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Abstract 

Background:  This study estimated the total soil organic C (SOC) stock of the wetland influence zone of Bichitrapur 
mangroves in eastern India in a spatially explicit manner. Both spatial and vertical distribution of SOC densities with 
respect to land use/land cover (LULC) pattern were assessed. Subsequently, some site-specific management strate-
gies were forwarded towards enhancement of C sequestration potential.

Methods:  The changing patterns of LULC within the wetland influence zone of the site were analyzed using Landsat 
TM (30 m) and Pleiades-1A (2 m) imageries from 1988 to 2018. Point-specific SOC measurement was done using sam-
ples taken from four core-depth intervals (viz. D1: 0–20 cm, D2: 20–40 cm, D3: 40–70 cm, D4: 70–100 cm) at 89 loca-
tions belonging to different LULC categories. Spatial interpolation was applied on this point-based data to produce 
SOC density and stock models as a whole and at all core-depths. Relationships between SOC density, core-depth and 
present LULC were evaluated through multivariate statistical analyses.

Results:  The LULC transformations during last three decades suggested the gradual growth of mangrove plantations 
as well as agricultural and aquacultural activities. Most amount of SOC was concentrated in D1 (37.17%) followed by 
D3 (26.51%), while D4 had the lowest (10.87%). The highest mean SOC density was observed in the dense mangrove 
patches (248.92 Mg ha−1) and the lowest mean was in the Casuarina plantations (2.78 Mg ha−1). Here, Spline method 
emerged as the best-fit interpolation technique to model SOC data (R2 = 0.74) and estimated total SOC stock of the 
entire wetland influence zone as 169,569.40 Mg and the grand mean as 125.56 Mg ha−1. Overall, LULC was inferred 
as a major determinant of SOC dynamics with a statistically significant effect (p < 0.001), whereas no such inference 
could be drawn for soil core-depth.

Conclusions:  The C sequestration potential of sites such as the present one could be increased with appropriate 
zone-wise plantation strategies, restriction on the land conversion to aquaculture and promotion of ecotourism. Peri-
odic monitoring through integration of geospatial techniques and elemental analyses would be immensely beneficial 
in this regard.
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Introduction
The coastal vegetation and soils are recognized as one 
of the largest terrestrial pools of sequestrated carbon 
(C) per unit area, popularly known as the ‘blue C’, and 
thus have enormous potential to alleviate the increase 
of atmospheric CO2 and conjoining greenhouse effects 
(Haywood et  al. 2020; Yu et  al. 2012). Even within the 
coastal environment, soil is widely considered to have 
relatively larger storage of C than the living vegetation 
and hence it is a beneficial strategy to estimate the total 
sequestrated blue C of the different coastal soils towards 
attaining an efficient management mechanism of green-
house gases (GHGs) (Yu et  al. 2012). The majority of 
the studies hitherto conducted on soil C had primarily 
focused on the C stock of the topsoil (0–20 cm) and very 
few have considered the deeper levels of soil at landscape 
level (Banerjee et al. 2020; Huo et al. 2014). However, the 
deeper layers of soil may have the potential to seques-
trate and store high amount of C (Datta et al. 2015; Jiang 
et  al. 2021). Thus, the C stock of deeper layers of soil 
needs to be included in the total soil C assessment to get 
a holistic picture of the sequestration potential and the 
available C pool of a particular landscape unit, especially 
the tropical coastal wetlands, such as mangroves. Most 
of these wetlands are fragile yet important ecosystems 

and excellent global blue C reserves with a potential to 
store almost 25% of the global soil C (Yu et  al. 2012). 
Degradation or destruction of these wetlands would lead 
to augmented emissions of GHGs contributing more 
to climate change. Unfortunately, these ecosystems are 
under severe threat as human populace and develop-
ment stresses in coastal regions are growing continu-
ously (IPCC 2021). A drive to protect and restore coastal 
wetlands demands closer integration of these threatened 
land–ocean interfaces with national climate change 
actions and their inclusion into site-specific manage-
ment initiatives. Sustainable management of coastal wet-
lands is particularly important in developing countries, 
where additional benefits from ecosystem services and 
products are lifelines to the local communities as high-
lighted in the ‘United Nations Framework Convention 
on Climate Change’ (UNFCCC) and ‘Blue Carbon’ man-
agement initiatives (Howard et al. 2014; UNEP 2012). In 
this regard, comprehensive accounting of the total soil C 
stocks of these coastal wetlands becomes the foremost 
task in accentuating their recognition as integral com-
ponents of climate change mitigation strategies (IPCC 
2021).

The soil C stock is influenced by many factors, such 
as the vegetation types, climate, hydrology, topology 
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and the patterns of land utilization (Bae and Ryu 2015). 
Evaluation of the vertical stock of C depends upon the 
apprehension of the spatial variability in a landscape 
(Dorji et  al. 2014). The varying land use/land cover 
(LULC) patterns are key determinants of soil C, par-
ticularly of differential soil organic C (SOC) stocks (Bae 
and Ryu 2015). The LULC patterns play major roles in 
regulating the amount and quality of SOC by affecting 
the rates of microbial decomposition and humus sta-
bilization, dynamics of soil physico-chemical proper-
ties, types of surface vegetation cover and expansion of 
built-up surfaces (Dorji et al. 2014; Guan et al. 2021). In 
many instances, the consideration of LULC dynamics in 
the assessment of SOC pools of a micro- or meso-coastal 
region, having same climate and soil types, becomes 
more imperative to gauge the levels of anthropogenic dis-
turbances as prime drivers of regional landscape change 
(Guan et al. 2021; Haywood et al. 2020).

In India, comprehensive investigations on the total 
SOC accounting of coastal wetlands are still few and 
rare both spatially as well as temporally (Banerjee et  al. 
2020; Gnanamoorthy et al. 2019; Kandasamy et al. 2021; 
Mitra et al. 2011; Sahu et al. 2016). Among the few stud-
ies, majority were concerned only with point-specific 
measurement of mangrove soil C (Kiranmai and Sekhar 
2016; Sahu et al. 2016). As per best of the knowledge of 
present authors, no study has been conducted yet in east-
ern India to measure the SOC stocks of coastal wetlands 
and their surroundings in a spatially explicit manner as 
well as assess the relationship of LULC patterns with the 
stocks. In view of these notable research gaps, the present 
study aims for a spatially explicit estimation of the total 
SOC stock of a mangrove wetland in an estuarine envi-
ronment of eastern India through geospatial modelling of 
field-collected soil core sample (down to 1 m core depth) 
data. It further attempts to appraise in detail the effects 
of different LULC types and core-depths on the SOC 
stock of the studied wetland and its surroundings using 
very fine-resolution satellite imagery. Finally, this study 
tries to formulate customized management strategies for 
LULC-specific blue C management in the wetland under 
investigation. The mangrove plantations of Bichitrapur, 
Odisha and the adjoining areas under its influence within 
the estuarine environment of River Subarnarekha were 
selected as the case study site for this purpose.

Materials and methods
Description of study site
The Bichitrapur mangrove forest is extended from 
87°20′58.36″E to 87°29′01.65″E and from 21°32′47.24″N 
to 21°37′16.77″N along the western fringe of the Medin-
ipur Coastal Plain (MCP) and eastern side of the Sub-
arnarekha estuary (Roy and Datta 2018). The entire MCP 

had developed primarily through the voluminous sedi-
mentation of sandy, silty clayey and clayey soil particles 
with an underlying gravel formation during the Holo-
cene transgression (Niyogi 1975; Chakrabarti 1995). This 
extensive coastal tract is characterized by wide beaches 
with interlinked tidal creeks, active deltas, mudflats, 
mangrove swamps and sand dunes (Barman et al. 2016). 
River Subarnarekha and other distributaries have tra-
versed the MCP and contributed substantial amount of 
fresh ferruginous sediments, deposited along its western 
border (Chakrabarti 1995). Vegetated Chenier ridges, 
muddy spits, interdunal wetlands, croplands, mangrove 
plantations and dispersed rural settlements are certain 
prominent land utilization features of this area (Panda 
et al. 2013).

Bichitrapur had considerable amount of naturally 
grown littoral mangrove cover up to the 1980s (Roy and 
Datta 2018). However, recurring natural (viz. cyclone, 
sea surge and coastal erosion) and human induced dis-
turbances (viz. wood pilferage, small-scale logging, 
conversion to aquaculture farms etc.) had led to severe 
deforestation in this area spanning from 1990s to the 
first decade of 21st Century. To tackle this menace, the 
Department of Forest and Environment (DFE), Govern-
ment of Odisha, declared the area as a Proposed Reserve 
Forest (PRF) and raised widespread mangrove plantations 
around the remaining natural forest since 2008–2009 
(OFSDP 2010). At present, several important species of 
mangroves and mangrove associates such as Avicennia 
marina, Avicennia alba, Bruguiera gymnorhiza, Sonnera-
tia apetala, Excoecaria agallocha, Pandanus tectorius, 
Acanthus ilicifolius and Porteresia coarctata are observed 
throughout the PRF (Barman et al. 2019). Near the shore-
line, plantations of Casuarina equisetifolia had estab-
lished themselves over the sand ridges and dune slacks 
since the 1980s. Conversely, mixed stands of Casuarina 
equisetifolia, Eucalyptus globulus, Acacia auriculiformis 
and Acacia nilotica dominate the more inland portions 
of these plantations beyond the high tide line (HTL). 
In-between the mangrove patches and other inland tree 
plantations, large tracts covered with herbaceous vegeta-
tion (viz. Sesuvium portulacastrum, Porteresia coarctata, 
Cynodon dactylon etc.) could be found in the intertidal 
zone (Datta et al. 2021).

Multitudes of shrimp aquaculture farms have devel-
oped here during the last decade engulfing erstwhile 
fringe mangrove patches and croplands alike (Roy and 
Datta 2018). Hence, several parts of the study area do not 
represent the true mangrove wetland character at present 
but still these plots are under the influence of charac-
teristic wetland eco-hydromorphology (Roy et al. 2020). 
It was realized during the course of this study that the 
greater exterior envelope of the wetland, comprising the 
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maximum area under inundation, plots of saturated sur-
face soil during monsoon and area dominated by hydro-
phytes, should be considered for estimation of the total 
SOC stock of the site. In reality, all these plots fall within 
the functional boundary of the mangrove wetland (Mula-
moottil et al. 1996). Accordingly, the concept of wetland 
influence zone (WIZ), proposed by Datta et  al. (2021), 
had been incorporated in this study to obtain a cumula-
tive account of total SOC stock of the study site consider-
ing both present and paleo wetland plots. Following their 
hybrid methodology of geospatial estimation and in-situ 
validation, the WIZ of Bichitrapur mangroves was delin-
eated and it covered an area of approximately 1350.52 ha 
in 2020 (Fig. 1).

Land use/land cover mapping
Data source and image pre‑processing
Pleiades is an environment-focused constellation consist-
ing of two satellites with very fine-resolution multispec-
tral sensors from Centre National D’Études Spatiales of 
France, referred to as 1A and 1B, respectively. This study 
used an imagery acquired by Pleiades-1A on 25 Novem-
ber, 2018 and supplied by the Airbus Defense and Space. 
The imagery includes high spatial resolution orthorecti-
fied multi-spectral data composed of four spectral bands 
(B: 450–530  nm; G: 510–590  nm; R: 620–700  nm; and 
NIR: 775–915  nm) with 2  m spatial resolution and one 
panchromatic band (480–820 nm) of 0.50 m resolution. 
The obtained Pleiades-1A imagery used in this study 
was already orthorectified but the locational accuracy 
could be improved up to 1 m using ground control points 
(GCPs) (Fundisi and Musakwa 2017). Hence, GCP (120 
points in total) based co-registration process was carried 
out in February, 2019 followed by sub-setting the imagery 
over the delineated WIZ. Furthermore, three scenes of 
Landsat 5 (TM) images from 1988, 1998 and 2008 were 
downloaded from the open-source United States Geo-
logical Survey (USGS) website (Table  1). Atmospheric 
correction using Fast Line-of-sight Atmospheric Analy-
sis of Spectral Hypercubes (FLAASH) and geometric 

Fig. 1  Location of the wetland influence zone of Bichitrapur mangroves with soil sampling points

Table 1  Details of satellite imageries used for LULC classification

Date of Acquisition Sensor Path/Row Spatial 
resolution 
(m)

17 December 1988 Landsat 5 The-
matic Mapper (TM)

139/45 30

11 January 1998 139/45

22 November 2008 139/45

25 November 2018 Pleiades 1A – 2
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correction using ground control points (GCPs) were con-
ducted over the Landsat images.

Supervised classification
The supervised classification of the obtained satellite data 
sets was conducted using the Support Vector Machine 
(SVM) algorithm. SVM is a non-probabilistic classi-
fier that set an optimal separating hyperplane between 
classes to correctly separate the data point into different 
classes (Bai et  al. 2017; Huang et  al. 2002; Mountrakis 
et  al. 2011). Through reconnaissance surveys, nine spe-
cific LULC categories were identified within the deline-
ated WIZ, viz. (i) dense mangrove, (ii) open mangrove, 
(iii) mixed vegetation, (iv) Casuarina plantation, (v) her-
baceous vegetation, (vi) agriculture, (vii) aquaculture, 
(viii) waterbody and (ix) bare earth and sand. The stand-
ard false colour composite (SFCC) and Google Earth 
geo-visualization based visual interpretation techniques 
coupled with field observations were applied here to 
manually select the training sets in the form of spectrally 
homogeneous polygons for each LULC class (Datta et al. 
2021). These training sets were assimilated into the SVM 
classifier to produce the LULC maps of the study area 
using ENVI 5.3® image analysis software (Harris Geospa-
tial Solutions, Broomfield, USA).

Accuracy assessment
The post-classification accuracy assessment was carried 
out to validate the classification outcomes and quanti-
tatively assess how accurately pixels were classified into 
the corresponding LULC classes (Roy et al. 2021). Infor-
mation on all the identified LULC types for 2018 were 
collected during the field survey from 192 in-situ data 
points, whereas fine resolution Google Earth images 
were used for collection of reference points for 1988, 
1998 and 2008. Thereafter, these points were incorpo-
rated as reference points for assessing classification accu-
racy through computation of user’s accuracy, producer’s 
accuracy, overall accuracy and overall kappa coefficient, 
respectively.

Sampling design and in‑situ soil sample collection
Intensive soil core sampling was carried out in Febru-
ary–March, 2019 using a stratified random sampling 
approach in which 89 soil cores were collected with 
respect to the various LULC categories existing within 
the WIZ of Bichitrapur mangroves (Mendoza-Vega et al. 
2003). Sampling points were created in the ArcGIS® Pro 
2.3 software (Environmental Systems Research Insti-
tute, USA) environment in such a manner so that each 
point should cover an approximate area of 15 ha. It was 
also ensured that the sampling proportions would match 

with the corresponding LULC proportions of the WIZ 
(Roy et al. 2020). Geolocations of all the sampling points 
were recorded by a Garmin eTrex 20x handheld device. 
As SOC is not distributed homogeneously in a soil pro-
file rather changes slowly with increasing depth, the core-
depths cannot be taken in equivalent intervals but need 
partitioning in an adequate depth-compensating manner 
(Kauffman and Donato 2012; Fourqurean et  al. 2014). 
Thus, the samples were collected in four successive depth 
intervals of each soil core, viz. 0–20 cm (D1), 20–40 cm 
(D2), 40–70 cm (D3), 70–100 cm (D4), respectively, using 
a Russian Sediment/Peat Borer (Model 25,030, AMS Inc., 
Idaho, USA). However, the depths of the soil cores were 
limited for some sampling points due to the presence of 
continuous sand or gravel (non-soil) beds beyond cer-
tain depths (< 1 m). The surface soil or first depth interval 
of soil (D1) was collected by purposefully excluding the 
fresh litter layers of the sampling points, if any (Datta and 
Deb 2017). In this process, total 250 soil samples were 
collected and then analyzed for SOC estimation. To com-
pare the SOC content of different soil depths with differ-
ent intervals, it was represented with respect to per unit 
area, as it is the most suitable way to study the soil C con-
tent (Batjes 1996; Wuest 2009).

Laboratory analyses
The collected soil samples were dried at room temperature 
(25–27 °C) for a fortnight and then sieved (2 mm) as well 
as pulverized mechanically. Further processing and analy-
sis of these samples were conducted in successive steps.

Estimation of point‑specific bulk density
A fixed amount (50 g) of soil was measured for each sam-
ple and oven dried at 105  °C for 24  h up to a constant 
weight (change < 4%). The weight of the soil was then 
measured again and the change in weight due to mois-
ture content loss by oven drying was noted along with the 
volume of dried soil (Toru and Kibret 2019). After deter-
mining the final weight of the soil and its original volume, 
the dry bulk density (BD) of the soil was calculated using 
the formula below (Dorji et al. 2014):

where Wa and Wf are the initial and final weights (g) 
of soil samples, respectively; V is the volume of the soil 
(cm3).

Estimation of point‑specific SOC stock
The SOC amount (% Corg) of each soil sample was deter-
mined by the dry combustion method as it provided 

(1)BD=
Wa −Wf

V



Page 6 of 16Datta et al. Ecological Processes           (2022) 11:30 

greater accuracy than the Loss-on-Ignition and Walk-
ley–Black wet oxidation methods (Bhatti and Bauer 2007; 
Gelman et  al. 2012). The Elemental C Analyzer (Flash 
2000-HT, Thermo Scientific Inc., MA, USA) was used 
for this purpose. The SOC density of each point was fur-
ther calculated as per the following equation (Fourqurean 
et al. 2014):

Thereafter, the amount of SOC in each core-depth 
interval of the soil column was determined as follows:

where i denotes the core-depth number of jth sample 
point; i = 1, 2, 3, 4; j = 1, 2… n; n = 89.

The amount of SOC in the entire soil core column of 
a specific sampling point was then measured by the fol-
lowing equation (Fourqurean et al. 2014):

Finally, the point-specific SOC of each column was 
represented in the standardized format of C estimation 
(Mg ha−1) using the following conversion:

Spatially explicit modelling of SOC stock
The spatial modelling of SOC over the WIZ was initiated 
by partitioning the point-specific density data in 70:30 
ratios for modeling and validation, respectively (Bhusal 
et  al. 2018; Fidêncio et  al. 2002). Various methods had 
been used by authors worldwide for prediction of spatial 
variation of soil properties that had produced differing 
inferences on the best performing interpolation method 
(Bogunovic et  al. 2014; Padua et  al. 2018; Robinson and 
Metternicht 2006; Schloeder et al. 2001; White et al. 1997; 
Xie et al. 2011). Based on these findings, five interpolation 
techniques, namely, Inverse Distance Weighting (IDW), 
Ordinary Kriging (OK), Radial Basis Function (RBF), Local 
Polynomial Interpolation and Spline were shortlisted as 
suitable for the present context and, accordingly, tested 
for spatial modelling of SOC density data using ArcGIS® 

(2)
SOC density

(

g cm−3
)

= BD
(

g m−3
)

×

(

%Corg

)

(3)SOC in core-depthij

(

g cm−2
)

= SOC densityij × Core-depth intervalij(cm)

(4)

SOC in Soil columnj(g cm
−2) =

4
∑

i=1

SOC in core-depthij

(5)

Point-specific SOC densityj(Mgha−1)

= SOC in Soil columnj(g cm
−2)×

(

1Mg/1000000 g
)

×

(

100000000 cm2/1 ha
)

Pro 2.3 software. While shortlisting, methods that do not 
need ancillary predictive variables (e.g., LULC pattern, 
elevation, soil type data etc.) were given preference as per 
the present research objectives. The relative effectiveness 
of these interpolation methods was compared through 
computation of the coefficient of determination (R2) from 
the measured and predicted SOC values of the validation 
points (30% of total sampling points) (Deb et  al. 2017). 
Ideally, coefficient of determination should be close to 1 to 
indicate more accurate spatial prediction. Thus, the inter-
polation method with best R2 statistic was selected for the 
spatial modelling of SOC here.

Analysis of relationships between SOC stock, core‑depth 
and LULC pattern
The effects of LULC categories and core-depth on the SOC 
densities were evaluated through statistical analyses. First, 
the mean (μ) and standard error (SE) values of SOC den-
sities had beenwere computed for each core-depth inter-
val under each LULC category. The box and whisker plots 
were used to represent the distribution patterns and vari-
ances of SOC densities under different LULC categories 
in this context due to their higher visual efficiency (Eldeiry 
and Garcia 2010). The statistical differences between these 
mean SOC values of the LULC categories were com-
pared through one-way analysis of variance (ANOVA) 
with respect to each core-depth interval (Datta and Deb 
2017). When ANOVA detected significant differences 
between mean SOC values of different LULC categories, 
Tukey HSD post-hoc tests (two-tailed) were conducted 
to analyze pairwise differences among those (p < 0.05, 
p < 0.01, p < 0.001). In addition, two-way ANOVA was also 
conducted to assess the individual and combined effects 
of core-depths and LULC categories on the mean SOC 
densities, respectively (Nandi et al. 2020). The mean SOC 
density was considered here as a dependent or response 
variable, whereas core-depth interval and LULC category 
were applied as independent control variables regulating 
the SOC dynamics. Finally, total SOC stocks under each 
LULC category as well as the whole WIZ were estimated 
through application of the best-fit interpolation method. 
Here, all statistical tests were performed using the SPSS® 
(Version 22.0, IBM Corporation, Armonk, USA) software.

Results
Changing LULC scenario within the WIZ
The WIZ of Bichitrapur mangroves were classified into 
nine LULC categories based on the ground situation of 
2018–2019 (Fig. 2). Accuracy assessment of all four LULC 
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maps developed in this context revealed overall accuracies 
of more than 80% for each assessment year (Additional 
file 1: Table S1). These maps showed that the entire study 
site had experienced notable changes in terms of LULC 
patterns over the last three decades (1988–2018). It wit-
nessed an overall areal decreasing trend for mixed vegeta-
tion, bare earth and sand, and waterbody categories, while 
an increasing trend was observed for dense mangrove, 
open mangrove, Casuarina plantation, herbaceous vegeta-
tion, agriculture and aquaculture categories from 1988 to 
2008 (Additional file 1: Table S2). Among these, although 
the dense mangrove category experienced a steady growth 
throughout, the open mangroves recorded a decrease of 
1.70% only in 1998 with respect to 1988. Along with the 
mangroves, aquaculture category also experienced nota-
ble growth in the last three decades. Casuarina plantations 
had registered a considerable growth of 4.48% only during 
the last decade of assessment (2008–2018). At present, the 
mixed vegetation as well as the bare earth and sand catego-
ries occupy a minor area of 8.39% cumulatively, compared 
to the earlier 40.31% in 1988.

Among all, herbaceous vegetation covered most of the 
area (23.16%) followed by dense mangrove (22.71%) and 
open mangrove (19.51%) categories in 2018. Conversely, 
the bare earth and sand (3.36%), aquaculture (3.55%) and 

agriculture (4.03%) categories were found with least cov-
erages (Table 5). Dense mangroves (306.73 ha) were more 
prevalent within the fenced zones of the PRF, whereas open 
mangrove patches (263.43 ha) were frequent in the fringe 
areas of the PRF. Outside the PRF, lesser presence of agri-
culture was a notable departure from the regional LULC 
pattern and could be attributed to the recent growth of 
shrimp aquaculture (47.93  ha) and farm-forestry (mixed 
vegetation patches: 5.03%) activities through conver-
sion of erstwhile paddy dominated croplands at this site. 
The proportion of land area under Casuarina plantation 
(9.71%) was relatively higher along the shoreline. Water-
bodies (8.94%) within the WIZ primarily comprised of the 
river channel, tidal creeks and other naturally waterlogged 
areas. Land area under the bare earth and sand category 
(45.33 ha) were greater along the shoreline than the inland 
parts chiefly due to the presence of bare mudflats and 
sandy beaches.

Distribution patterns of SOC stock
Vertical distribution of SOC
Laboratory based analyses of soil core samples revealed 
that the vertical distribution of SOC contents varied across 
core-depths (Table  2). Among the core-depth intervals, 
the D3 (x̄ =  56.04  Mg  ha−1) interval represented highest 

Fig. 2  Changing land use/land cover patterns of the study site from 1988 to 2018, prepared from Landsat TM and Pleiades 1A satellite imageries
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mean value of SOC density while D4 (x̄ = 40.22 Mg ha−1) 
was the lowest. The D1 (x̄ =  49.44  Mg  ha−1) and D2 (x̄ 
=  40.72  Mg  ha−1) were measured to have intermediate 

amounts of SOC (Fig. 3). Here, the total SOC density was 
found to be highest at D1 (4400.52 Mg ha−1, 37.17% of site 
total) and lowest at D4 (1287.19  Mg  ha−1, 10.87%). Even 
also under this context, D3 (3138.08  Mg  ha−1, 26.51%) 
showed larger amount than that of D2 (3012.93 Mg ha−1, 
25.45%), indicating towards higher rates of C sequestration 
at this site in the geologic past. This pattern was most evi-
dent in case of mixed vegetation category, in which highest 
SOC concentration was found at D3 (31%). However, this 
should be noted that the D3 and D4 intervals were not at 
all observed in many instances, specifically under the bare 
earth and sand, Casuarina plantation, and agriculture cat-
egories, respectively.

Performance of spatial interpolation methods
The accuracies of spatially predicted SOC values using 
five different spatial interpolation methods were assessed 
through computation of their respective R2 values (Table 3). 
Among all, the Spline (R2 = 0.74) method showed the best 

Table 2  Mean SOC densities (Mg ha−1) with standard error (± SE) values for the successive core-depth intervals of the soils within the 
WIZ. n = number of samples collected at varying core-depths

Depth n D1 [0–20 cm] n D2 [20–40 cm] n D3 [40–70 cm] n D4 [70–100 cm]

SOC stock 89 49.44 ± 4.75 74 40.72 ± 4.18 56 56.04 ± 7.47 32 40.22 ± 7.32

Fig. 3  Distribution of SOC densities at different core-depth intervals. a D1 (0–20 cm); b D2 (20–40 cm); D3: (40–70 cm); D4: (70–100 cm)

Fig. 4  Obtained relationship between measured SOC stocks and 
interpolation model-based SOC stocks
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fit followed by Local Polynomial Interpolation (R2 = 0.72). 
The validation results were also checked through bi-axial 
scatter graphs fitted with regression trend lines (Fig.  4). 
Accordingly, the Spline method was used further for the 
spatially explicit modelling of total SOC stock in the WIZ 
from the point-specific sample data. It was also applied to 

prepare the depthwise spatial distribution maps of SOC 
pools.

Horizontal trend of SOC densities
The spatially predicted SOC densities of the study site 
revealed wide variations, ranging from almost zero to 
544.89  Mg  ha−1. In general, the higher amount of SOC 

Table 3  Coefficient of determination (R2) estimated for different spatial interpolation methods with respect to the relationship 
between the observed and corresponding predicted SOC values

† IDW Inverse Distance Weighting, OK Ordinary Kriging, RBF Radial Basis Function, LPI Local Polynomial Interpolation

Method of interpolation† Reference Value of R2 
obtained in this 
study

IDW Padua et al. 2018; Robinson and Metternicht 2006 0.65

OK Bhusal et al. 2018; Robinson and Metternicht 2006 0.45

RBF Fidêncio et al. 2002 0.67

LPI Bogunovic et al. 2014; White et al. 1997; Xie et al. 2011 0.72

Spline Bhusal et al. 2018; Schloeder et al. 2001 0.74

Fig. 5  Spatial distribution of total SOC density of the study site
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pools (> 300  Mg  ha−1) was mostly traced along the tidal 
creeks and river channel within the dense and open man-
grove patches. Majority of these patches were found to 
be part of the PRF during ground truthing. In contrast, a 
secondary zone of large SOC pool (> 270  Mg  ha−1) was 
identified in the north-western corner of the WIZ (Fig. 5). 
In reality, this zone was outside the ambit of the PRF and 
found within community-owned plots. It primarily had 
a mixed LULC pattern comprised of aquaculture, dense 
mangrove and open mangrove categories. Overall, the 
highest SOC density (544.89  Mg  ha−1) was obtained in a 
dense mangrove zone, while the lowest amount (almost 
0.00  Mg  ha−1) was predicted for the south-central por-
tions of the Casuarina plantation along the shoreline. The 
model revealed that almost 46% of the total WIZ area had 
SOC densities of more than 200  Mg  ha−1,  whereas 32% 
of the area was consisted of moderate SOC pools (100–
200  Mg  ha−1). The remaining 22% of WIZ area was esti-
mated to have lower amounts of SOC (< 100 Mg ha−1).

Effects of LULC pattern and core‑depth on SOC stock
SOC densities of the WIZ of Bichitrapur mangroves 
were highly variable among areas under the different 
LULC categories in 2018. These differences were exam-
ined in detail with respect to the four core-depth inter-
vals considered in this study (Table 4). In D1, very high 
SOC concentrations were found in dense mangrove (x̄ 
= 89.00 Mg ha−1), open mangrove (x̄ = 52.01 Mg ha−1), 

herbaceous vegetation (x̄ = 40.16 Mg ha−1), aquaculture 
(x̄ = 66.50 Mg ha−1) and waterbody (x̄ = 45.61 Mg ha−1) 
categories. On the contrary, lower SOC densities were 
recorded in mixed vegetation (x̄ =  5.25  Mg  ha−1), 
Casuarina plantation (x̄ =  2.41  Mg  ha−1), agricul-
ture (x̄ =  8.26  Mg  ha−1), and bare earth and sand (x̄ 
=  11.53  Mg  ha−1) covered areas. Statistically, the dense 
mangrove soil had significant difference of mean SOC 
density with all other categories (p < 0.05) except those of 
aquaculture and waterbody.

Regarding D2, the previous sequence of LULC cat-
egories with respect to SOC densities changed slightly 
as open mangrove (x̄ =  50.91  Mg  ha−1) emerged as 
the second highest one replacing the aquaculture (x̄ 
= 39.43 Mg ha−1) category. Here, six out of the total nine 
LULC categories depicted notably poor SOC concen-
trations (x̄ < 25  Mg  ha−1). Accordingly, the dense man-
grove category showed significant differences with all 
other LULC categories except the open mangrove in this 
depth interval (p < 0.05). Notably, this core-depth of open 
mangrove had the presence of almost a same percent-
age of total SOC stock (23.49%) as the first one, whereas 
for the dense mangrove, the amount was far lesser in D2 
(20,014.13  Mg) than in D1 (27,298.97  Mg). The SOC in 
D2 of herbaceous vegetation was significantly lower than 
its D1 (Fig. 6).

The sequence of LULC categories observed for D1 
almost matched with that of D3, as aquaculture regained 
the second spot following dense mangrove. For mixed 

Table 4  Mean ( x ) SOC densities with standard error (± SE) values across different LULC categories and soil core-depths†

† Soil samples were collected at varying core-depth intervals of D1 = 0–20 cm; D2 = 20–40 cm; D3 = 40–70 cm; and D4 = 70–100 cm. n number of samples for each 
LULC category at a particular depth; NA = data unavailable due to absence of soil layer at a particular depth under any LULC category. Different superscript letters 
represent significant differences among LULC categories at a particular core-depth according to one-way ANOVA (F) followed by Tukey HSD Post Hoc test at p < 0.05. 
Significance values of two-way ANOVA (F) for comparisons of individual and combined effects of LULC category and core-depth on SOC density. Degrees of freedom 
are represented by df. Levels of significance are shown as: ***p < 0.001

LULC category SOC density (Mg ha−1)

D1 D2 D3 D4

n x ± SE n x ± SE n x ± SE n x ± SE

Dense mangrove 23 89.00 ± 9.53A 23 65.25 ± 8.12A 18 90.22 ± 14.72A 10 54.70 ± 17.51

Open mangrove 17 52.01 ± 9.73B 17 50.91 ± 6.72AC 17 61.70 ± 11.92A,B 11 52.10 ± 10.58

Mixed vegetation 4 5.25 ± 0.14BC 4 4.20 ± 0.44BC 4 5.77 ± 0.28B 3 4.51 ± 0.73

Casuarina plantation 8 2.41 ± 0.94C 1 2.93 ± 0.00C NA NA NA NA

Herbaceous vegetation 18 40.16 ± 7.88BC 16 19.13 ± 5.68B 10 12.40 ± 3.04B 5 18.41 ± 7.07

Agriculture 4 8.26 ± 4.72BC 4 3.29 ± 0.53BC 1 4.24 ± 0.00C NA NA

Aquaculture 6 66.50 ± 14.43AB 6 39.43 ± 11.72 4 61.19 ± 30.78A,B 2 28.37 ± 21.17

Waterbody 5 45.61 ± 8.97 3 23.78 ± 8.18 2 34.56 ± 11.52A,B 1 4.77 ± 0.00

Bare earth and sand 4 11.53 ± 0.41BC NA NA NA NA NA NA

Multivariate analysis df 8, 3, 18

LULC category 11.15***

Core-depth 1.52

LULC category × core-depth 0.50



Page 11 of 16Datta et al. Ecological Processes           (2022) 11:30 	

vegetation, there was significant difference of SOC 
between D2 and D3 (p < 0.05). This depth layer was 
conspicuously absent for the Casuarina plantation as 
well as bare earth and sand categories, hence these cat-
egories were omitted from further consideration in this 
particular assessment. Among the rest of the categories, 
agriculture was most distinctively as well as significantly 
different (p < 0.05) from others due to its notably poor 
SOC density at this depth (x̄ = 4.24 Mg ha−1). In reality, 
plots under agriculture category were mostly found only 
down to the D2 depth throughout the WIZ. Remarkably, 
the mean SOC densities and total stocks of D3 for most 
of the LULC categories were higher than those of D2.

In D4, wide variations among point-specific samples 
were recorded across LULC categories, as indicated by 
their respective large SE values. Thus, although the gen-
erally observed sequence of decreasing mean SOC densi-
ties for different LULC categories was almost maintained 
in this depth layer with the sole exception of aquacul-
ture (lower than open mangrove), no statistically signifi-
cant difference among these values could be deduced 
(p > 0.05). Along with the complete absence of soil under 
agriculture, Casuarina plantation, bare earth and sand 
categories, most plots under aquaculture and waterbody 
were also devoid of this depth layer, as evident from their 
very low sample sizes in this case (n < 3).

Fig. 6  SOC densities of the four core-depth intervals under different LULC categories. a dense mangrove; b open mangrove; c mixed vegetation; 
d Casuarina plantation; e herbaceous vegetation; f agriculture; g aquaculture; h waterbody; i bare earth and sand. Different superscript letters 
represent significant differences among core-depth intervals under a particular LULC category according to one-way ANOVA (F) followed by Tukey 
HSD Post Hoc test at p < 0.05
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Regarding the total SOC stock, the following 
descending order was obtained: dense mangrove 
(76,351.16  Mg) > open mangrove (52,247.13  Mg) > her-
baceous vegetation (21,635.05  Mg) > waterbody 
(9015.39 Mg) > aquaculture (7485.66 Mg) > mixed vegeta-
tion (1262.37  Mg) > agriculture (686.08  Mg) > bare earth 
and sand (522.47 Mg) > Casuarina plantation (364.09 Mg) 
(Table 5). Thus, the total SOC stock of the entire WIZ of 
Bichitrapur mangroves was estimated as 169,569.40 Mg. 
However, the order of LULC categories based on mean 
SOC densities of all depths was as follows: dense man-
grove > open mangrove > aquaculture > waterbody > her-
baceous vegetation > mixed vegetation > agriculture > bare 
earth and sand > Casuarina plantation. This difference 
between the two orders of decreasing SOC amounts 
could be attributed chiefly towards the varied areal cover-
ages of different LULC categories within the WIZ. Over-
all, aquaculture plots recorded highest variance among 
its predicted values followed by open mangroves. Moreo-
ver, it could be inferred from the study that for different 
core-depth intervals, similar SOC densities were found, 
whereas for any particular core-depth under different 
LULC categories, different SOC densities were obtained. 
These inferences were also evidenced from the two-way 
ANOVA, which revealed a statistically significant effect 
of LULC category on SOC density (p < 0.001), making it a 
major determinant of SOC dynamics. Conversely, neither 
soil core-depth individually nor core-depth and LULC 
jointly was found as significant controlling factor(s) of 
the SOC density as a whole (p > 0.05).

Discussion
LULC as a driver of spatial heterogeneity in SOC stock
Rate of SOC sequestration is a function of the combined 
actions of climate, vegetation type, topography and soil 
type (Haywood et al. 2020; Mendoza-Vega et al. 2003). In 

a coastal wetland environment, such as the present study 
site, the pattern and duration of inundation and rate of 
removal of freshly fallen litter through run-off also have 
considerable effects on SOC dynamics (Datta and Deb 
2017; Yu et  al. 2012). LULC patterns often act as the 
proxy of vegetal cover and exert influence on the rates 
of soil organic matter accumulation and SOC minerali-
zation, thereby controlling SOC accumulation (Bae and 
Ryu 2015). The effects of existing LULC pattern and their 
transformation scenarios become even more influential 
if the studied wetland site constitutes a small landscape 
unit (< 1500  ha) and is under the same climate, broad 
soil type and topography, which is the case here (Yu et al. 
2012). Acknowledging the due importance of LULC pat-
tern on the SOC stock, we conducted the present investi-
gation with very fine-resolution Pleiades-1A imagery.

Wetlands such as the Bichitrapur mangroves, having 
high vegetation productivity as well as low decomposi-
tion rate of C, generally represent high amount of SOC 
stock (Mou et  al. 2018). This fact is evident from the 
higher SOC concentrations (x̄ > 190  Mg  ha−1) in dense 
and open mangrove patches of this site and could be 
attributed to the accumulation of larger aboveground 
and belowground biomass contents in an anaerobic con-
dition for prolonged time. Conversely, the lower SOC 
concentrations (x̄ < 70  Mg  ha−1) in herbaceous vegeta-
tion and agriculture categories could be attributed to the 
limited potential of C inputs in the soil from relatively 
lesser aboveground biomass. However, these mean values 
should be considered with respect to their correspond-
ing sample sizes only, as the sizes decreased gradually 
with increasing depth from the surface. In this regard, 
the total SOC stocks in each core-depth across the WIZ, 
calculated based on point-specific sampling, might pro-
vide a clearer picture of C dynamics. The SOC content 
of agricultural land (686.08  Mg) seemed to be very low 

Table 5  Estimated total SOC stocks and mean, minimum, maximum and standard error (SE) values of SOC densities under different 
LULC categories

LULC category Area (ha) Area (%) Total SOC stock (Mg) Mean SOC 
(Mg ha−1)

Minimum SOC 
(Mg ha−1)

Maximum SOC 
(Mg ha−1)

SE (Mg ha−1)

Dense mangrove 306.73 22.71 76,351.16 248.92 68.60 544.89 22.88

Open mangrove 263.43 19.51 52,247.13 198.33 54.35 523.28 28.45

Mixed vegetation 67.89 5.03 1262.37 18.59 0.00 39.07 1.79

Casuarina plantation 131.20 9.71 364.09 2.78 0.00 11.53 1.20

Herbaceous vegetation 312.82 23.16 21,635.05 69.16 5.69 156.34 11.44

Agriculture 54.43 4.03 686.08 12.60 4.82 58.28 4.23

Aquaculture 47.93 3.55 7485.66 156.18 36.57 326.17 44.04

Waterbody 120.76 8.94 9015.39 74.66 19.69 141.75 15.33

Bare earth and sand 45.33 3.36 522.47 11.53 0.00 17.08 0.41

Total 1350.52 100.00 169,569.40 125.56 0.00 544.89 -
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which might be the combined effect of intensive farming, 
unscientific ways of crop harvesting and soil tillage prac-
tices and uncontrolled application of chemical fertilizers 
(Guan et al. 2021; Roy and Datta 2018). Nevertheless, the 
presence of excessive sand deposits at near-surface soil 
layers was found to be one of the prime determinants of 
lower SOC concentrations (x̄ < 20 Mg ha−1) in agriculture 
(at some plots near shoreline), mixed vegetation, Casu-
arina plantation and bare earth and sand categories. This 
sandy soil at the surface (D1) and only sand just below D2 
or D3 intervals actually resulted into exceptionally low 
amount of organic matter and thereby very poor amount 
of SOC under these LULC categories. Besides, the bare 
earth and sand covered plots had very low amount of 
SOC primarily due to the absence of any vegetation 
cover. Some of the bare earth plots were in a transitional 
stage from open mangrove or agriculture to aquaculture 
farms and thus were the evidences of rampant small-
scale deforestation and LULC conversion continuing in 
this part of eastern India (Roy et al. 2021).

Apparently, lentic characteristic, different artificial fish 
feeds, chemical fertilizers and manures used in aquacul-
ture as well as decomposed dead bodies and excrements 
of aquatic animals had led towards the high SOC con-
centration in aquaculture farms (Roy et  al. 2021). How-
ever, the influence of paleo-land covers should not be 
overlooked in this context, since many of the aquacul-
ture plots had gone through successive stages of LULC 
transformation during the last 50  years, mostly in the 
following sequence: mangrove ‒ bare earth ‒ agricul-
ture ‒ bare earth ‒ aquaculture (Roy and Datta 2018). 
Thus, the relatively higher level of mean SOC density (x̄ 
= 61.19 Mg ha−1) at D3 of aquaculture category might be 
related to the former mangrove vegetation cover of these 
plots. Similarly, the mean SOC concentration of the bare 
earth and sand category at D1 was considerably higher 
than the amounts of mixed vegetation, agriculture and 
Casuarina plantations. This higher concentration of SOC 
in some ‘bare earth’ plots probably indicated towards the 
recent occurrence of deforestation, where vegetation cov-
ers existed in the past. Nevertheless, as many farmers of 
this site were found to be willing to convert their sandy 
soil dominated croplands to aquaculture farms chiefly 
owing to the prospect of rapid as well as higher monetary 
returns, area under aquaculture would surely increase in 
near future. The patterns of LULC transformation of this 
site in the last 30–40 years, as revealed in this study, also 
supported this trend. However, the SOC density might 
not show any notable growth due to this specific conver-
sion process. On the contrary, the general lotic charac-
teristic of the waterbodies within the WIZ decelerated 
the sedimentation process, thereby leading towards low 

to medium amounts of SOC concentration (Overall x̄ 
= 74.66 Mg ha−1) there.

In the current study, the highest SOC stock for man-
grove region was found within upper part (20 cm) of the 
soil profile and somewhat lesser in the deeper section. 
This contradicted the trend for mangrove soils of sev-
eral part of India. For example, highest concentration 
of SOC was found within the depth of 16–30  cm and 
comparably lower in the upper layer (0–15 cm) in Guja-
rat (Pandey and Pandey 2013). This contrasting scenario 
also prevailed in the Bhitarkanika Conservation Area 
of Odisha, where the highest amount of SOC stock was 
recorded below 100  cm of depth for mangroves (Bho-
mia et al. 2016). However, the estimated SOC pool (40–
70 cm) for aquaculture in this study is comparable with 
that of Bhitarkanika (50–100  cm) (Bhomia et  al. 2016). 
Similarly, the mangrove sites of Vellar estuary showed a 
similar trend of decreasing SOC with increasing depth 
(Kathiresan et  al. 2014). The estimated SOC stock of 
mangroves here is higher compared to the mangroves of 
Kerala for the depth of 60 cm and highest concentrations 
were recorded for the upper layer of 0–45 cm (Harishma 
et  al. 2020; Rani et  al. 2021). The estimated SOC den-
sity is also higher than both the plantations and natural 
mangroves of Mahanadi estuary of Odisha but notably 
lower than that of Sundarbans of West Bengal (Mitra and 
Banerjee 2012; Sahu et  al. 2016). This difference might 
be due to Bichitrapur being a recent plantation, while 
Sundarbans is a natural mangrove forest. In addition, the 
rate of SOC mineralization is also a predominant factor 
of soil organic matter decomposition (Ross et  al. 1999). 
Any change in the rate of SOC mineralization resulting 
from human interventions thus have the potential to alter 
SOC storage in wetland environments (Mou et al. 2018; 
Wang et al. 2014). It was evident from the present study 
that the SOC stocks were notably lower in lands with 
more human induced disturbances than those with natu-
ral wetland vegetation. For example, the dense and open 
mangrove patches, being relatively undisturbed, accumu-
lated higher amount of SOC pools but the plots under 
agriculture, bare earth, waterbody etc. contain much 
lower amounts. Therefore, incessant conversion of wet-
land areas to croplands and aquaculture farms poses a 
severe threat to the regional environmental sustainability 
through considerable reduction of the current C seques-
tration potential of the study site.

Site‑specific strategies of SOC management
The WIZ of Bichitrapur mangroves recorded a rel-
atively lower SOC density (x ̄ =  125.56  Mg  ha−1) 
than other similar mangrove wetlands of South 
and Southeast Asia such as the Chek Jawa in 
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Singapore (497  Mg  ha−1), Jakarta Bay in Indonesia 
(531.53  Mg  ha−1) and Batticaloa lagoon in Sri Lanka 
(1009  Mg  ha−1) (Jonsson and Hedman 2018; Phang 
et  al. 2015; Slamet et  al. 2020). There were several 
reasons of this low amount of sequestrated C in this 
site. Even after considering the fact that the entire 
WIZ did not only have the actual mangrove patches 
but also other partially or fully humanized LULC cat-
egories (viz. aquaculture, Casuarina plantation, agri-
culture and bare earth), the total SOC stock could be 
considered as very poor under the perfect tropical 
estuarine geo-environmental conditions present there 
(Roy et al. 2020). These low values were also due to the 
faulty plantation strategies implemented in this site 
with respect to mangroves and other coastal vegeta-
tion (Datta et al. 2021). Thus, it was realized from the 
study that there is sufficient scope of enhancing the C 
sequestration capacity of the WIZ, provided integrated 
coastal management initiatives are implemented 
appropriately. The DFE has already implemented eco-
tourism initiatives here and it could become fruitful in 
managing this fragile wetland site. In this regard, some 
site-specific conservation and management measures 
are formulated based on the experience of the pre-
sent study. These are as follows: (1) sincere efforts 
should be made by the DFE to bring this site under 
the globally recognized ‘Reducing Emissions from 
Deforestation and Forest Degradations and the role of 
conservation, sustainable management of forests and 
enhancement of forest carbon stocks in developing 
countries’ (REDD +) programme for obtaining neces-
sary funding for mangrove management (MoEF and 
CC 2018); (2) Possible inclusion of privately owned 
barren lands and bare mudflat areas under the ambit 
of mangrove plantation; (3) Mangrove species known 
for their erosion-resistance as well as C sequestrating 
potentials (viz. Avicennia varieties, Excoecaria agal-
locha, Rhizophora mucronata and Porteresia coarc-
tata) should be prioritized for plantation along the 
shoreline; (4) In the interiors of the PRF, Bruguiera 
gymnorhiza, Ceriops varieties, Nypa fruticans and 
Sonneratia apetala might be given priority; (5) Large 
shrimp monoculture farms should be regulated within 
the WIZ through introduction of a land ceiling and, 
at the same time, smallholder based integrated man-
grove-shrimp farming practices should be encouraged.

Conclusions
The present study provided comprehensive analysis of 
spatial variability of SOC stocks as well as their con-
centrations across different LULC categories of the 

WIZ of Bichitrapur mangroves. The findings revealed 
a general trend of higher SOC densities in D1 and D3 
core-depth intervals. Conversely, the SOC density val-
ues were relatively lower in D2 and D4 intervals. Over-
all, high SOC concentrations were observed in dense 
mangrove, open mangrove and aquaculture areas, while 
the other LULC categories recorded low SOC concen-
trations. Some necessary management strategies to 
enhance the SOC sequestration potential of the study 
site were also devised in this research work. Although 
the study could be envisaged as a pioneering approach 
in soil blue C estimation in this part of India through 
integration of ‘state of the art’ elemental analyses and 
very-fine resolution satellite imagery based geospatial 
modelling, it also had few limitations. First, the use of 
different explanatory covariates, such as detailed soil 
map, soil mineralogical variation, micro-topographic 
etc., could not be used to increase the accuracy of SOC 
estimation (e.g., use of Regression Kriging) owing to 
data unavailability at the appropriate spatial scale. In 
addition, the SOC stock was estimated down to 1  m 
from the surface, whereas in some cases, there might be 
soil layer beyond that depth. Lastly, assessment of tem-
poral changes of past SOC densities was not possible 
due to the absence of affordable fine resolution imagery 
(~ 2  m) before 2011 as well as archival point-specific 
SOC data of this region. Hence, the future research 
in this context should include multi-temporal LULC 
data set, entire soil profile-based C data and sophisti-
cated covariate-based interpolation technique towards 
more accurate and periodical monitoring. Based on 
the findings of such continuous monitoring, sustain-
able management of these sorts of small tropical coastal 
wetlands as effective sinks of blue C could be attained 
and, thereby channelized towards the mitigation of 
global climate change.
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