-
nity structure (Koyama et  al. 2014; Siciliano et  al. 2014; 
Deng et al. 2015). The predominant bacterial diversity in 
the active layer soil could be explained by their pre-adap-
tion for the rapid metabolism of highly available nutri-
ents (Fierer et  al. 2003). Soil nutrient availability could 
also influence microbial communities via effects on the 
root exudates of plant communities (Millard and Singh 
2010). Carbon and nitrogen concentrations were found 
to be related to microbial community compositions in 
permafrost affected soils on the Tibetan Plateau (Zhang 
et  al. 2014). Significant correlations between microbial 
biomass and soil carbon contents with depth were also 
observed in terrestrial soils (Rumpel and Kögel-Knab-
ner 2011; Eilers et  al. 2012). Soil nitrogen levels played 
important roles both in the community structure of dom-
inant bacteria and nitrogen-cycling communities in soils 
of the high Arctic and Antarctica (Walker et  al. 2008; 
Ganzert et al. 2011). Moreover, phosphorus was reported 
to be an important growth-limiting soil nutrient affecting 
microbial community development and thus regulating 
microbial community structures (Siciliano et al. 2014; He 
et al. 2016). Soil microbial biomass increased in response 
to the addition of P in various soil environments (Grif-
fiths et al. 2012; Liu et al. 2013). TP contents were highest 
in the active layer, whereas AP contents were highest in 
the permafrost layer in our study (Table 1). However, AP 
seemed to have no obvious effect on microbial richness 
(Table  2) and community structures (Fig.  6), suggesting 
that the form of phosphorus may play important roles in 
influencing microbial communities.

In the present study, soil temperature was found 
to be one of the main factors explaining the patterns 
observed in the bacterial community structure (Fig. 6), 
which was consistent with the results of earlier stud-
ies that identified temperature gradients along differ-
ent soil depths as one of the primary environmental 
variables driving soil microbial community structure 
in other permafrost affected areas (Wagner et al. 2005; 
Yergeau et al. 2012). In accordance with many previous 

Fig. 7  Variation partitioning analysis showing the percentages of 
variance in bacterial communities explained by Distance (Latitude, 
Longitude), Environment (Temperature, Moisture, Salinity, TC, TN, TP, 
C/N, TOC, AN, AP, pH, Clay, Silt and Sand) and Depth. Each diagram 
represents the variation partitioned into the relative effects of each 
factor or a combination of factors
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studies conducted in the Tibetan Plateau (Zhang et al. 
2013; Yun et al. 2014), as well as in the Arctic and Ant-
arctica (Fell et  al. 2006; Bridge and Newsham 2009; 
Glanville et al. 2012; Lee et al. 2013; Steven et al. 2013), 
soil moisture was also found to make a great contribu-
tion to differentiation of bacterial community structure 
(Fig.  6). Soil moisture has been found to have impor-
tant effects on soil respiration and oxygen availability 
(Wang et  al. 2008; Yang et  al. 2012), which influence 
bacterial community composition, especially that of 
carbon and nitrogen cycling bacteria (Høj et  al. 2006; 
Zhang et al. 2013). The associated redox potential and 
anaerobic soil conditions in permafrost layers with high 
soil moisture have been shown to limit the diversity 
of bacterial community. Kim et  al. (2008) found that 
short-term drought could lead to a dramatic decrease 
in gene abundance of the microbial community associ-
ated with greenhouse gas emissions. Interacting with 
other soil parameters, soil texture was shown to be an 
important factor influencing bacterial communities 
(Wu et  al. 2017b). Although numerous studies have 
emphasized the importance of soil pH in driving soil 
microbial community structure (Chong et  al. 2009, 
2010; Feng et al. 2014; Siciliano et al. 2014), soil pH had 
no significant effect on the patterns of bacterial com-
munities in our study. The low variability in pH among 
soil layers, which was not comparable to the influence 
of variables such as soil nutrient contents, tempera-
ture and moisture that spanned greater ranges, may 
explain this discrepancy with previous studies. Moreo-
ver, with 54.08% of unexplained variation in microbial 
community composition showed by variation partition-
ing analysis (Fig. 7), a more detailed consideration of a 
diverse set of environmental parameters is required in 
determining order to better understand the factors that 
drive microbial community structures in future studies.

According to the observed trend of climate warming, 
permafrost will thaw with the increase of ground temper-
ature. And that will result in the enhancement of micro-
bial activity and diversity, since soil temperature was 
positively correlated with microbial richness (Table  2). 
Besides, Planctomycetes and Proteobacteria, which 
showed higher abundance in the active layer (Fig.  2), 
are abundant in nitrogen-fixing populations involved in 
nitrogen cycling (Delmont et al. 2018). All of this could 
bring about huge positive feedback to the greenhouse 
effect and accelerate climate warming. Nevertheless, fur-
ther research is required to reveal the detailed dynamics 
of carbon and nitrogen cycling with the corresponding 
measurement of microbial biomass and functional attrib-
utes of microbial communities in these changing perma-
frost habitats.

Conclusions
This study provides a comprehensive comparison of 
patterns and drivers of bacterial communities among 
different soil layers in the continuous permafrost region 
of northeastern China. Our results revealed signifi-
cant differences in bacterial composition and diversity 
among the active layer, transition layer and permafrost 
layer. Our findings suggest that the heterogeneous envi-
ronmental conditions between the three soil horizons 
had strong influences on microbial niche differentiation 
and further implied that soil nutrient contents, tem-
perature and moisture predominantly explained the 
variability of soil bacterial community structures. This 
study improves our understanding of microbial ecology 
in this unique permafrost area, which is of great impor-
tance in assessment of spatial changes in permafrost 
ecosystems under current climate warming.
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