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and phosphorus addition in three types 
of steppe in Inner Mongolia, China
Ning Guo1,2†, Mingyang Xie1,2†, Zhao Fang1*  , Feng Jiao1,2* and Xiaoyu Han1 

Abstract 

Background:  Understanding the response of the plant community to increasing nitrogen (N) and phosphorus (P) 
inputs is helpful for managing and protecting grassland ecosystems in semiarid areas. However, information about 
different types of steppe responses to N and P availability in semiarid grasslands is limited. In 2017–2018, two field 
experiments were conducted with six levels of N (from 5 to 30 g N m−2 yr−1) and P (from 2.5 g to 15 g P m−2 yr−1) 
additions in three different temperate steppes, including meadow steppe (MS), typical steppe (TS), and desert steppe 
(DS), in northern China to study the effects of these addition rates on community biomass and diversity.

Results:  Our results showed that plant biomass and diversity in the three steppe types in Inner Mongolia responded 
differently to elevated N and P inputs. Increasing P promoted aboveground and belowground biomass more than 
increasing N in the three temperate steppes. Short-term N and P additions reduced plant diversity to some extent, 
with the most pronounced decreases in MS and DS. It is noteworthy that there were response thresholds for plant 
diversity and biomass in response to N and P inputs in different steppe types (e.g., 10 g P m−2 yr−1). Furthermore, 
redundancy analysis and stepwise regression analysis revealed that changes in soil properties induced by nutrient 
addition and climate conditions jointly regulated changes in vegetation biomass and diversity.

Conclusions:  The plant biomass and diversity of three steppe types in Inner Mongolia respond divergently to 
elevated N and P inputs. Our results indicate that regional differences in climate and soil substrate conditions may 
jointly contribute to the divergent responses of plant biomass and diversity to short-term N and P addition. Our analy-
ses provide new insights into managing and protecting grassland ecosystems. Considering that the effects of nutrient 
addition on plant diversity and productivity may have increasing effects over time, studies on long-term in situ nutri-
ent addition are necessary.
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Introduction
Grassland covers ~  40% of the world’s land and is one of 
the most important components of terrestrial ecosystems 
(Hufkens et al. 2016). Grasslands play an important role 
in providing vital ecosystem services, such as regulat-
ing global climate change, sequestering carbon, and soil 
and water conservation (Scurlock et al. 2002). Plant pro-
ductivity and diversity of grassland communities, which 
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is significantly influenced by anthropogenic activities 
and environmental changes, are critical parameters for 
understanding the community dynamics, stability, and 
ecosystem services (Hovenden et al. 2019).

In recent years, nitrogen (N) and phosphorus (P) inputs 
to terrestrial ecosystems have increased dramatically due 
to intensified human activities, such as agricultural prac-
tices and fossil fuel combustion (Galloway et  al. 2008; 
Pan et al. 2021). Currently, China has become the third-
largest region subjected to N deposition in the world, 
with a mean increase in atmospheric N deposition of 
59% since the 1960s (Lu and Tian 2014). In addition, the 
deposition of P has also been increasing in some regions 
in the last two decades (Pan et al. 2021). In the semiarid 
regions of northern China, the total N deposition rate 
may be greater than 1.5 g N m−2 yr−1 (Xu et al. 2015) and 
will continue to increase in the future (Liu et  al. 2013). 
This enrichment can alter ecosystem biogeochemistry, 
productivity, species richness, and species composition 
(Seabloom et al. 2021). For example, enhanced N and P 
inputs would strongly affect vegetation diversity and pro-
ductivity and would further affect the structure, function, 
and stability of grassland ecosystems (Bai et al. 2010; Cui 
et al. 2020; Huang et al. 2018; Li et al. 2019; Lu et al. 2011; 
Wang et al. 2019a; Xia and Wan 2008). Thus, understand-
ing the effects of different N and P additions on both spe-
cies diversity and biomass in semiarid ecosystems is of 
fundamental importance and could provide new insights 
into managing and protecting grassland ecosystems (He 
et al. 2016).

Numerous studies in grassland ecosystems have illus-
trated that the addition of limiting mineral nutrients, 
such as N and P, generally increases productivity and 
reduces plant diversity, although its impacts vary among 
ecosystems (He et  al. 2016; Isbell et  al. 2013; Jaramillo 
and Detling 1992; Li et al. 2010; Wang et al. 2019a; Zhang 
et al. 2014). Because of the positive effect of diversity on 
productivity, the loss of biodiversity induced by nutrient 
addition may reduce the effect of nutrients on produc-
tivity over time (Isbell et al. 2013). Notably, there existed 
a threshold for the N and P requirements of grassland 
communities, beyond which there may be negative 
effects on community productivity (Li et al. 2009; Zhang 
et  al. 2016). Currently, there are four possible mecha-
nisms regarding the saturation response of ecosystem 
productivity to nutrient addition: light limitation, bio-
diversity loss, soil acidification, and ammonium toxicity 
(Ma et  al. 2020). For example, acidification and ammo-
nium toxicity induced by excessive N input may cause 
species loss (Zhang et  al. 2014), possibly accompanied 
by a decline in community productivity (He et  al. 2016; 
Isbell et al. 2013; Wang et al. 2019a). In contrast, P addi-
tion had little effect on biomass and species diversity, as 

most terrestrial ecosystems were significantly limited by 
N (Avolio et al. 2014; Gao et al. 2016). Elevated P deposi-
tion tended to promote an increase in belowground bio-
mass, but the effect depended on the limitation status of 
the ecosystems (Yang et al. 2014).

Previous studies have examined the effects of envi-
ronmental factors (climate conditions, soil properties, 
anthropogenic interference) on plant diversity and bio-
mass (Chiarucci and Maccherini 2007; Hufkens et  al. 
2016; Hovenden et  al. 2019; Wang et  al. 2019b). How-
ever, the dominant environmental factors driving diver-
sity and biomass differences among community types 
in temperate steppe are still unclear (Bai et  al. 2021). 
Temperate grasslands are an indispensable ecological 
protection screen in northern China, providing unique 
ecosystem services, such as climate regulation, plant 
production, and sequestering carbon. Across the east to 
the west precipitation gradient in Inner Mongolia, three 
distinct grassland types are formed, including meadow 
steppe (MS), typical steppe (TS), and desert steppe 
(DS). How plant diversity and biomass respond to mul-
tilevel nutrient additions may vary in contrasting grass-
land ecosystems due to differences in hydrothermal and 
soil conditions. It is unclear, however, to what extent the 
changes in plant species and biomass of different grass-
land communities depend on nutrient additions.

In this study, we investigated the responses of above-
ground and belowground biomass and species diversity 
to multilevel N and P additions in three steppe types. The 
objectives of our study were to (1) compare the differ-
ences in plant diversity and biomass response to multiple 
levels of N and P addition in different steppe types; (2) 
determine the nutrient addition threshold for different 
steppe communities; and (3) explore the dominant envi-
ronmental factors driving plant biomass and diversity dif-
ferences among steppe types in temperate grasslands at 
the regional scale under N and P addition.

Materials and methods
Field site
Three steppe sites ranging from east to west were selected 
in this study in Inner Mongolia, China, spanning three 
steppe types (MG, TD, and DG) (Table 1 and Fig. 1). The 
first site is a meadow steppe in Ewenki Autonomous Ban-
ner (48°55ʹ N, 119° 11ʹ E), with a mid-temperate conti-
nental climate. The annual mean precipitation is 362 mm, 
and the mean annual temperature (MAT) is −  0.84  °C 
(from 1998 to 2018). The dominant plant species were 
Leymus chinensis and Carex duriuscula, and the soil 
was calcic chernozems (FAO taxonomy). The second 
site, with a mid-temperate semiarid continental climate, 
is a typical steppe in Xilinhot Autonomous Banner (43° 
94ʹ N, 115° 86ʹ E). The MAP is 256 mm, and the MAT is 
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2.28 °C. The area of the plant community is dominated by 
Stipa krylovii and Convolvulus ammannii, and the soil is 
Haplic Kastanozems. The third site is a desert steppe in 
Hangjin Banner (41° 70ʹ N, 110° 10ʹ E). The climate here 
is a mid-temperate semiarid continental climate with an 
MAT of 7.09 °C and an MAP of 284 mm. The grassland 
community is dominated by Stipa krylovii, Heteropappus 
altaicus, and Convolvulus ammannii, and the soil is Cal-
cic Kastanozems. A more detailed site description can be 
found in a recent report by Yan et al. (2021).

Experimental design and treatment description
Early November 2016, we selected 50 m × 50  m homo-
geneous flatlands in each grassland site for enclosure 
treatment. In May 2017, multifactorial field experiments 
were established at these three steppe sites, with N and 
P addition levels as two nutrient factors. A total of 14 
treatments were performed, including seven addition lev-
els for N (0–30 g N m−2 yr−1) and P (0–15 g P m−2 yr−1). 
Seven N addition rates of 0 (CK), 5 (N1), 10 (N2), 15 
(N3), 20 (N4), 25 (N5) and 30 g N m−2 yr−1 (N6) of urea 
and seven P addition rates of 0 (CK), 2.5 (P1), 5 (P2), 7.5 
(P3), 9 (P4), 12.5 (P5) and 15 g P m−2 yr−1 (P6) of KH2PO4 
were applied. The amount of fertilizer in our study was 

set according to previous studies in Inner Mongolia (Bai 
et  al. 2010). Each experimental site was laid out in an 
identical Latin square design with three replicate plots 
that were 2 m × 2 m in size, as well as a 2 m buffer zone 
to prevent movement of fertilizer between the adjacent 
plots. The fertilizer was applied to each plot in early 
May and early August 2017. The fertilizer particles were 
spreading evenly on the soil surface on rainy or cloudy 
days.

Plant and soil sampling and soil microenvironment
In late August 2017 and 2018, we laid out a subplot 
(0.75  m × 0.75  m) for sampling and community investi-
gation within each plot at the three grassland sites. The 
coverage, abundance, frequency and height of each spe-
cies were accurately recorded in each subplot, and all 
aboveground plants in the subplots were clipped with 
sheep shears. Clipped plants were oven dried to constant 
weight (65 °C for 48 h) and weighed as aboveground bio-
mass (AGB). After that, soil and root samples were col-
lected in each plot by extracting two soil cores (7-cm 
diameter) from 0 to 30 cm topsoil, which was separated 
using a 2-mm sieve. Soil samples were air-dried in the 
laboratory for further nutrient analysis. Root samples 

Fig. 1  Locations and landscapes of the three steppe types in Inner Mongolia. MS, TS and DS represent meadow steppe, typical steppe and desert 
steppe, respectively
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were carefully washed and then oven-dried to constant 
weight to determine belowground biomass (BGB). In 
addition, the mean annual temperature (MAT) and mean 
annual precipitation (MAP) (1998–2018) for each site 
were derived from the China Meteorological Data Ser-
vice Centre (http://​data.​cma.​cn).

Laboratory analysis
In the laboratory, soil pH was measured using an acidity 
meter (at a soil/water ratio of 1:2.5). Soil total C (SOC), 
soil total N (TN) and soil total P contents (TP) were 
determined by the Walkley–Black method (Nelson and 
Sommers 1996), Kjeldahl method (Bremner and Mulva-
ney 1996) and molybdenum antimony anti-colorimetric 
method (Olsen and Sommers 1982), respectively. The soil 
available nitrogen, including NH4

+–N and NO3
−–N, was 

analyzed using a continuous analytical system (Liu et al. 
2019). The soil available phosphorus (AP) was meas-
ured by the molybdenum antimony colorimetry method 
(Olsen and Sommers 1982).

Calculation of plant community diversity
The indices of plant community diversity were calculated 
using the following formulas (Wang et al. 2019b):

where S refers to the number of species and N stands 
for the sum of the number of individuals of all species in 
each subplot. Pi refers to the relative importance value of 
species i, and species relative importance value = (relative 
coverage + relative abundance + relative frequency)/3.

Statistical analysis
For each site, statistical significance was determined 
using one-way ANOVA with Duncan’s test for compari-
sons between multiple nutrient levels. Further analyses 
were performed to test the main and interactive effects 
of nutrient additions, steppe type, and year on AGB, 
BGB, H and Ma using three-way ANOVA. When neces-
sary, log-transformation of our data was used to satisfy 
the normality and homogeneity of variance criteria (Leg-
endre and Gallagher 2001). Redundancy analysis (RDA) 
was performed to identify the role of environmental 
variables in shaping community biomass and diversity. 
Further analyses were conducted to determine the criti-
cal factors influencing them using a stepwise regression 
(SRA). Data are presented as the means ± standard error 
(SE), and the significance level (P < 0.05) was employed 
for all analyses in our study.

(1)
Margalef richness index(Ma) : Ma

= (S− 1)/lnN

(2)
Shannon −Wiener index(H) : H = −

∑s

i=1
PilnPi

Results
Effects of N addition on plant biomass and diversity 
in three steppe types
N addition altered the AGB and community diver-
sity (H and Ma) in three temperate steppes varying 
with the steppe type and year but had no significant 
effects on BGB (Figs.  2 and 3). Specifically, the AGB 
in MS and DS gradually increased with increasing N 
inputs only in 2018 (Fig. 2a, c). In contrast, N addition 
reduced plant diversity (H and Ma) in all three steppe 
types (Fig.  3), most notably in MS and DS, while the 
Ma of TS only experienced a significant reduction 
under high N levels (N25 and N30) in 2018 (Fig.  3e). 
In addition, AGB, H and Ma were also affected by the 
interactions among treatment, year, and steppe type 
(Y × S, T × Y, and T × S, P < 0.05, Table 2).

Effects of P addition on herbaceous biomass and diversity 
in three steppe types
Obviously, P addition affected the community biomass 
and diversity of the three temperate steppes to a greater 
extent than N addition (Table 2). As shown in Fig. 4, the 
AGB and BGB of the three steppe types showed a trend 
of increasing and then decreasing with increasing inputs 
of P addition for 2017 and 2018. The occurrence of the 
inflection point was observed roughly around the P10 
treatment, indicating that exceeding 10  g  P  m−2  yr−1 
somewhat inhibited the increase in above- and below-
ground biomass. For the community diversity index, P 
addition notably decreased the H and Ma of MS and DS 
but not MG in 2017 and 2018 (Fig. 5). For example, the 
H and Ma of DS were significantly lower under high P 
inputs (P15) than those of the control in 2018. ANOVA 
results further revealed that treatment, year, steppe type, 
and their interactions (Y × S, T × Y, and T × S) had sig-
nificant effects on AGB and BGB (P < 0.05, Table  2) but 
not on diversity (H and Ma).

Factors driving plant biomass and diversity under N 
addition
RDA showed that plant diversity (Ma and H) and bio-
mass (AGB and BGB) were determined by climate fac-
tors and soil properties under N addition (Fig. 6a, c). The 
first two axes explained 78.78% of the environmental 
data (adjusted R2 = 74.9%, P < 0.05), with axis 1 explain-
ing 54.32% of the variance and axis 2 explaining another 
24.46% (Fig. 6a). Ma and H were strongly positively cor-
related with MAT and pH, AGB was positively correlated 
with MAP and TP, and BGB was positively correlated 
with NH4

+ and SOC. However, AGB, Ma, and H were 
strongly negatively correlated with TN, and BGB was 
strongly negatively correlated with MAT and pH. In 

http://data.cma.cn
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Fig. 2  Effect of experimental N addition on above- ((a) MS, (b) TS, (c) DS) and below-ground biomass ((d) MS, (e) TS, (f) DS) of three temperate 
steppes from 2017 to 2018. Lowercase letters represent significant differences among different treatments in 2017 at the 0.05 level, while uppercase 
letters represent significant differences among treatments in 2018 at the 0.05 level. Data show the mean ± standard error (n = 3) (same as below)

Fig. 3  Effects of experimental N addition on the Shannon-Wiener ((a) MS, (b) TS, (c) DS) and Margalef richness ((d) MS, (e) TS, (f) DS) of three 
temperate steppes from 2017 to 2018
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addition, SRA was run to detect the critical factors of soil 
properties and climatic conditions that affected plant bio-
mass and diversity. Taken together, these results demon-
strated that MAP, MAT, TP, TN, and NH4

+ were the key 
driving factors of plant biomass and diversity (Table 3).

Factors driving plant biomass and diversity under P 
addition
According to the RDA results shown in Fig.  6, cli-
mate factors (MAT, MAP) and soil properties (TP, 

Table 2  ANOVA results for the effects of treatment (T), steppe type (S), and year (Y) on community biomass and diversity in northern 
China

Bold font indicates a significant result (P < 0.05)

Term AGB BGB H Ma

F P F P F P F P

N addition T 3.99 0.001 2.06 0.067 5.33 0.000 4.58 0.000
Y 197.10 0.000 107.08 0.000 6.78 0.011 0.96 0.331

S 99.16 0.000 39.33 0.000 94.96 0.000 172.72 0.000
T × Y 2.78 0.016 0.95 0.462 0.78 0.589 2.43 0.032
T × S 1.10 0.368 0.66 0.781 2.36 0.012 1.43 0.170

Y × S 40.74 0.000 0.07 0.935 15.77 0.000 11.05 0.000
T × Y × S 1.14 0.342 0.27 0.992 0.47 0.929 1.07 0.395

P addition T 9.08 0.000 2.56 0.025 7.92 0.000 7.19 0.000
Y 159.21 0.000 171.07 0.000 103.75 0.000 28.35 0.000
S 159.47 0.000 64.16 0.000 100.42 0.000 258.51 0.000
T × Y 2.54 0.026 2.49 0.029 1.06 0.392 1.04 0.407

T × S 3.50 0.000 1.84 0.054 1.73 0.075 1.37 0.194

Y × S 32.29 0.000 13.25 0.000 1.76 0.178 2.11 0.127

T × Y × S 1.04 0.418 1.17 0.317 1.25 0.266 1.77 0.067

Fig. 4  Effect of experimental P addition on above- ((a) MS, (b) TS, (c) DS) and below-ground biomass ((d) MS, (e) TS, (f) DS) of three temperate 
steppes from 2017 to 2018
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NH4
+, TN, NO3

−, SOC, pH and AP) explained 79.5% 
of the total variability in the data (adjusted R2 = 79.5%, 
P < 0.05), with axes 1 and 2 explaining 45.53% and 
34.81% of the total variation, respectively. AGB, Ma, 
and H were positively correlated with MAT, MAP, and 
TP but negatively correlated with TN and NO3

−. BGB 
was positively correlated with NH4

+, MAT and TP but 
strongly negatively correlated with MAT and pH. Fur-
thermore, the SRA results showed that MAT, MAP, 
TN TP, AP, NH4

+, NO3
−, and pH together influenced 

community biomass and diversity under P addition 
(Table 3).

Discussion
Divergent response of community biomass to nutrient 
additions in three grassland types
Many studies have shown that nutrient addition alleviates 
the state of nutrient limitation by increasing the effective 
resources in the soil, thus greatly stimulating biomass 
increase (Song et al. 2012; Yang et al. 2014; Bai et al. 2010; 
Huang et  al. 2018; Wang et  al. 2019a). In our study, we 
found that N and P additions contributed differently to 
the increase in biomass in the three steppe types. Simi-
lar to other N experimental studies (Isbell et  al. 2013; 
Niu et al. 2018; Stevens et al. 2004), N addition tended to 

Fig. 5  Effects of experimental P addition on the Shannon-Wiener ((a) MS, (b) TS, (c) DS) and Margalef richness ((d) MS, (e) TS, (f) DS) of three 
temperate steppes from 2017 to 2018

Table 3  Stepwise regression analysis (SRA) used to identify the critical factors of plant biomass and diversity

*** indicates level of significance: P < 0.001

Item Equations R2 Sig n

N addition AGB AGB = − 476.32 + 747.32TP + 1.504MAP 0.827 0.000*** 42

BGB BGB = 1367.7 + 34.1NH4
+ − 145.69MAT + 2513.50TP 0.840 0.000*** 42

H H = 2.317 − 0.309TN 0.832 0.000*** 42

Ma Ma = 2.545 − 0.547TN 0.849 0.000*** 42

P addition AGB AGB = − 341.51 + 231.86TP + 1.30MAP + 14.48MAT 0.859 0.000*** 42

BGB BGB = 1118.3 + 69.20NH4
+ − 125.55MAT + 2107.50TP 0.904 0.000*** 42

H H = 2.12–0.276TN + 0.567TP − 0.005NO3
− 0.903 0.000*** 42

Ma Ma = 3.340–
0.371TN − 0.021AP + 0.144MAT + 0.029NH4

+ − 0.215pH
0.957 0.000*** 42
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increase AGB mainly, while it did not significantly affect 
BGB (Fig. 2 and Table 2). The different responses of AGB 
and BGB to N inputs support the theory of optimal par-
titioning, whereby N limitation in the belowground part 
of the plant is alleviated by nutrient addition, leading to 
increased competition for light in the aboveground part 
and prompting the plant to allocate more photosynthetic 
products to the aboveground part (Bai et  al. 2010; Qi 
et al. 2019; Wan et al. 2008). In addition, RDA and SRA 
also found that AGB and BGB were more constrained 
by TP and MAP (Table  3). Therefore, TS with less 

precipitation had a weaker percentage increase in AGB 
than MS and DS (Table  1). The degree of response and 
sensitivity of grassland ecosystems to nutrient inputs, a 
key factor governing arid and semiarid grasslands, may 
also depend on ecosystem moisture conditions, with N 
inputs likely to positively affect community productivity 
only after moisture conditions reach a certain threshold 
(Hasi et al. 2021).

In contrast, P addition jointly significantly contrib-
uted to the increase in AGB and BGB in all three steppes 
(Fig. 4 and Table 2). The higher contribution of P addition 

Fig. 6  Redundancy analysis (RDA) of community biomass and diversity (blue lines) in relation to environmental factors (red lines) under N or P 
addition. In Fig. 5a, RDA axes 1 and 2 explained 54.32% and 24.46% of the variation, respectively (adjusted R2 = 74.9%, F = 14.6, P < 0.05). In Fig. 5b, 
RDA axes 1 and 2 explained 45.53% and 34.81% of the variation, respectively (adjusted R2 = 79.5%, F = 14.6, P < 0.05)
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to the biomass of the three steppes than N addition may 
be strongly related to the state of nutrient limitation of 
the temperate steppes in Inner Mongolia, in addition to 
the easy volatilization loss of N fertilizer, while the aridifi-
cation trend in the study area somewhat limits the degree 
of biomass response to N input (Yan et  al. 2021). Our 
analysis also found that the AGB and BGB of the three 
steppe types under P input were significantly influenced 
mainly by TP and climatic conditions (MAT and MAP). 
It is noteworthy that there were clear thresholds for the 
response of the three community biomasses to short-
term P addition. For example, the proportion of AGB and 
BGB promotion in steppe communities was significantly 
lower under high P input (P15). Compared to most nutri-
ent addition trials, the results of our short-term N and P 
addition (< 2 years) experiments may not be highly com-
parable and generalizable, and thus the nutrient addition 
thresholds for the three steppe types still need to be fur-
ther determined and judged by long-term nutrient addi-
tion trials.

Divergent response of community diversity to nutrient 
additions in three steppe types
Most studies have shown that N deposition decreases 
species richness and leads to a decrease in community 
diversity, and even low N deposition affects species diver-
sity (Bai et  al. 2010; Clark and Tilman 2008; Seabloom 
et al. 2021; Zhang et al. 2014), while the effect of P addi-
tion on grassland species diversity has been relatively lit-
tle studied (Chiarucci and Maccherini 2007). Our results 
showed that N and P additions somewhat reduced the 
diversity of the three communities, with the extent of 
the effect varying by steppe type and year (Table 2). For 
example, N addition significantly reduced MS commu-
nity diversity (Ma and H) (Fig. 3a, d), while P addition sig-
nificantly reduced MS and DS community diversity (Ma 
and H) in 2017 (Fig. 5a, c, d and f ). According to the eco-
logical niche compensation hypothesis, the dominance 
of different plants in the three steppe types leads to a 
sequential distribution of community resources between 
dominant and disadvantaged species (Silvertown 2004), 
and other studies have also shown that interspecific dif-
ferences in species responses to nutrient addition (He 
et  al. 2016) and competition for light resources among 
different species after nutrient addition are the main 
causes of community composition and diversity the main 
cause of changes (Avolio et  al. 2014; DeMalach 2018; 
Ma et  al. 2020). Due to significant differences in spe-
cies composition among the three steppe types, in MS 
and DS, N and P additions caused asymmetric changes 
in the height of grasses and nongrasses, with grasses in 
the upper part of the community (e.g., Leymus chinensis, 
Stipa krylovii, etc.) shading nongrasses in the lower part 

of the community (e.g., Potentilla acaulis, Carex durius-
cula, etc.), leading to a gradual loss of some species with 
weaker light competition, thus reducing species diver-
sity. Unlike DS, where the dominant species are mainly 
low clumping species (Allium ramosum; Stipa krylovii; 
Convolvulus ammannii) due to sparse precipitation and 
simple vegetation species composition. There was no sig-
nificant change in plant height asymmetry between func-
tional groups under N and P input to produce shading, 
thus showing a significant decrease in diversity only at 
high N and P levels (Figs. 3c, f and 5c, f ). This phenom-
enon may be related to the acidification and ammonium 
poisoning effects of excessive nutrient inputs. For the 
dominant influencing factors of community diversity, the 
results of RDA and SRA showed that TN was the key fac-
tor affecting diversity (Ma and H) under N addition, while 
community diversity under P addition was mainly related 
to TN, TP, available N and P, pH and MAT. Consider-
ing the short duration of nutrient addition in our study 
(< 2 years), it is difficult to reveal the nonlinear response 
pattern of ecosystems to long-term N and P inputs and 
their underlying mechanisms. Therefore, a long-term 
localized observational study for nutrient addition exper-
iments is necessary, as well as close attention to ecosys-
tem substrate conditions.

Conclusions
Our results showed that plant biomass and diversity 
in the three steppe types in Inner Mongolia responded 
differently to elevated N and P inputs. Increasing P pro-
moted AGB and BGB more than increasing N in the 
three temperate steppes. N and P additions reduced 
plant diversity to some extent, with the most pro-
nounced decreases in MS and DS. It is noteworthy 
that there are response thresholds for plant diversity 
and biomass in response to N and P inputs in differ-
ent steppe types. RDA and SRA revealed that changes 
in soil properties induced by nutrient addition and cli-
mate conditions jointly regulated changes in vegetation 
biomass and diversity. Our results indicate that regional 
differences in climate and soil substrate conditions may 
jointly contribute to the divergent responses of plant 
biomass and diversity to short-term N and P addition. 
This study has limitations due to the short duration 
(< 2  years) of nutrient addition. Considering that the 
effects of nutrient addition on plant diversity and pro-
ductivity may have increasing effects over time, studies 
on long-term in situ nutrient addition are necessary.
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