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Abstract 

Background:  Mapping of soil nutrients using different covariates was carried out in northern Morocco. This study 
was undertaken in response to the region’s urgent requirement for an updated soil map. It aimed to test various 
covariates combinations for predicting the variability in soil properties using ordinary kriging and kriging with exter-
nal drift.

Methods:  A total of 1819 soil samples were collected at a depth of 0–40 cm using the 1-km grid sampling method. 
Samples were screened for their pH, soil organic matter (SOM), potassium (K2O), and phosphorus (P2O5) using stand-
ard laboratory protocols. Terrain attributes (T) computed using a 30-m resolution digital elevation model, bioclimatic 
data (C), and vegetation indices (V) were used as covariates in the study. Each targeted soil property was modeled 
using covariates separately and then combined (e.g., pH ~ T, pH ~ C, pH ~ V, and pH ~ T + C + V). k = tenfold cross-val-
idation was applied to examine the performance of each employed model. The statistical parameter RMSE was used 
to determine the accuracy of different models.

Results:  The pH of the area is slightly above the neutral level with a corresponding 7.82% of SOM, 290.34 ppm 
of K2O, and 100.86 ppm of P2O5. This was used for all the selected targeted soil properties. As a result, the studied 
soil properties showed a linear relationship with the selected covariates. pH, SOM, and K2O presented a moderate 
spatial autocorrelation, while P2O5 revealed a strong autocorrelation. The cross-validation result revealed that soil pH 
(RMSE = 0.281) and SOM (RMSE = 9.505%) were best predicted by climatic variables. P2O5 (RMSE = 106.511 ppm) pro-
duced the best maps with climate, while K2O (RMSE = 209.764 ppm) yielded the best map with terrain attributes.

Conclusions:  The findings suggest that a combination of too many environmental covariates might not provide the 
actual variability of a targeted soil property. This demonstrates that specific covariates with close relationships with 
certain soil properties might perform better than the compilation of different environmental covariates, introducing 
errors due to randomness. In brief, the approach of the present study is new and can be inspiring to decision-makers 
in the region and other world areas as well.

Keywords:  Soil mapping, Environmental variables, Agriculture, Soil properties, Soil management

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the growing trend and vast application of the digi-
tal soil mapping (DSM) technique, DSM has become an 
unavoidable tool for creating high-resolution maps of 
soil properties and classes from spatially understandable 
soil data and environmental covariates (McBratney et al. 
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2003; Agyeman et al. 2021). Thus, it bridges gaps between 
conventional soil maps and the diversified environment 
from which soil is developed (Balkovič et al. 2013). DSM 
tools may incorporate either statistical (machine learn-
ing) concepts (Bouslihim et al. 2021a; Hengl et al. 2021), 
GIS concepts (Carré and Girard 2002; Hengl et al. 2004; 
Zádorová et  al. 2011; John et  al. 2020; Bouslihim et  al. 
2021b; John et al. 2021a, b) or geostatistics (Webster and 
Oliver 2007) via environmental correlations and SCOR-
PAN-based models (McKenzie and Ryan 1999; McBrat-
ney et al. 2003).

In mapping relatively large areas, soil surveyors often 
use easily measured variables related to the somewhat 
costly measurements of targeted variables. For example, 
satellite imagery, climatic data, and terrain attributes are 
primarily environmental covariates that are readily used 
to map soil specific properties (Penížek and Boruka 2006; 
Penížek et al. 2016; Borůvka et al. 2020; John et al. 2021a, 
b). This method has received much attention as soil sci-
entists keep building a more robust predictive approach 
in creating quantifiable soil maps with a reduced level of 
uncertainty (Agyeman et al. 2021; Hengl et al. 2021).

Geostatistic is a DSM approach commonly used in 
pedology as a predictive method for modeling different 
properties such as porosity, permeability, soil depth, or 
thickness (Webster and Oliver 2007; Penížek and Boruka 
2006). On the other hand, kriging methods are ranked 
top as widely used estimators for soil spatial variabil-
ity (Odeh et al. 2003; Agyeman et al. 2021; Li and Heap 
2014). Kriging methods are interpolation models for esti-
mating a regionalized variable at specific grid points that 
predict values from interpolation without bias and mini-
mum variance. Kriging methods include ordinary kriging 
(OK), universal kriging (UK) (also known as kriging with 
external drift), indicator kriging, Co-kriging (Penížek 
and Boruka 2006; John et  al. 2020; Borůvka et  al. 2020; 
John et al. 2021a, b; Hengl et al. 2004). Among the krig-
ing methods, the OK method ranks the top according to 
usage (Li and Heap 2014; Ageyman et  al. 2020). How-
ever, the selected kriging method used in a specific study 
depends on the data structure.

Kriging with external drift (KED) (also known as uni-
versal kriging) and regression-kriging have been classed 
into the group of the so-called ’hybrid’ (McBratney 
et  al. 2000), which refers to non-stationary geostatisti-
cal approaches (Wackernagel et  al. 2002). KED entails 
kriging with additional information. Wackernagel et  al. 
(2002) and Papritz and Stein (1999) distinguished uni-
versal kriging (UK) from KED only when coordinates 
are employed. While the drift is determined externally 
rather than utilizing monomials of the coordinates in 
the UK equations, the term "Kriging with external drift" 
(KED) or external trend is used (Hengl et al. 2004). These 

external drifts could be digital terrain (DEM), satellite 
images, climatic data, or others readily available in DSM. 
Hengl et al. (2004) have also reported the superiority of 
KED over regression kriging (RK). Hudson and Wack-
ernagel (1994) outlined the effectiveness of KED in tem-
perature mapping with elevation. Also, Bourennane et al. 
(2000) presented the accuracy of KED in predicting soil 
thickness with different sample densities. Using external 
drift from various sources, Santra et  al. (2017) reported 
that KED performed better than RK, random forest, and 
OK for sand content modeling.

However, there is still a need to explore external drifts 
originating from the same source and different sources 
to estimate a targeted soil property. This may reduce the 
time spent excavating covariates that may not be neces-
sary to evaluate the spatial variability of a targeted soil 
property. Therefore, we hypothesize that external drift 
from the same source may provide a reliable estimate of 
the spatial variability of a targeted soil property than the 
combination of all external drifts from different sources 
that may not be directly influencing the soil property.

Morocco is a northern African country that spreads 
from the Mediterranean Sea and the Atlantic Ocean 
towards the north and the west, respectively, into large 
mountainous areas in the interior, to the Moroccan 
Sahara desert in the far south. The country experiences 
hot arid climatic conditions, with rainfall occurring 
between October and April. According to FAO/WRB soil 
taxonomical classification, the predominant soils of the 
region are Leptisols, Regosols, Calcisols, Vertisols, Kas-
tonozems, among others. However, according to Mous-
sadek’s (2014) presentation at the Global soil partnership 
conference, only 30% of the Morocco region is covered by 
soil maps (scale = 1:500,000) generated via conventional 
soil mapping. Hence, there is an urgent need for building 
high-resolution digital soil maps of areas not tapped or 
soil surveyed.

Furthermore, the soils of the regions vary both in 
space and time. Therefore in this study, we try to exam-
ine the use of different external drift data combinations 
(i.e., environmental covariates) to improve soil pH and 
soil nutrient properties mapping (e.g., potassium, phos-
phorus, and soil organic matter). Although factors such 
as different farming, fertilizer, and soil input materi-
als influence the spatial variability of soil nutrients, it is 
worth noting that these factors are built on the modified 
soil-forming factors (age, climate, terrain, vegetation, and 
soil) (McBratney et al. 2003). Therefore, knowledge of the 
relationship between soil nutrients and environmental 
covariates has guided the choice of different external drift 
variable combinations. Also, this approach is the first 
step in exploring the possibilities of using appropriate 
auxiliary variables for predicting soil property maps via 
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kriging with external drift. Therefore, in clear terms, this 
study aims to predict soil property with different com-
binations of auxiliary variables via kriging with external 
drift and to compare its performance with the ordinary 
kriging method. This study approach is new and relevant 
to decision-makers and land managers in Morocco and 
other world regions. In addition, the  research was con-
ducted to develop a digital soil map of the area under 
investigation.

Materials and methods
Research location and description
The selected area is located in Taounate province in 
northern Morocco (34°47′N, 4°4.4′W and 34°05′N, 
5°10.3′W), and is displayed as a rectangle of 7979  km2 
(101 × 79 km) (Fig. 1). Jbel Oudka is the most important 
mountain of Taounate, the major in the region, with an 
elevation that reaches 1587 m and is characterized by sig-
nificant vegetation cover. The area covered by this study 
contains a part of the Atlas Mountains in the northwest. 
In general, the altitude ranges from 78 to 1969 m.

A Mediterranean climate and irregular rainfall char-
acterize this region. The average annual rainfall is about 

650  mm, and the mean yearly temperature is 17  °C, 
with dry summers and rainy winters. As a result, the 
average maximum temperature of the hottest month is 
approximately 34.2 °C and the average minimum of the 
coldest month is 0.5 °C (Allali et al. 2020; Rezouki et al. 
2021).

Today, the region shows a great promise for more 
extensive development opportunities, particularly legal-
izing cannabis cultivation for industrial and medicinal 
purposes. This paper’s idea will help achieve this objec-
tive by providing more insights into soil properties 
through a satisfactory, rapid, sustainable, and low-cost 
approach.

Geological formations of the Taounate wrinkle consist 
of a Jurassic–Cretaceous series of marl overcome molas-
sic formations composed of sandstone and conglomer-
ates (Mesrar et al. 2017). According to World Reference 
Base for Soil Resources (FAO Classification System), the 
region’s soils are moderately weathered and classified 
within Xeralfs and Luvisols. They consist of very deep, 
somewhat poorly drained soils formed in sandy outwash, 
glaciolacustrine, or eolian deposits on outwash plains, 
lake plains, and dunes (FAO/ISRIC/ISSS 2006).

Fig. 1  The study area map shows n = 1819 sample points at a depth of 0–40 cm. The study area covers the Atlas Mountains in the northwest and 
also by the coast of the Mediterranean Sea
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Sampling regime
A sample campaign was conducted in November and 
December 2013 to account for soil diversity and ensure 
adequate coverage of the study region. A systematic sam-
pling plan based on a 1 km grid was also implemented. 
As a result, 1819 soil  samples were taken at a depth of 
0–40  cm, bypassing the urban area of Tounate city and 
the water reservoirs at the level of El Wahda, Idriss I, and 
Assfalou dams (Fig. 1).

Sample preparation and laboratory analysis
The samples were analyzed in the laboratory for a set of 
soil fertility parameters such as organic matter (SOM), 
available potassium K2O, available phosphorus P2O5, and 
pH. The SOM content was estimated using the Walkley 
Black method to determine soil organic carbon (SOC). 
In addition, to obtain SOM, SOC was multiplied by 1.724 
(Udo et al. 2009).

The soil pH was measured in water with a soil/water 
ratio of 1:2. Available K and P were analyzed by extrac-
tion method using ammonium acetate (1:10) and molyb-
date ammonium (1:20), respectively (Udo et al. 2009).

Environmental covariates sources and preparation
Different auxiliary data were used in this study to consider 
all the factors that can influence the spatial distribution 
of the studied parameters. We collected four bioclimatic 
parameters representing temperature variation (annual 
mean temperature (bio_1), the max temperature of the 
warmest month (bio_5), min temperature of the coldest 
month (bio_6) and annual precipitation (bio_12) obtained 

from the WorldClim database version 2 (Fick and Hij-
mans 2017). These data are available in GeoTiff (.tif ) for-
mat with a resolution of 10 min (~ 340 km2).

We obtained Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) Global Digital 
Elevation Model (GDEM) at 30 m resolution covering the 
whole area for the terrain attributes. The data were pro-
cessed using SAGA-GIS (Olaya 2004). Elevation, slope, 
profile curvature, plan curvature, multi-resolution valley 
bottom flatness (MrVBF), multi-resolution ridge top flat-
ness (MrRTF), topographic wetness index (TWI), con-
vergence index, and aspect were calculated and included 
as covariates.

In addition, the Landsat-8 OLI/TIRS image with a spatial 
resolution of 30 m was used to extract six parameters. The 
calculated indices are as follows: normalized difference veg-
etation index (NDVI), transformed normalized difference 
vegetation index (TNDVI), soil adjusted vegetation index 
(SAVI), ratio vegetation index (RVI), difference vegetation 
index (DVI), and chlorophyll vegetation index (CVI). Since 
the study area is within two scenes’ limits (path = 200/201 
and row = 36), two Landsat 8 images were used to calculate 
all required parameters. The pre-processing of the bands 
used, treatment, and analysis were done using the ArcGIS 
program. All the covariates with coarser resolution were 
downscaled to 30 m pixel size using the nearest neighbor 
function in the ArcGIS program (Table 1).

Geostatistical models and experimental design
Ordinary kriging
This study performed ordinary kriging (OK) on pH, 
K2O, P2O5, and SOM. The OK technique uses an 

Table 1  Environmental covariates obtained from the WorldClim database, ASTER-GDEM, and Landsat-8 OLI/TIRS and applied in the 
modeling regime

All the input data were resampled at 30 m pixel size

Environmental covariates Sources Resolution Resample 
resolution

Bioclimatic parameters

Annual mean temperature (bio_1)
Max temperature of the warmest month (bio_5)
Min temperature of the coldest month (bio_6)
Annual precipitation (bio_12)

WorldClim database 
version 2

10 min (~ 340 km2) 30 m

Terrain attributes

Elevation; slope; profile curvature; plan curvature, Multi-resolution Valley Bottom 
Flatness (MrVBF); Multi-resolution Ridge Top Flatness (MrRTF); Topographic wet-
ness index (TWI); convergence index and aspect

ASTER-GDEM 30 m 30 m

Remote sensing indices

Normalized difference vegetation index (NDVI)
Transformed normalized difference vegetation index (TNDVI)
Soil adjusted vegetation index (SAVI)
Ratio vegetation index (RVI)
Difference vegetation index (DVI)
Chlorophyll vegetation index (CVI)

Landsat OLI 8 30 m 30 m
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estimated average of a specific soil property (e.g., pH, 
K2O, P2O5, and SOM) at a known location (x0 ) to inter-
polate the value at an unsampled location ( xi ) as outlined 
by Goovaerts (2001) and Bishop and McBratney (2001) 
(Eq. 1):

where Z′(x0) is the predicted/interpolated value for 
point xO , xi) is the known value, and �i is the kriging 
weight for the Z(xi) values. It can be calculated by the 
semi-variance function of the variables on the condition 
that the estimated value is unbiased and optimal. The 
semivariogram model as (Eq. 2):

where γ(h) is the semi-variance, N(h) is the point group 
number at distance h, Z(xi ) is the numerical value at posi-
tion xi , and Z(xi + h) is the numerical value at a distance 
( xi + h).

Theory of kriging with external drift (KED)
Kriging with a trend or kriging in the presence of drift is 
also known as universal kriging (UK). The KED method 
also predicts Z(x) at an unsampled area. It splits the ran-
dom function into a linear combination of determinis-
tic processes, the smoothly varying and non-stationary 
trend called a drift, and a random component represent-
ing the residual random function (Wackernagel et  al. 
2002). OK assumes a stationary, i.e., constant mean of 
the underlying real-valued random function Z(x). Nev-
ertheless, in reality, the mean value varies, it is often not 
consistent across the entire study area, and the variable 
is said to be non-stationary. A non-stationary regional-
ized variable can be considered as having two compo-
nents (Davis 1973): drift (average or expected value of the 
regionalized variable) and a residual (difference between 
the actual measurements and the drift).

The KED method allows predicting a variable Z, known 
only at a small set of sample points of the research area, 
through another variable s, exhaustively known in the 
same area.

The external drift method thus consists in incorpo-
rating into kriging system addition universality con-
ditions about one or several external drift variables, 
si(x) = 1, . . . .,M, measured exhaustively in the spatial 
domain. The functions si(x) need to be known at all loca-
tions xi of the samples of Z(xi) as well as at nodes of the 
prediction grid.

In this type of DSM technique, we assume a linear 
relationship between the response variable and the 

(1)Z
′(x0) =

n∑

i=1

�i.Z(xi),

(2)γ (h) =
1

2N (h)

∑n

i=1
[Z(xi)− Z(xi + h)]2,

environmental covariates (climate, terrain derivatives, 
vegetation indices, soil properties) at the observation 
points of the response variables (e.g., pH, K2O, P2O5, 
SOM). This assumption is fundamental in the predic-
tion by the external drift approach. Thus, if a non-linear 
function describes the relationship between the two 
variables, this function should first transform the data 
of the environmental covariates. The transformed data 
could then be used as an external drift. This method has 
been applied in different fields of science, as reported 
by Bourennane et  al. (2000). Similarly, the technique is 
important in soil science due to the increase of data from 
different sources (digital terrain model (DEM), satellite 
images, lithological data), which improves conventional 
pedological data obtained at specific locations.

The approach adopted in this study is explained as: 
thus, each targeted soil property or soil nutrient was 
modeled with covariates from a specific source and then 
evaluated when all the covariates were combined. That is 
to say, each soil property was modeled with climatic (C) 
covariates, terrain attributes (T), vegetation indices (V), 
and then all the covariates (A) (i.e., pH ~ C + T + V).

All this was performed in an R environment with the 
following packages: gstat, sp, rgdal, rgeos, MASS.

Model prediction accuracy
The model performance was accessed on the entire data 
via k = tenfold cross-validation. The data were randomly 
split into n = 10 partitions or folds; nine of these parti-
tions were engaged to fit and evaluate the model at each 
step. This procedure was repeated for each partition 
sequentially. Averaged over all k = tenfold held back, the 
performance delivers the cross-validated performance 
assessment—all the processes were rendered automati-
cally in the R environment.

Statistical metrics
The performance of the different models was compared 
via these criteria, RMSE (root mean square error), which 
gives an estimate of the standard deviation of the errors:

where pi = predicted values, oi = observed values.

Results
Summary statistics of soil variables
The characteristics of response variables are shown in 
Table 2. The pH of the studied region ranged from 6.00 to 
8.40, with the mean value slightly above neutral. The SOM 
ranged from 0.51 to 92.11%, with a mean of 7.82%. SOM 
content obtained here was higher than the 0.22% reported 

(3)RMSE =

√√√√1

n

n∑

i=1

pi − oi)
2,
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by Laghrour et al.  (2016) for surface soils under conserva-
tion. K2O ranged from 0.67–1258.8  ppm with a mean of 
290.34 ppm, while P2O5 ranged 1.65–1014 ppm. The values 
of P2O5 and K2O were higher than that of Nabyl et al. (2020).

Correlations between soil properties and studied 
covariates
Figures 2, 3, 4, 5 show the correlation between the studied 
soil properties and respective environmental covariates. 
The strength of the correlations between pH, SOM, K2O, 
and P2O5 with vegetation covariates, soil properties, ter-
rain covariates, and climatic data is shown in Figs. 2 and 
3. The result indicated that soil pH is significantly corre-
lated with vegetation index (CVI) (r = 0.05). This implies 
that pH could be increased with a rise in CVI in the area. 
Conversely, soil pH negatively and significantly correlated 
with silt (r =− 0.07) and bulk density (− 0.05). However, 
terrain covariates did not show any correlation with soil 
pH. Similarly, soil pH displayed a significant positive rela-
tionship with climate data, bio_12 (r = 0.10).

SOM showed a significant positive relationship with 
vegetation indices including TNDVI (r = 0.08), NDVI 
(r = 0.07) and CVI (r = 0.12). This result implies that 
the increase in these vegetation variables could lead to 
an increase in soil SOM. Conversely, SOM negatively 
and significantly correlated with RVI (r = 0.08). SOM 
showed positive correlation with terrain covariates such 
slope (r = 0.09) and elevation (r = 0.1) and negative cor-
relation with profile curvature (r = −  0.07) and MRVBF 
(r = − 0.07). John et al. (2021a, b) also observed SOC in 
their study to be positively correlated with slope (r = 0.44) 
and elevation (r = 0.47). The result obtained therein cor-
roborated this report and confirmed Askoy et al. (2012). 
They conducted a similar study and concluded that ele-
vation is the primary terrain attribute of soil properties. 

The results also showed that  SOM was  positively corre-
lated with climate data, bio_12 (r = 0.22) and negatively 
correlated with bio_6 (r = – 0.09), bio_5 (r = − 0.10) and 
bio_1 (r = − 0.11). This result is in line with the study of 
Okon et  al. (2019), where climate variables were nega-
tively correlated with soil nutrient indicators. Amalu and 
Isong (2015) pointed out that excessive rainfall amounts 
could leach out virtually all nutrient elements from the 
rhizosphere zones in line with this report. There is always 
a problem of heavy leaching, erosion, and generally poor 
performance in arable crops’ growth during the rainy sea-
son in areas with poor soil conservation measures.

K2O showed a significant negative relationship with 
vegetation indices including TNDVI (r = − 0.13), NDVI 
(r = −  0.13), CVI (r = −  0.21) and SAVI (r = −  0.05). 
These results imply that an increase in these veg-
etation variables could possibly lead to a decrease soil 
K2O. However, K2O is positively and significantly cor-
related to RVI (r = 0.14). K2O showed positive corre-
lation with terrain covariates such MRVBF (r = 0.07) 
and MRRTF (r = 0.05) and negative correlation with 
slope (r = −  0.12) and elevation (r = −  0.20). The 
results also showed that  K2O was positively correlated 
with climate data, boi_6 (r = 0.18), bio_5 (r = 0.21) and 
bio_1 (r = 0.21), and negatively correlated with bio_12 
(r = − 0.34).

P2O5 only showed a significant positive relation-
ship with vegetation index CVI (r = 0.07). P2O5 also 
positively and significantly correlated with elevation 
(r = 0.07) and bio_12 (r = 0.18), and negatively corre-
lated with bio_1 (r = − 0.06).

Spatial dependency of soil properties
Table 3 shows the parameters of the studied soil prop-
erties via semivariogram. Spherical models were the 
most efficient for modeling soil pH, SOM, K2O, and 
P2O5. However, John et  al. (2020) also found pH and 
SOC best modeled using spherical models, while avail-
able phosphorus was fitted best with a stable model. 
The higher Nugget/Sill connotes that spatial variability 
is mainly caused by stochastic factors, including fer-
tilization, farming management practices, and other 
human activities.

In contrast, a lower ratio suggests that structural fac-
tors, such as climate, parent material, topography, soil 
properties, and other natural factors play a significant 
role in spatial variability. The studied soil properties 
had diverse spatial dependence due to their nugget to 
sill ratios. Soil pH, SOM, and K2O estimated via OK 
and KED had moderate spatial dependence, whereas 
P2O5 estimated via OK and KED had solid spatial 
dependence, as shown in Table 3.

Table 2  Summary statistics of the response variables (n = 1819) 
for spatial modeling

CV coefficient of variation

Parameters pH SOM (%) K2O (ppm) P2O5 (ppm)

Mean 7.32 7.82 290.34 100.86

Standard error 0.01 0.27 6.73 3.60

Median 7.2 2.44 240 28.66

Standard deviation 0.33 11.65 286.99 153.54

Kurtosis 0.85 15.25 − 0.06 6.46

Skewness 0.14 3.35 0.78 2.46

Range 2.40 91.61 1258.13 1012.35

Minimum 6.00 0.51 0.67 1.65

Maximum 8.40 92.11 1258.8 1014

CV (%) 4.52 148.95 98.85 152.23

Confidence level (95.0%) 0.02 0.54 13.20 7.06
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Fig. 2  Correlation between pH and bioclimatic data, terrain attributes, and vegetation indices, respectively. The total number of observation points 
used = 1819

Cross‑validation
From the analysis of the developed semivariogram, the 
best fit model was selected through cross-validation 
technique based on the RMSE to assess the spatial dis-
tribution of soil pH, SOM, K2O, and P2O5. The detailed 
outcomes about the fitness and selection of different 
models for the interpolation of the studied soil properties 
are given in Table 2. Soil pH was best predicted with cli-
mate data an external drift (KED + C). This is consistent 
with the finding of Chytry et al. (2007), who reported that 
climate conditions at a regional level significantly influ-
enced pH. The result shows this relationship at the lowest 
RMSE (0.281). Similarly, SOM was also the best model 

using KED + C with an RMSE value of 9.505%. Likewise, 
K2O was the best model when utilizing terrain covariates 
(KED + T) with an RMSE value of 209.764 ppm.

Maps production
Figures  6, 7, 8, 9 are the interpolated maps of OK and 
KED, respectively. The soil pH map produced from the 
OK map revealed that the pH value in the range of 7.0–
7.6 dominated the surveyed area. However, 7.6–7.8 pH 
values are seen traveling from east to west and patches 
northward. The KED pH map with terrain attributes 
showed more calibrations in the scale, ranging from 
6.6 – 8.0. Patches of pH of 7.4 were seen clearly in the 
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southern part of the area. Also, a pH of 7.8 was observed 
in the northern part of the area. The result obtained here 
is consistent with Smith et  al. (2002) and Moore et  al. 
(1993). They outlined that elevation gradient results in an 
increase or decrease in pH.

Similarly, the pH map modeled with terrain as an exter-
nal drift showed noise in the spatial distribution. How-
ever, we observed a conspicuous patch of pH of 7.6 in the 
southern part. pH map via climate followed a similar dis-
tribution pattern with terrain and soil data. However, the 
soil pH map produced with vegetation data was utterly 

different from pH mapped with OK, KED (terrain), and 
KED (climate), respectively. The pH legend ranged from 
0–80, with the pH of the area ranging from 0–20. Thus, 
the map does not visually look good as the others.

SOM map by OK model revealed lower SOM con-
tents are dominated in the southern part (0–10%), while 
patches of SOM content between 10–20% are domi-
nated in the central region of the area. Only a few sites 
are revealed to have SOM (30–40%). Nevertheless, the 
SOM map created with terrain attributes highlighted 
places in the south having SOM (10–20%) even without 

Fig. 3  Correlation between SOM and bioclimatic data, terrain attributes, and vegetation indices, respectively. The total number of observation 
points used = 1819
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the smoothing effect. Areas with SOM (30–40%) are also 
clearly indicated compared to the OK map.

OK’s interpolated potassium (K2O) map revealed a 
smooth effect of soil potassium distribution in the region. 
K2O ranged from 0–600  ppm. The highest K2O concen-
tration was found in the southern part, where lower pH in 
the area is concentrated. Besides that, the pH level in the 
south part is the optimum pH (6.6–7.2) for most nutri-
ent elements. The K2O map obtained via terrain attributes 
revealed that low K2O (0–200 ppm) spreads from the cen-
tral part of the studied region to the northern angles. K2O 

map generated with climatic data showed that 500 ppm is 
the maximum K2O in the study area. Similarly, the K2O 
map by vegetation data produced a plain map with K2O dis-
tribution showing a maximum prediction of 60,000  ppm. 
And also, by using all the covariates, a similar map was 
obtained using vegetation data was also obtained here.

In P2O5, OK prediction revealed that low P2O5 was 
located in the southern part, northeast and northwest 
direction. P2O5 between 400–600  ppm was observed 
traveling from west to east. Some patches of 200 ppm of 
P2O5 were found in the west direction. Applying KED, 

Fig. 4  Correlation between P2O5 and bioclimatic data, terrain attributes, and vegetation indices, respectively. The total number of observation 
points used = 1819
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P2O5 generated via terrain and climatic covariates followed 
OK’s similar spatial distribution pattern. While using veg-
etation and all covariates (i.e., terrain, climate, and vegeta-
tion), P2O5 generated was plain with unclear patches.

Discussion
The results revealed that soils of the arid climates are 
predominantly alkaline with a high soil pH. In addition, 
Chytrý et  al. (2007) reported that climatic factors regu-
late pH variation at a regional level. Therefore, the high 
SOM content in this study may considerably influence 

soil nutrients and physical properties (Bruun et al. 2013; 
Deng and Shangguan 2017).

Consequently, the high SOM explains an increase in 
phosphate mineralization and the absorption of K on the 
exchangeable site. On the other hand, the high kurtosis 
and skewness obtained in this study may be due to heavy 
tails or outliers in the dataset. Nevertheless, the result is 
similar to that estimated in Heihe River Basin, China (Li 
and Heap 2014). Also, this study’s low but significant cor-
relation is not surprising, as John et  al. (2020) similarly 
reported low to no significant correlation between SOC, 

Fig. 5  Correlation between K2O and bioclimatic data, terrain attributes, and vegetation indices, respectively. The total number of observation points 
used = 1819
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P, and other soil nutrients with soil properties. John et al. 
(2020) and other studies have shown soil properties to 
correlate with environmental covariates, especially in 
low-relief areas.

The stronger spatial correlation of soil P2O5 may be 
attributed to structural factors, whereas a moderate spa-
tial correlation of pH, SOM, and K2O results from ran-
dom factors. In their research, John et  al. (2020) also 
obtained moderate spatial autocorrelation for pH and 
strong spatial autocorrelation for available phosphorus.

As presented in Table  3, the maximum distance in 
which spatial dependence or autocorrelation exists 
was defined as the range value of the semivariogram. 
The range values of soil properties in this study ranged 
between 5,320.63 m for pH predicted through universal 
kriging with all the covariates (KED + A) and 24,678.26 m 
for K2O predicted via OK. Therefore, larger than the 
obtained range values in this study, spatial dependence 
does not exist for these soil properties in the study area.

According to Lopez-Granados et  al. (2002), large 
range value indicated that estimated soil properties 
were significantly influenced by anthropogenic and 
natural factors over larger distances than the other 
soil properties which have smaller ranges. Therefore, 

the obtained result for ranges can be used for planning 
future soil sampling in the study area for geostatisti-
cal research by taking samples at interval distances less 
than half the obtained range values of the studied soil 
properties. Kerry and Oliver (2004) had reported that 
the distance between soil samples should be below half 
the semivariogram range value.

The pH map generated by combining all covariates 
(KED + A) was ultimately off, just like the map obtained 
from vegetation data. The pH legend scale > 14. How-
ever, the pH of the area with OK, KED + C, KED + V, and 
KED + T, respectively, fell between 0 and 10 (see Fig. 7A–
D). On the global scale, rainfall and potential evapotran-
spiration have affected soil pH fluctuations (Slessarev 
et al. 2016). As a result, regional-scale effects of climate 
conditions on soil pH fluctuations have been docu-
mented (Brady and Weil 2002; Ji et al. 2014; Chytr et al. 
2007). According to Ji et al. (2014), soil pH negatively cor-
relates with mean temperature and mean precipitation. 
Chytrý et al. (2007) also discovered that as precipitation 
increases, soil pH decreases.

SOM map modeled with soil properties data followed 
a similar spatial distribution pattern with SOM (terrain 
data). SOM maps modeled with climate datasets followed 

Table 3  The semivariogram parameters of studied soil properties via OK (spatial autocorrelation) and KED (with external drifts from 
bioclimatic data, terrain attributes, and vegetative indices)

Bold figures are the best model in each category

Keys: KED +C = kriging with climate covariates as external drift; KED +V = kriging with vegetation covariates as external drift; KED +T = kriging with terrain 
derivatives as external drift; KED +A = kriging with all covariates as external.

Variables Modeling 
techniques

Model Nugget (C0) Partial sill (C) Sill (C0 + C) Range (m) Nugget/Sill Spatial class RMSE

pH OK Spherical 0.0324 0.0754 0.1078 5517.81 0.301 Moderate 0.283

KED + C Spherical 0.0320 0.0755 0.1075 5445.87 0.298 Moderate 0.281
KED + V Spherical 0.0324 0.0757 0.1081 5495.52 0.300 Moderate 0.281

KED + T Spherical 0.0319 0.0753 0.1072 5463.41 0.298 Moderate 0.284

KED + A Spherical 0.0320 0.0731 0.1051 5320.63 0.304 Moderate 0.329

SOM OK Spherical 42.400 77.387 119.787 5868.03 0.354 Moderate 9.54

KED + C Spherical 42.162 78.233 120.395 5690.85 0.350 Moderate 9.505
KED + V Spherical 44.535 76.677 121.212 5707.12 0.367 Moderate 9.653

KED + T Spherical 42.488 76.803 119.291 5891.19 0.356 Moderate 9.695

KED + A Spherical 43.614 74.576 118.19 5580.74 0.369 Moderate 9.722

K2O OK Spherical 34,448.86 34,961.36 69,410.22 24,678.26 0.496 Moderate 211.79

KED + C Spherical 25,794.52 34,949.68 60,744.2 8667.65 0.425 Moderate 211.25

KED + V Spherical 31,936.70 32,486.23 64,422.93 12,001.12 0.496 Moderate 211.13

KED + T Spherical 32,597.23 33,524.03 66,121.26 17,689.55 0.493 Moderate 209.764
KED + A Spherical 27,326.64 33,242.60 60,569.24 7967.91 0.451 Moderate 212.952

P2O5 OK Spherical 981.493 21,708.082 22,689.575 6492.08 0.043 Strong 106.737

KED + C Spherical 1024.801 21,660.461 22,685.262 6334.52 0.045 Strong 106.511
KED + V Spherical 998.211 21,804.537 22,802.748 6391.46 0.044 Strong 107.70

KED + T Spherical 1015.802 21,592.194 22,607.996 6479.01 0.045 Strong 106.894

KED + A Spherical 1305.767 21,051.336 22,357.103 6252.80 0.058 Strong 123.91
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Fig. 6  pH maps via OK (spatial autocorrelation) and KED (with external drifts from bioclimatic data, terrain attributes and vegetative indices). Keys: 
KED + C = kriging with climate covariates as external drift; KED + V = kriging with vegetation covariates as external drift; KED + T = kriging with 
terrain derivatives as external drift; KED + A = kriging with all covariates as external.
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Fig. 7  SOM maps via OK (spatial autocorrelation) and KED (with external drifts from bioclimatic data, terrain attributes, and vegetative indices). 
Keys: KED + C = kriging with climate covariates as external drift; KED + V = kriging with vegetation covariates as external drift; KED + T = kriging with 
terrain derivatives as external drift; KED + A = kriging with all covariates as external
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Fig. 8  P2O5 maps via OK (spatial autocorrelation) and KED (with external drifts from bioclimatic data, terrain attributes, and vegetative indices). 
Keys: KED + C = kriging with climate covariates as external drift; KED + V = kriging with vegetation covariates as external drift; KED + T = kriging with 
terrain derivatives as external drift; KED + A = kriging with all covariates as external
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Fig. 9  K2O maps via OK (spatial autocorrelation) and KED (with external drifts from bioclimatic data, terrain attributes, and vegetative indices). Keys: 
KED + C = kriging with climate covariates as external drift; KED + V = kriging with vegetation covariates as external drift; KED + T = kriging with 
terrain derivatives as external drift; KED + A = kriging with all covariates as external
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a similar distribution trend. However, the conspicuous 
SOM of 10% revealed by terrain was not seen. The SOM 
resembled the OK map. In comparison, the prediction of 
SOM with all the covariates produced the worse map.

The maps obtained for the targeted soil properties, ter-
rain, and climatic covariates showed consistency in their 
produced maps. In contrast, vegetation and the combina-
tion of all the covariates from different sources had simi-
lar maps. Therefore, we infer that terrain attributes may 
perform equally as soil properties and climate covariates 
in spatial prediction and mapping. While instead of com-
bining covariates from all sources, importing radiometric 
errors, vegetation covariates may provide similar output.

Soil management recommendations
The generated predictive maps show that the region 
displays distinct variations  of pH, SOM, K2O, and P2O5 
over space. Moreover, to appropriately manage the soil 
for continuous cropping, we recommend dividing areas 
into two independent divisions (northern and southern) 
based on the most accurate map. The region character-
ized by moderate acid conditions should be engaged for 
forage crops. And the general application of reduced 
or increased quantities of lime, based on average soil 
pH values to stabilize uniform soil acidity would not be 
an appropriate amendment approach to this field. On 
the other hand, SOM would increase pH value when 
properly managed. Furthermore, elevated SOM would 
increase soil nutrient delivery and soil buffering capabil-
ity. Likewise, one method for improving SOM is to use 
organic fertilizers, charcoal, compost, and crop rotation.

Conclusion
The study observed that pH, SOM, and P2O5 spatial vari-
ation with the climatic dataset as external drift yielded 
the best model. K2O was accurately modeled with ter-
rain attributes. In addition, the study demonstrated that 
the relationship between targeted soil property and the 
covariates was linear, and the prediction was feasible 
because the covariates were known in all the locations 
where targeted soil property was unsampled.

In conclusion, specific covariates from the same source 
other than many covariates can be successfully applied 
to estimate the Mediterranean region’s spatial variation 
in soil properties. Also, this study would guide the estab-
lishment of national and regionalized specific raster maps 
for soil nutrient management programs.
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