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Abstract 

Background:  Altered hydrology is a stressor on aquatic life, but quantitative relations between specific aspects of 
streamflow alteration and biological responses have not been developed on a statewide scale in Minnesota. Best sub-
sets regression analysis was used to develop linear regression models that quantify relations among five categories 
of hydrologic metrics (i.e., duration, frequency, magnitude, rate-of-change, and timing) computed from streamgage 
records and six categories of biological metrics (i.e., composition, habitat, life history, reproductive, tolerance, trophic) 
computed from fish-community samples, as well as fish-based indices of biotic integrity (FIBI) scores and FIBI scores 
normalized to an impairment threshold of the corresponding stream class (FIBI_BCG4). Relations between hydrology 
and fish community responses were examined using three hydrologic datasets that represented periods of record, 
long-term changes, and short-term changes to flow regimes in streams of Minnesota.

Results:  Regression models demonstrated significant relations between hydrologic explanatory metrics and fish-
based biological response metrics, and the five regression models with the strongest linear relations explained over 
70% of the variability in the biological metric using three hydrologic metrics as explanatory variables. Tolerance-based 
biological metrics demonstrated the strongest linear relations to hydrologic metrics. The most commonly used hydro-
logic metrics were related to bankfull flows and aspects of flow variability.

Conclusions:  Final regression models represent paired streamgage records and biological samples throughout the 
State of Minnesota and encompass differences in stream orders, hydrologic landscape units, and watershed sizes. 
Presented methods can support evaluations of stream fish communities and facilitate targeted efforts to improve the 
health of fish communities. Methods also can be applied to locations outside of Minnesota with continuous stream-
gage data and fish-community samples.

Keywords:  EflowStats, Best subset regression, Altered hydrology, Fish community, Indices of biotic integrity, 
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© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Streams and rivers are dynamic systems that are char-
acterized by temporally and spatially varying condi-
tions. The complexity of these systems produces a wide 

range of geomorphic features and habitats that support 
diverse ecological communities (Maddock et  al. 2013), 
and a natural streamflow regime serves an important 
role in maintaining biological diversity and ecological 
integrity (Dunne and Leopold 1978; Karr 1991; Rich-
ter et al. 1996; Poff et al. 1997). Streamflow characteris-
tics may affect aquatic life directly or indirectly through 
interconnections with stream habitat, channel substrate, 
nutrient flux, and connectivity (Richter et  al. 1997; 
Bunn and Arthington 2002; Annear et al. 2004; Poff and 
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Zimmerman 2010; Kennen et  al. 2013). Furthermore, 
streamflow is often considered a “master variable” that 
affects water chemistry and quality and limits the dis-
tribution and abundance of riverine species (Resh et  al. 
1988; Power et  al. 1995), and regulates the ecological 
integrity of flowing water systems (Poff et al. 1997).

Streamflow patterns vary seasonally and throughout 
larger timescales, and patterns can be described by five 
components of hydrologic condition: magnitude, fre-
quency, duration, timing, and rate of change. Definitions 
of these components are provided in Poff et  al. (1997), 
and these components are used to characterize the range 
of flows that shape river ecosystems (Richter et al. 1996; 
Poff et  al. 1997; Olden and Poff 2003). Aquatic ecosys-
tems are sensitive to alterations in streamflows, and 
alterations in the frequency, timing, and rate of change of 
streamflow can affect aquatic ecosystems as much as the 
change in overall magnitudes of flow (Richter et al. 1996; 
Poff et  al. 1997; Olden and Poff 2003). Hydrologic met-
rics typically computed from measured or modeled daily 
streamflow records are often used to quantify aspects 
of the flow regime and study altered hydrology (Richter 
et al. 1996; Poff et al. 1997; Olden and Poff 2003).

Previous studies have evaluated the extent of hydro-
logic alteration in Minnesota and demonstrate that 
streamflows in many rivers in Minnesota have been 
altered substantially (Novotny and Stefan 2007; Lenhart 
et  al. 2011; Peterson et  al. 2011; Schottler et  al. 2013; 
Ziegeweid et al. 2015). Anthropogenic activities that alter 
streamflows in Minnesota include but are not limited 
to (1) withdrawal of water for agricultural or municipal 
uses; (2) installation of subsurface tile drains in agricul-
tural areas; (3) creation of more impervious surface in 
urban areas; (4) operation of dams, and (5) discharge of 
treated wastewater effluent into streams (Novotny and 
Stefan 2007; Lenhart et  al. 2011; Peterson et  al. 2011; 
Schottler et  al. 2013). Trends in streamflow have been 
observed throughout Minnesota (Novotny and Stefan 
2007; Peterson et  al. 2011; Ziegeweid et  al. 2015; Krall 
et al. 2019), and directions and magnitudes of trends vary 
based on the hydrologic landscape unit (HLU) in which 
the stream is located (Wolock et  al. 2004; Ziegeweid 
et al. 2015; Lorenz and Ziegeweid 2016). Periodicities in 
streamflow trends have been observed in the Mississippi, 
Minnesota, and Red River of the North Basins, with the 
amplitudes of periodicities becoming stronger after 1980 
(Novotny and Stefan 2007). In addition, streamflow mag-
nitudes increased in agricultural watersheds after 1980, 
with possible links to increased subsurface tile drainage 
(Lenhart et al. 2011). Increases in streamflow magnitudes 
likely are the result of shifts from small grains and forage 
crops to intensive row crop agriculture (corn and soy-
beans) in the late 1970s, with a corresponding increase in 

subsurface tile drains in agricultural areas (Lenhart et al. 
2011; Schottler et al. 2013). Land cover and land manage-
ment had a greater effect on hydrologic variability than 
variation in annual precipitation (Lenhart et  al. 2011; 
Peterson et al. 2011; Schottler et al. 2013).

Additional studies have examined the effects of vari-
ability in landscape and hydrologic metrics on biological 
responses in specific watersheds of Minnesota. A large 
interagency study of streams within the Lake Superior 
Basin of Minnesota developed a classification system (Cai 
et al. 2015) that was used to compute environmental flow 
statistics (Herb et  al. 2015a) and develop models (Herb 
et  al. 2015b) to examine changes to stream communi-
ties based on predicted climate and landscape changes in 
Minnesota (Herb et al. 2015c). In addition, McKay et al. 
(2019) used modeled flow data to develop flow–ecology 
relations for streams in the Minnesota River Basin and 
applied relations to six future land-use scenarios. Finally, 
Poff and Allan (1995) found significant relations between 
hydrologic factors computed from measured streamflow 
data and fish assemblage data collected in Minnesota 
and Wisconsin that could not be explained by zoogeo-
graphic constraints; of the nine sites in Minnesota, seven 
were part of the Minnesota River Basin in southern 
Minnesota. However, previous studies do not specifi-
cally examine the effects of streamflow alteration on fish 
communities throughout Minnesota, and quantitative 
relations between streamflow alteration and differences 
among fish communities throughout the diverse HLUs of 
Minnesota (Fig. 1A–F; Ziegeweid et al. 2015; Lorenz and 
Ziegeweid 2016) have not been developed.

The Minnesota Pollution Control Agency (MPCA) 
uses macroinvertebrate- and fish-based indices of biotic 
integrity (IBIs) to assess the biological condition of 
stream reaches against biological criteria in state water-
quality standards and identify those below the criteria 
as impaired. A stressor identification process is then 
completed to identify stressors to be addressed through 
the state’s watershed approach (MPCA 2014a, 2014b). 
Streamflow alteration has been identified as a key stressor 
on aquatic life in many streams, but there has been lim-
ited evaluation of what aspects of flow alteration poten-
tially affect fish and macroinvertebrate conditions in 
Minnesota. The presence of an extensive biological moni-
toring database and long-term streamflow data from 
streamgages in Minnesota provides the opportunity to 
evaluate the extent of flow alterations in Minnesota riv-
ers and streams using hydrologic indices and to identify 
streamflow-sensitive metrics of aquatic-life condition.

Several software packages and synthesis approaches 
have been developed to calculate hydrologic metrics, 
identify and select biologically relevant hydrologic 
parameters, develop streamflow–ecology relations, 
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and apply streamflow–ecology relations in water-
resources management. The Indicators of Hydro-
logic Alteration (IHA) was an early software package 
developed by The Nature Conservancy (Richter et  al. 
1996). Thirty-two hydrologic parameters were selected 
as ecologically relevant for use in the IHA to evalu-
ate the hydrologic condition of pre- and post-effect 

periods for a hydrologic data series. Measures of cen-
tral tendency (mean, median) and dispersion (standard 
deviation) are calculated for each parameter to pro-
vide 64 statistics with which to evaluate differences 
in flows between periods. The Hydrologic Index Tool 
was developed by the U.S. Geological Survey (USGS) 
as part of the Hydroecological Integrity Assessment 
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Fig. 1  Map illustrating paired U.S. Geological Survey streamgages and Minnesota Pollution Control Agency biological sampling sites across 
5 hydrologic landscape units previously identified for Minnesota (Ziegeweid et al. 2015); numbers assigned to sites represent map numbers 
presented in a published companion data release (Krall et al. 2022)
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Process for use in characterizing streamflows and 
assessing hydrologic alteration using 171 ecologically 
relevant indices (Henriksen et  al. 2006; Kennen et  al. 
2007).

More recently, the USGS developed the R package 
EflowStats to compute the 171 ecologically relevant 
hydrologic indices using the open-source R software 
environment to simplify the process (Henriksen et  al. 
2006; Thompson et  al. 2013). The 171 ecologically rel-
evant hydrologic indices represent the five components 
of a flow regime (magnitude, timing, duration, fre-
quency, and rate of change), and these components are 
split into subcategories in EflowStats. Magnitude and 
timing metrics are split into three subcategories rep-
resenting high- (mh and th, respectively), average- (ma 
and ta, respectively), and low-flow (ml and tl, respec-
tively) conditions. Duration and frequency metrics are 
split into two subcategories representing high- (dh and 
fh, respectively) and low-flow (dl and fl, respectively) 
conditions. Rate-of-change metrics are only based on 
average-flow conditions (ra). EflowStats includes seven 
additional indices developed for use at continental 
spatial scales (Archfield et  al. 2014), for a total of 178 
indices.

The primary objective of this study was to develop 
statewide flow–biology relations for 134 different bio-
logical metrics computed by the MPCA using three dif-
ferent datasets of hydrologic metrics computed using 
EflowStats (Henriksen et  al. 2006; Thompson et  al. 
2013) that represent total periods of streamflow record 
and ratios of hydrologic metrics computed from differ-
ent periods of hydrologic record to estimate long- and 
short-term changes in hydrology. A secondary objec-
tive was to use several methods to evaluate developed 
regression models and identify subsets of biological 
metrics in each of the six classes of biological metrics 
and hydrologic metrics computed from three differ-
ent hydrologic datasets that demonstrate the strongest 
flow–biology relations for streams throughout Minne-
sota. Study results are presented in a way that can be 
(1) easily interpreted by resource managers; (2) eas-
ily incorporated into decision-support frameworks, 
such as the tiered-aquatic life use (TALU) framework 
(Yoder 2012) developed for the MPCA or the ecologi-
cal limits of hydrologic alteration (ELOHA) framework 
developed by Poff et al. (2009), and (3) easily applied to 
evaluations of stream restoration projects developed 
by the Minnesota Department of Natural Resources 
(MNDNR 2010). The final objective of this study was 
to develop flow–biology relations using methods that 
could be easily applied to any watersheds outside of 
Minnesota with long-term streamgage and fish-com-
munity sample data.

Materials and methods
The Materials and methods section is divided into sev-
eral subsections. The “Biological datasets” subsection 
describes how fish-community sample data collected by 
the MPCA were used to compute biological metrics. The 
“Hydrologic datasets” subsection describes how long-
term streamflow records were compiled and used to 
compute hydrologic metrics. The “Paired site selection” 
subsection describes how the biological and hydrologic 
datasets were combined for flow–biology analyses. The 
“Statistical analysis” subsection describes best subset 
analyses used to compute regression models for each of 
the biological metrics in each of the three paired data-
sets. The “Data synthesis” subsection describes additional 
methods used to (1) identify the hydrologic metrics that 
most frequently occur as explanatory variables in com-
puted regression models and (2) identify the strongest 
flow–biology relations for each category of biological 
metrics. Detailed definitions of all hydrologic and biolog-
ical metrics used in analyses, data files for paired biologi-
cal sites and streamgages, lists of final regression models 
for all biological metrics in each dataset, and R scripts to 
run described analyses are published in Krall et al. (2022).

Biological datasets
Biological metrics were computed from fish-community 
survey data collected during a single visit to each site 
between mid-June and mid-September (MPCA 2009, 
2017) and were retrieved from the MPCA Environmen-
tal Data Application (https://​www.​pca.​state.​mn.​us/​envir​
onmen​tal-​data). Data used in analyses were limited to 
samples collected from 1996 to 2015 because fish-com-
munity samples collected prior to 1996 were collected 
using different protocols. Fish-community samples were 
collected using electrofishing surveys according to estab-
lished agency protocols (MPCA 2009, 2017), and bio-
logical metrics representing the categories composition, 
habitat, life history, reproductive, tolerance, and trophic 
metrics were calculated from fish-community data 
according to standardized protocols (MPCA 2014a). A 
total of 134 biological metrics were used as response var-
iables in statistical analyses. Additional metrics that were 
not broadly applicable across streams and rivers con-
tained within HLUs were excluded from analyses, such as 
metrics specific to coldwater trout streams. In addition, 
metrics based on count data were excluded because simi-
lar metrics were available using percent of individuals or 
percent of taxa in a sample, and distributions of the per-
cent metrics were approximately normal. The final two 
biological metrics were the composite fish-based index of 
biotic integrity (FIBI) and FIBI scores normalized to an 
impairment threshold of the corresponding stream class 

https://www.pca.state.mn.us/environmental-data
https://www.pca.state.mn.us/environmental-data
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based on “biological condition gradient 4” (FIBI_BCG4, 
MPCA 2014a, 2016). The FIBI and FIBI_BCG4 metrics 
were computed for comparison to a recent study that 
used stepwise linear regression techniques to develop 
relations between hydrologic explanatory metrics and 
biological response metrics computed from collected 
macroinvertebrate community samples involving mac-
roinvertebrates (Fitzpatrick 2018).

Hydrologic datasets
Continuous, long-term streamgages were identified from 
the USGS National Water Information System (NWIS, 
U.S. Geological Survey 2019), and annual records of daily 
mean streamflows were evaluated to determine suitabil-
ity for use in this study. Suitable streamgages contained at 
least one period with a minimum of 10 years of consecu-
tive and complete water years of data (Novak et al. 2016, 
U.S. Geological Survey 2019, Krall et  al. 2022). A water 
year represents the period from October 1st through the 
following September 30th and is defined by the year in 
which it ends. Streamgages were excluded if substantial 
effects of regulation or diversion were noted in a previ-
ous study (Ziegeweid et al. 2015). Periods of streamflow 
record during the 1945–2015 water years were used in 
analyses. To be included in the datasets, streamgages 
also needed a complete water year of record during the 
year in which the corresponding biological samples were 
collected.

A total of 173 hydrologic metrics were computed 
with EflowStats (Henriksen et al. 2006; Thompson et al. 
2013; Archfield et  al. 2014) using complete water years 
of hydrologic record. Five of the 178 hydrologic metrics 
typically calculated using EflowStats (Henriksen et  al. 
2006; Thompson et  al. 2013; Archfield et  al. 2014) were 
excluded from the analyses because of a disproportion-
ately high number of zero values that could not be used 
in ratios representing metrics computed for two differ-
ent periods, resulting in a total of 173 hydrologic metrics 
included in the analyses. The excluded metrics repre-
sented low-flow duration, timing, and frequency: dl18 
(number of zero-flow days), dl19 (variability in number of 
zero-flow days), dl20 (number of zero-flow months), tl3 
(seasonal predictability of low flow), and fl3 (frequency of 
low pulse spells; Henriksen et al. 2006; Thompson et al. 
2013). Also, the lam1 (arithmetic mean streamflow) met-
ric from the seven additional indices developed for use 
at continental spatial scales (Archfield et al. 2014) repre-
sents the same computed value as the ma1 (mean of daily 
mean flow values for entire flow record) metric from 
the original 171 ecologically relevant indices (Henriksen 
et al. 2006; Kennen et al. 2007). Both metrics were com-
puted in EflowStats and included in all hydrologic data-
sets, but the two metrics were not used together in the 

analyses of flow–biology relations described later in the 
Methods section (Krall et al. 2022).

Three different datasets of hydrologic metrics were 
developed to explore (1) general relations between bio-
logical responses and period-of-record hydrologic met-
rics; (2) biological responses to long-term hydrologic 
changes, and (3) biological responses to short-term 
hydrologic changes. For all three hydrologic datasets, 
missing years of streamflow record were dealt with by 
calculating hydrologic metrics for all continuous peri-
ods and computing weighted averages of the metrics 
(Helsel et al. 2020) based on the proportion of the entire 
usable record represented by each continuous period. All 
streamgages with missing years of record used in analy-
ses had at least one continuous 10-year period of stream-
flow record.

Period-of-record (POR) hydrologic metrics were com-
puted using all available complete water years of hydro-
logic record starting with the 1945 water year and ending 
with the water year in which the one-time biological 
sample was collected. The 1945 water year was selected 
as a cutoff point for a few reasons. First, the records of 
some streamgages in in the dataset started specifically 
in the 1945 water year (U.S. Geological Survey 2019). 
Second, the proportion of streamgages suitable for the 
dataset and with records that extend further back in 
time than the 1945 water year was small relative to the 
total number of suitable streamgages. Third, starting 
with the 1945 water year created similar time periods for 
evaluating long-term hydrologic change pre/post-1980 
and were similar to periods in a previous dataset (Krall 
2019). Fourth, starting with the 1945 water year excludes 
the unusually dry period of the Dust Bowl in the 1930s 
(Schubert et al. 2004). The full periods of available record 
for each streamgage used in the analyses can be obtained 
through the NWIS (U.S. Geological Survey, 2019) using 
the USGS station numbers provided in Krall et al. (2022).

Long-term change (LTC) hydrologic metrics were 
computed by taking the ratios of the hydrologic metrics 
computed post- and pre-1980 water year. The 1980 water 
year was selected as the change point based on previ-
ous studies that demonstrated that trends in streamflow 
not attributed to precipitation began throughout Min-
nesota around 1980 (Lenhart et al. 2011; Schottler et al. 
2013; Ziegeweid et al. 2015). In addition, a shift in agri-
cultural practices was noted between 1975 to 1980, when 
crop rotation practices began to shift from small grains 
and forage crops to intensive row crop agriculture (corn 
and soybeans) in the late 1970s, with a corresponding 
increase in artificial drainage (Lenhart et al. 2011; Schot-
tler et al. 2013). The post-1980 period hydrologic metrics 
were computed using all available complete water years 
of data starting with the 1981 water year and ending with 
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the water year in which the one-time biological sample 
was collected, from 1996 through 2015. Pre-1980 hydro-
logic metrics were computed using all available complete 
water years of data starting with the 1945 water year and 
ending with the 1979 water year. A minimum of 10 years 
of continuous streamflow record in both pre- and post-
1980 periods was required for inclusion of a stream-
gage in the dataset (Krall et  al. 2022). The ratios of the 
post-1980 metrics to the pre-1980 metrics were used as 
the final hydrologic metrics (explanatory variables) in 
regression analyses to demonstrate long-term hydrologic 
changes and relate the long-term changes to biologi-
cal responses observed in fish communities throughout 
Minnesota. The 1980 water year was excluded from com-
putation of pre- and post-1980 hydrologic metrics to cre-
ate even periods of available streamflow record pre- and 
post-1980. Also, final hydrologic metrics were ratios of 
computed post-1980 to pre-1980 hydrologic metrics, and 
excluding 1980 as the “change” year prevented issues with 
potentially biasing results by either assigning 1980 to one 
period or including 1980 in both periods.

Short-term change (STC) hydrologic metrics were 
computed by first computing hydrologic metrics using 
the last 10 complete years of hydrologic record and divid-
ing these metric values by the POR metric values cal-
culated for the streamgage as described earlier in this 
section. Periods of record for streamgages included in the 
STC dataset ranged from 22 to 71 years (Krall et al. 2022). 
The final year of the last 10 years of record was the year 
in which the one-time biological sample was collected for 
the paired streamgage data and biological samples. The 
ratios of the hydrologic metrics computed for these two 
periods represent the final explanatory hydrologic vari-
ables in regression analyses to demonstrate short-term 
hydrologic changes and relate the short-term changes 
to biological responses observed in fish communities 
throughout Minnesota.

The LTC metrics were based on ratios of metrics calcu-
lated from two separate time periods, but the STC met-
rics were based on metrics calculated from overlapping 
periods, for a couple reasons. First, STC metrics had a 
less well-defined change point because of the variation 
in the year of fish-community sampling at the biological 
site. In contrast, LTC metrics had a more well-defined 
change point (1980 water year) and at least 10 complete 
water years of data during pre- and post-change peri-
ods. Second, overlapping the last 10  years of complete 
water year record with the overall POR (from the 1945 
water year through the year of fish-community sample 
collection) allowed us to include additional sites with 
long (22–35 years) records that did not have 10 years of 
record prior to 1980 for inclusion in the LTC dataset. 
These additional sites included one site in HLU region 

E, a small corner of southwestern Minnesota that is part 
of the Missouri River Basin and that was not represented 
in the LTC dataset (Ziegeweid et  al. 2015; Lorenz and 
Ziegeweid 2016). Finally, the approach using the STC 
dataset could expand the number of available stream-
gages with more than 10 complete water years of con-
tinuous record as new USGS (U.S. Geological Survey 
2019) and Minnesota Department of Natural Resources 
(MNDNR 2019) streamgages continue to collect new 
streamflow record, thus facilitating future applications of 
these study methods to paired streamgages and biologi-
cal sites in Minnesota.

Paired site selection
Paired USGS streamgage data and MPCA biological sam-
ples were selected for use in this study and are shown on 
the map in Fig. 1. A set of a priori criteria were developed 
to determine whether streamgage data and biological 
samples could be paired for analysis (Fig.  1). Sites were 
only paired if the streamgage and biological site were on 
the same stream, had the same stream order, were within 
10  km of each other, had a drainage-area ratio that did 
not exceed 4:1, and did not have dams, diversions, major 
tributaries, or natural riverine lakes in between the 
streamgage and the biological site that was sampled (Lor-
enz and Ziegeweid 2016). Similar criteria for distance 
between streamgages and biological sampling locations 
having the same stream orders were used in Kakouei et al. 
(2017). These criteria were established to ensure that 
streamgages and biological sites would respond similarly 
to precipitation events, variations in climate, and land-
use changes. Pairs of biological samples and streamgage 
data periods were used to compute 134 biological metrics 
(response variables) and 173 hydrologic metrics (explan-
atory variables) for use in regression analyses to examine 
flow–biology relations. The same biological samples col-
lected during 1996–2015 were paired with hydrologic 
metrics computed for the POR, LTC, and STC hydro-
logic datasets, resulting in sample sizes (n) of 54, 39, and 
48 for flow–biology relations developed using the POR, 
LTC, and STC hydrologic datasets, respectively. The sam-
ple sizes (n) of each paired streamgage data and biologi-
cal sample are different because some of the streamgages 
used to compute POR hydrologic metrics did not meet 
the previously described criteria for use in the LTC or 
STC hydrologic datasets.

When appropriate, a single streamgage was paired with 
multiple biological samples to increase the representa-
tion of variability in biological communities over space 
and time. Multiple biological samples collected from dif-
ferent sites were paired with the same streamgage if both 
biological sites met the a priori criteria established in the 
above paragraph. If more than one biological sample was 
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collected from the same sample site within the same year, 
only one randomly selected sample was used in the anal-
ysis. Multiple biological samples collected from the same 
biological site were included in the dataset if samples 
were collected at least five water years apart, which rep-
resents half of the minimum period of record required 
for streamgages to be included in presented analyses.

Data ranges for watershed characteristics of stream-
gages and biological sites from each of the three datasets 
(Krall et  al. 2022) are included here to establish lim-
its on transferring results of this study to other sites in 
Minnesota that were not included in this study. Among 
all three hydrologic datasets (POR, LTC, STC), stream 
orders ranged from 4 to 7, and streams represented the 
following three MPCA fish stream classes: northern 
streams, northern rivers, and southern rivers (MPCA 
2014a, 2016). In the POR dataset (n = 54), the number of 
water years of streamflow record ranged from 10 to 71, 
with 91 and 80 percent of streamgages exceeding 30 and 
40  years of streamflow records, respectively (Krall et  al. 
2022). In the STC dataset (n = 48), the number of water 
years of streamflow record ranged from 22–71, with 92 
and 81 percent of streamgages exceeding 30 and 40 years 
of streamflow records, respectively (U.S. Geological Sur-
vey 2019). All five HLUs in Minnesota (Ziegeweid et al. 
2015; Lorenz and Ziegeweid 2016) were represented in 
the POR and STC datasets. In the LTC dataset (n = 39), 
the total number of water years of record ranged from 39 
to 71, with 95 percent of streamgages exceeding 40 total 
years of streamflow records between the pre- and post-
1980 water year periods (U.S. Geological Survey 2019). 
Only four of the five HLUs in Minnesota were repre-
sented in the LTC dataset; the LTC dataset did not con-
tain any paired biological samples/streamgage records 
from region E in southwestern Minnesota, which repre-
sents the portion of the Missouri River Basin contained 
in Minnesota (Ziegeweid et al. 2015; Lorenz and Ziege-
weid 2016).

Statistical analysis
All statistical analyses were completed using the R sta-
tistical environment, version 3.6.1 (R Core Team 2019). 
Information about specific R packages other than 
EflowStats, R scripts, and original data files are pub-
lished in Krall et al. (2022). Statistical analyses described 
in this section were applied to all three datasets of paired 
hydrologic metrics (explanatory variables) and biological 
metrics (response variables). A level of significance (α) of 
0.05 was selected for all analyses.

A best subset linear regression analysis process was 
automated in the R Statistical Environment (R Core Team 
2019) to iteratively select the three best one-, two-, and 
three-variable linear regression candidate models (based 

on adjusted-R2 values) that describe the relation between 
each biological metric (response variables) and the one, 
two, or three best hydrologic metrics (explanatory vari-
ables, Krall et  al. 2022). Candidate models were limited 
to three or less explanatory variables to reduce overfit-
ting and multicollinearity. A total of nine candidate mod-
els were developed for each of the 134 biological metrics 
(response variables) using one, two, or three of the 173 
hydrologic metrics (explanatory variables) computed 
using each of the three hydrologic datasets (POR, LTC, 
STC). This resulted in 1206 candidate models per hydro-
logic dataset, a total of 3618 candidate models, and 402 
final selected regression models (Krall et al. 2022).

Diagnostic statistics and plots generated using the 
automated best subset regression process were used to 
address the assumptions of multiple linear regression, 
assess model fits, and ultimately select the best overall 
linear model that explains the most variability for the 
specific biological response metric (Helsel et  al. 2020; 
Krall et  al. 2022). Variance inflation factors (VIFs) were 
used to minimize multicollinearity in developed regres-
sion models (Marquardt 1970; Helsel et  al. 2020). The 
predicted residual error sum of squares (PRESS) statistic 
was used as a form of model cross-validation to provide 
an estimate of prediction error (Helsel et al. 2020). Plots 
of residuals versus leverage were used to ensure that 
there were no influential points that biased the regres-
sion models. The Breusch–Pagan test (Breusch and 
Pagan 1979) and scale-location plots (Helsel et al. 2020) 
were used to evaluate homoscedasticity in regression 
models. Plots of residuals versus fitted values and plots 
of observed versus fitted values were used to ensure that 
relations among response and explanatory variables were 
approximately linear. Correlations between residuals 
and quantiles of a normal distribution (Q–Q plot, Hel-
sel et al. 2020) were used to confirm that residuals were 
approximately normally distributed. Pearson correlation 
matrix plots were generated to evaluate multicollinearity 
between all hydrologic metrics used in the set of candi-
date models (Helsel et al. 2020).

The primary quantitative criteria that were prioritized 
for selections of the final regression models from the pool 
of candidate models included (1) high pseudo-R2 values 
relative to other candidate models; (2) low PRESS statis-
tics relative to other candidate models; (3) VIF values < 5, 
and (4) Pearson correlation coefficients with absolute 
values less than 0.70 for all hydrologic metrics (explana-
tory variables, Dormann et al. 2013; Kakouei et al. 2017; 
Lynch et  al. 2018). If these criteria were met, graphical 
plots were compared to ensure that each final selected 
regression model represented data that were approxi-
mately homoscedastic, independent, and normal. Best 
professional judgments of the authors were used to select 
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final regression models from graphical plots of candidate 
models for all 134 biological metrics used as response 
variables for all three hydrologic datasets. Final selected 
regression equations were reasonable and did not violate 
assumptions of multiple linear regression (Helsel et  al. 
2020).

The final selected models for each of the 134 biologi-
cal response metrics were compiled for each of the three 
datasets (Krall et al. 2022) and examined for further anal-
ysis. However, some of the biological metrics included 
zero values that could affect estimates of uncertainty. 
Therefore, the final regression model for each biological 
metric was re-computed using left-censored regression 
(Cohn 1988; Breen 1996; Helsel et  al. 2020; Krall et  al. 
2022). Left-censored regression analyses incorporated 
the adjusted maximum likelihood estimation method 
(AMLE, Cohn 1988), a normal distribution, and a censor-
ing value of 0.1. The R script developed for left-censored 
regression analysis produced the censored regression 
model coefficients, standard errors, z-scores, and p-val-
ues for the intercept and each explanatory hydrologic 
metric. Other diagnostic outputs included the unbiased 
estimated residual standard error, the total number of 
observations in the dataset, the number and percent 
of censored observations, the Chi-square value of the 
model, the model degrees of freedom, the overall model 
p-value, the pseudo-R2 value (Cohn 1988), Akaike’s Infor-
mation Criteria (AIC) and Bayesian Information Criteria 
(BIC) values (Konishi and Kitagawa 2008), and VIFs for 
the explanatory variables (Marquardt 1970; Helsel et  al. 
2020).

Data synthesis
Additional methods were used to identify metrics and 
flow–biology relations that the MPCA and MNDNR 
can use when developing restorations to manage flows 
and improve habitat quality for fish communities. Fre-
quencies of occurrence of hydrologic metrics (explana-
tory variables) used in the 134 regression models (one 
for each biological metric) for each of the three hydro-
logic datasets (POR, LTC, and STC) were used to iden-
tify the three hydrologic metrics most commonly used 
as explanatory variables in regression equations, which 
we assumed represented the hydrologic metrics with the 
broadest influence on biological metrics that describe 
stream fish communities throughout Minnesota. Tukey 
boxplots (Helsel et  al. 2020) were used to compare 
pseudo-R2 values of regression models developed for 
biological metrics in each of the six categories of biologi-
cal metrics (composition, habitat, life history, reproduc-
tive, tolerance, and trophic) to determine if flow–biology 
relations were stronger in specific categories of biologic 
metrics or in specific hydrologic datasets. The two best 

regression models (based on pseudo-R2 values) and asso-
ciated estimates of uncertainty (percent of censored data, 
and root mean square error values) were described for 
each of the six biological metric categories and each of 
the three hydrologic datasets, and illustrations of the dis-
tributions of modeled versus measured flows for the sin-
gle best regression model in each of the six categories of 
biological metrics were generated. Finally, the biological 
metric SensitiveTxPct (the relative abundance of sensitive 
taxa in a fish-community sample) was examined further 
because SensitiveTxPct had strong linear relations for all 
three hydrologic datasets, did not include any censored 
values, and is used to calculate fish-based index of biotic 
integrity (FIBI) scores for all MPCA stream classes repre-
sented in the dataset (northern streams, northern rivers, 
southern rivers; MPCA 2014a; Krall et  al. 2022). Lastly, 
we illustrated how the linear relation between computed 
SensitiveTxPct values and the dominant hydrologic met-
ric in each of the three datasets changed using high and 
low values of the other two hydrologic metrics in the 
regression models.

Results and discussion
Several previous studies use modeled streamflows to 
simulate unaltered hydrology or develop classification 
schemes to group streams based on similar character-
istics (Richter et al. 1996; Kennen et al. 2007; Poff et al. 
2009; Carlisle et  al. 2011; May et  al. 2015). However, 
streamflows modeled using regression-based methods 
can underestimate peak flows and overestimate base 
flows because of the relatively few number of peak flow 
data points compared to the number of base flow data 
points and because of other geomorphic factors that con-
trol peak flows (Van Liew et al. 2003; Ziegeweid and Mag-
dalene 2015; Ziegeweid et al. 2015; Lorenz and Ziegeweid 
2016). Therefore, this study included only measured 
streamflow records to ensure that hydrologic metrics 
based on peak-event thresholds were accurately repre-
sented. This limited sample sizes and constrained the 
development of more elaborate classification schemes. 
Instead, altered hydrology was examined using ratios of 
hydrologic metrics calculated for different time periods. 
Using ratios helped to standardize changes in hydrology 
across varying stream orders, watershed sizes and char-
acteristics, and hydrologic landscape units throughout 
Minnesota (Ziegeweid et al. 2015; Lorenz and Ziegeweid 
2016).

A subset of the 402 regression models representing the 
same 134 biological metrics for each hydrologic dataset 
(POR, LTC, and STC) are presented in this section. The 
biological metrics described in this section are defined 
in Table 1, and the hydrologic metrics described in this 
section are defined in Table 2. All 402 regression models, 
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134 biological metrics, and 173 hydrologic metrics con-
sidered in analyses are presented in Krall et al. (2022).

We documented significant relations between hydro-
logic metrics and biological metrics in each category of 
biological metrics for rivers in Minnesota. Hydrologic 
metrics included metrics computed from period of 
record (POR) streamflow data and from ratios of met-
rics calculated from varying time periods to represent 
long-term changes (LTC) and short-term changes (STC) 
in hydrology of rivers in Minnesota. Significant relations 
(p-values < 0.0001) between hydrologic metrics and bio-
logical metrics were identified for all three hydrologic 
datasets. Based on Tukey boxplots of pseudo-R2 values 
(Helsel et al. 2020), overall linear relations between bio-
logical and hydrologic metrics were strongest using the 
LTC hydrologic dataset and weakest using the POR data-
set, with the exception of tolerance metrics in the POR 
dataset (Fig.  2). The strength of the linear relations in 
the LTC dataset may indicate that widespread changes 

in streamflows did occur around 1980 as described by 
Lenhart et  al. (2011) and Schottler et  al. (2013). Linear 
relations may be weakest in the POR dataset because 
long- and short-term changes to flow data would be 
incorporated into these streamflow records, and the vari-
ability associated with these changes may obscure rela-
tions between hydrologic and biological metrics. Median 
pseudo-R2 values were most consistent across biological 
metric categories in the STC dataset, but the exact rea-
sons for this are unknown. Tolerance metrics had the 
strongest linear relations to hydrologic metrics among all 
datasets. The FIBI and FIBI_BCG4 metrics were excluded 
from boxplot comparisons in Fig. 2 because they are cal-
culated from a combination of other biological metrics 
and because there was only one value for each metric per 
hydrologic dataset.

The frequencies of occurrence of hydrologic metrics 
(explanatory variables) among the 134 final regression 
models associated with each hydrologic dataset were 

Table 1  Categories and definitions of biological metrics described in the Results and discussion section

a IBI metric scores are computed using multiple metrics from other categories and are not defined by relative abundance

Category Metric Definition: relative abundance of … (percent)

Composition Centr.TolTxPct Centrarchid species (excludes tolerant species)

Composition Percfm.TolPct Perciformid individuals (excludes tolerant species)

Composition SuckerCatPct Catostomid and Ictalurid individuals

Habitat LargeRiverPct Individuals that predominately utilize large river habitats

Habitat LargeRiverTxPct Species that predominately utilize large river habitats

Habitat MorFnotSH20.TolTxPct Species that prefer moderate or fast current (excludes tolerant species)

Habitat MorFnotSH20TxPct Species that prefer moderate or fast current but not slow

Habitat Wetland.TolTxPct Species that utilize wetland habitats (excludes tolerant species)

Habitat WetlandTxPct Species that utilize wetland habitats

IBIa FIBI Fish-based index of biotic integrity score computed for a given site

IBIa FIBI_BCG4 FIBI score normalized to the impairment threshold for the stream class of the site

Life history LLvdPct Long-lived individuals

Life history MgrTxPct Migratory species

Life history SLvdTxPct Short-lived species

Reproductive CompLithPct Complex lithophilic individuals

Reproductive CompLithTxPct Complex lithophilic species

Reproductive MA.3TxPct Species with a female mature age ≥ 3

Reproductive NestNoLithTxPct Non-lithophilic, nest-guarding species

Reproductive PSpnTxPct Prolific spawning species

Reproductive SSpnTxPct Serial spawning species

Tolerance IntolerantTxPct Intolerant species

Tolerance SensitiveTxPct Sensitive species

Trophic DetPlnkTxPct Detritivorous and planktivorous species

Trophic GenFrimTxPct Trophic generalist species

Trophic OmnCypTxPct Omnivorous Cyprinid species

Trophic OmnivoreTxPct Omnivorous species

Trophic SdetTxPct Species where detritus constitutes at least 5 percent of their diet

Trophic SWCGenTolTxPct Tolerant species and generalist feeders that feed within the surface water column
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Table 2  Categories and definitions of hydrologic explanatory metrics described in the “Results and discussion” section

Category Metric Definition

Continental amplitude Amplitude of the seasonal signal

Continental ar1 AR1 correlation coefficient

Continental phase Phase of the seasonal signal

Duration dh6 Variability of annual maximum daily flows

Duration dh7 Variability of annual maximum 3-day moving average flows

Duration dh8 Variability of annual maximum 7-day moving average flows

Duration dh9 Variability of annual maximum 30-day moving average flows

Duration dh10 Variability of annual maximum 90-day moving average flows

Duration dh14 Flood duration: the 95th percentile value divided by the mean of the monthly means

Duration dh19 High flow duration: average duration of flow events with flows above seven times the median flow value for the entire 
flow record

Duration dh21 High flow duration: average duration of flow events with flows above the 25th percentile value for median annual flows

Duration dh22 Flood interval: median number of days between flood events with flows greater than the 1.67 year recurrence interval 
flow

Duration dh23 Flood duration: median number of days annually that flow remains above the 1.67 year recurrence interval flow

Duration dh24 Flood-free days: median of the annual maximum number of days that the flow is below the 1.67 year recurrence interval 
flow

Duration dl1 Median of annual minimum of 1-day moving average flows

Duration dl5 Median of annual minimum of 90-day moving average flows

Duration dl9 Variability of annual minimum of 30-day moving average flows

Duration dl14 Low exceedance flows: the 75-percent exceedence value for the entire flow record divided by the median for the entire 
record

Duration dl15 Low exceedance flows: the 90-percent exceedence value for the entire flow record divided by the median for the entire 
record

Frequency fh1 High flood pulse count: median number of events with flows above a threshold equal to the 75th-percentile value for the 
entire flow record

Frequency fh2 Variability in high flood pulse count: 100 times the standard deviation in annual pulse counts divided by the median pulse 
count

Frequency fh5 Flood frequency: median number of events with flows above the median flow value for the entire flow record

Frequency fh6 Flood frequency: median number of events with flows above three times the median flow value for the entire flow record

Frequency fh7 Flood frequency: median number of events with flows above seven times the median flow value for the entire flow 
record

Frequency fh10 Flood frequency: median number of events with flows above the median annual minima of the entire flow record

Frequency fl2 Variability in low flood pulse count: 100 times the standard deviation in annual pulse counts divided by the median pulse 
count

Magnitude ma1 Mean of daily mean flow values for the entire flow record

Magnitude ma6 Range in daily flows is the ratio of the 10-percent to 90-percent exceedence values for the entire flow record

Magnitude ma14 Median of monthly March flows over the entire flow record

Magnitude ma16 Median of monthly May flows over the entire flow record

Magnitude ma21 Median of monthly October flows over the entire flow record

Magnitude ma24 Coefficient of variation of median January flow values

Magnitude ma25 Coefficient of variation of median February flow values

Magnitude ma26 Coefficient of variation of median March flow values

Magnitude ma31 Coefficient of variation of median August flow values

Magnitude ma32 Coefficient of variation of median September flow values

Magnitude ma33 Coefficient of variation of median October flow values

Magnitude ma34 Coefficient of variation of median November flow values

Magnitude ma35 Coefficient of variation of median December flow values

Magnitude ma38 90th percentile minus the 10th percentile divided by the median of the monthly mean flows for all months in the flow 
record

Magnitude ma39 Standard deviation times 100 divided by the median of the monthly mean flows for all months in the flow record

Magnitude ma40 Mean of the monthly flow means minus the median of the monthly means divided by the median of the monthly means
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used to identify the three hydrologic explanatory vari-
ables that have the broadest influence over fish commu-
nities in each of the three datasets (Table  3). The most 
common hydrologic metrics were significant explana-
tory variables in 12–18 out of 134 regression models of 
biological metrics among each of the three hydrologic 
datasets (Table  1; Krall et  al. 2022). The most common 
metrics for each hydrologic dataset included hydrologic 
metrics representing flow variability and some aspect of 
bankfull streamflow, which is represented by a 1.67-year 
recurrence interval and is the most geomorphically active 
flow in streams and rivers (Dunne and Leopold 1978; 
Poff and Allan 1995; Rosgen 2006; Fitzpatrick and Pep-
pler 2010). Similarly, Lynch et al. (2018) used hydrologic 
metrics computed using EflowStats and a best subsets 

approach to multiple linear regression to determine that 
reach-scale habitat quality and geomorphology were the 
most important influences on community structure in 
stream ecosystems of the Ozark Highlands. The most 
common metrics in the LTC and STC datasets included 
an explanatory metric representing an aspect of seasonal 
predictability (Table 3).

The frequency of occurrence results (Table 3) demon-
strated that bankfull streamflow, measures of stream-
flow variability, and measures of seasonal predictability 
are hydrologic factors that influence fish communities 
in rivers and streams of Minnesota. Similarly, Fitzpat-
rick (2018) found that metrics related to streamflow 
variability and the time between bankfull flows were 
the best predictors macroinvertebrate-based indices of 

Table 2  (continued)

Category Metric Definition

Magnitude mh2 Maximum February flows across all years in the flow record

Magnitude mh3 Maximum March flows across all years in the flow record

Magnitude mh6 Maximum June flows across all years in the flow record

Magnitude mh7 Maximum July flows across all years in the flow record

Magnitude mh10 Maximum October flows across all years in the flow record

Magnitude mh11 Maximum November flows across all years in the flow record

Magnitude mh13 Coefficient of variation across maximum monthly flows: Standard deviation times 100 divided by mean maximum 
monthly flow for all years

Magnitude mh21 High flow volume index: average volume for flow events above median flow for entire record divided by median flow for 
entire record

Magnitude ml3 Median minimum March flow across all years

Magnitude ml4 Median minimum April flow across all years

Magnitude ml5 Median minimum May flow across all years

Magnitude ml6 Median minimum June flow across all years

Magnitude ml15 Mean of ratios of minimum annual flow to the mean flow for each year

Magnitude ml18 Variability in base flow

Magnitude ml20 Ratio of total base flow to total flow

Magnitude ml21 Variability across annual minimum flows: standard deviation of annual minimum flows times 100 divided by mean of 
annual minimum flows

Magnitude ml22 Median of annual minimum flows divided by the drainage area

Rate of change ra3 Fall rate: median change in flow for days in flow record in which change is negative

Rate of change ra4 Variability in fall rate: 100 times the standard deviation divided by the median fall rate

Rate of change ra5 Number of day rises: the number of positive-gain days divided by the total number of days in the flow record

Rate of change ra9 Variability of reversals: 100 times standard deviation divided by median number of days each year when change in flow 
changes direction

Timing ta1 Constancy in the timing of flows

Timing ta2 Predictability in the timing of flows

Timing ta3 Maximum number of days with flows above 1.67 year recurrence interval flow in any two-month period divided by total 
number of flood days

Timing th1 Mean Julian date of annual maximum flows

Timing th2 Coefficient of variation for the mean Julian date of annual maximum flows

Timing th3 Maximum length of flows less than 1.67-year recurrence interval flows in all years of record

Timing tl1 Mean Julian date of annual minimum flows

Timing tl2 Coefficient of variation for the mean Julian date of annual minimum flows
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biotic integrity (MIBI) normalized to the impairment 
threshold for streams in Minnesota. Bankfull stream-
flows have the greatest potential for channel-altering 
geomorphic processes, and these geomorphic changes 
can alter the quality and availability of fish habitat (Leo-
pold et al. 1964; Dunne and Leopold 1978; Rosgen 2006; 
Fitzpatrick and Peppler 2010). Finally, Poff and Allan 
(1995) found that in Minnesota and Wisconsin, hydro-
logic factors were significant environmental variables 

influencing fish-community structure, while zoogeo-
graphic constraints did not explain the observed relations 
between stream hydrology and the functional organiza-
tion of fish assemblages.

The two best regression models in each biological met-
ric category (based on pseudo-R2 values) and for each 
hydrologic dataset are presented in Table  4. Relations 
between hydrologic metrics and biological metrics pre-
sented in Table  4 were significant (p-values < 0.0001). 

Fig. 2  Tukey boxplots showing the distribution of pseudo-R2 values among final censored regression models in each of the six categories of 
biological metrics for three hydrologic datasets (POR, LTC, and STC; Krall et al. 2022); hydrologic datasets are identified above each set of boxplots, 
sample sizes for each biological metric category are represented at the top of the plots, and outliers are represented by open circles

Table 3  Frequency of occurrences and definitions for the three most commonly used hydrologic metrics in final 134 regression 
models associated with each of three hydrologic datasets

Dataset Metric Occurrences Definition

POR dh24 18 Median of annual maximum number of days with flows less than bankfull streamflow

POR ra9 14 Variability in the median number of flow reversals

POR ma14 12 Median monthly March flow over the entire flow record

LTC mh19 17 Skewness in annual maximum flows

LTC ta3 16 Seasonal predictability of flows greater than bankfull streamflow

LTC tl2 16 Variability in Julian date of annual minimum

STC fh6 14 Median number of events above three times median flow for entire record

STC ma32 12 Variability of median September flow values

STC th3 12 Seasonal predictability of flows less than bankfull streamflow
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Pseudo-R2 values, percent of censored data, and root 
mean square error values were used to assess fit and 
uncertainty associated with these regression models and 
are also presented in Table  4 (Helsel et  al. 2020). Sam-
ple sizes for each dataset were limited by the availability 

of streamflow records long enough to complete the 
described analyses. Pseudo-R2 values for regression 
equations in Table 4 ranged from 0.388 to 0.788, and the 
four regression models with the strongest linear rela-
tions explained more than 70 percent of the variation 

Table 4  The two best regression models and fit statistics for six categories of fish-based biological metrics across three hydrologic 
datasets; see Table 1 for definitions of the biological metrics (response variables) and Table 2 for definitions of the hydrologic metrics 
(explanatory variables)

Biological category 
and rank

Biological response metric regression equation Pseudo-R2 Censored 
values (%)

Root mean 
square error 
(%)

a. Hydrologic dataset: period of record (metrics calculated using data from 1945WY through year of biological sample collection), n = 54

Composition1 Centr.TolTxPct = 29.8 + 74.5ml22 − 0798dh21 − 0.0649ra4 0.601 16.7 6.61

Composition2 SuckerCatPct = 0.287ma39 + 0.00621mh3  − 1.24ma35 − 9.14 0.520 1.90 11.0

Habitat1 WetlandTxPct = 12.2 + 41.0ml20 − 0.00408mh3 − 0.751ra9 0.516 11.1 6.51

Habitat2 LargeRiverTxPct = 0.00581mh3 + 0.147mh13 + 1.21ra9 − 45.7 0.460 14.8 11.0

Life History1 LLvdPct = 152 + 0.0269ml4 − 0.615fl2 − 214th3 0.504 0.00 16.4

Life History2 SLvdTxPct = 4.37dh14 + 0.0596ra4 − 16.2 0.388 13.0 8.64

Reproductive1 SSpnTxPct = 21.9 + 0.372ma25 − 3.31ma40 − 0.0933ra3 0.566 3.70 6.16

Reproductive2 CompLithTxPct = 62.1 − 0.00630mh10 − 0.292dh7 − 0.0638tl1 0.458 5.56 8.58

Tolerance1 IntolerantTxPct = 0.451ma34 − 0.669dh10 + 0.354dh22 − 62.7 0.788 20.4 5.10

Tolerance2 SensitiveTxPct = 2.47fh7 − 0.601dh10 + 0.595dh24 − 126 0.744 0.00 6.04

Trophic1 GenFrimTxPct = 176 − 1.92ma38 − 51.2dl14 − 0.819phase 0.594 0.00 6.17

Trophic2 DetPlnkTxPct = 3.05 − 0.465ma34 + 0.594dh10 0.590 0.00 6.44

b. Hydrologic dataset: long-term change (ratio of calculated metrics: 1981WY through year of biological sample/1945-79WY), n = 39

Composition1 Centr.TolTxPct = 31.9 − 3.05mh2 − 24.5fh2 + 11.5ra9 0.688 15.4 6.07

Composition2 Percfm.TolPct = 104dl15 − 35.6ml15 − 20.9 0.642 0.00 15.0

Habitat1 MorFnotSH20.TolTxPct = 48.8 − 4.02dl5 − 34.8dh9 + 5.30ta3 0.720 2.60 3.94

Habitat2 LargeRiverPct = 31.2ma31 + 31.3ml4 + 48.3dh10 − 119 0.697 23.1 7.49

Life History1 SLvdTxPct = 0.598 + 11.6ml8 − 12.9mh21 + 4.23tl1 0.551 10.3 7.03

Life History2 MgrTxPct = 24.5ma31 + 337ar1 − 101phase − 232 0.504 0.00 7.34

Reproductive1 NestNoLithTxPct = 66.9 − 30.2fh1 − 19.7th2 + 15.8ra9 0.620 0.00 5.66

Reproductive2 PSpnTxPct = 20.6ma24 + 20.4mh21 − 16.8tl2 + 10.2 0.583 0.00 7.02

Tolerance1 IntolerantTxPct = 143 − 12.0ml3 − 47.5dh8 − 62.0phase 0.760 20.5 6.01

Tolerance2 SensitiveTxPct = 104 − 21.4ma33 − 26.1ml20 − 10.8dl5 0.697 0.00 7.02

Trophic1 OmnivoreTxPct = 22.0ma32 + 8.61ml21 + 4.58dl1 − 30.6 0.696 5.10 4.44

Trophic2 SWCGenTolTxPct = 10.7mh6 + 17.4fh5 + 13.5th2 − 39.9 0.694 12.8 4.92

c. Hydrologic dataset: short-term change (ratio of calculated metrics: last 10WY including year of biological sample/POR), n = 48

Composition1 SuckerCatPct = 21.3ma14 + 17.9ma24 − 28.1fh10 − 5.19 0.561 2.08 10.2

Composition2 Centr.TolTxPct = 29.5ma6 − 31.2fh6 − 40.9dh14 + 58.6 0.555 18.8 7.37

Habitat1 MorFnotSH20TxPct = 136dh24 − 9.94tl2 − 26.5amplitude − 83.8 0.514 2.08 5.90

Habitat2 Wetland.TolTxPct = 21.2ma38 + 18.2dh9 + 21.3ta1 − 52.2 0.472 14.6 5.26

Life History1 MgrTxPct = 81.3 + 34.6ma31 − 16.8ma40 − 71.6phase 0.513 0.00 7.48

Life History2 SLvdTxPct = 96.9 − 27.5ma26 − 24.3dh23 − 29.5th3 0.431 12.5 8.00

Reproductive1 MA.3TxPct = 50.9ma26 − 22.3dl9 + 25.2dh23 − 15.7 0.498 0.00 11.0

Reproductive2 CompLithPct = 86.5 − 61.1ma32 + 41.8dh7 − 37.6dh23 0.489 6.25 19.8

Tolerance1 IntolerantTxPct = 126 − 37.4ma32 − 36.8ta2 -32.0th1 0.646 22.9 6.58

Tolerance2 SensitiveTxPct = 97.9 − 25.9ma32 − 10.1mh7 − 30.3ta2 0.544 0.00 7.86

Trophic1 OmnCypTxPct = 16.2ma32 − 6.18ma7 + 7.70ml6 − 18.8 0.628 33.30 3.63

Trophic2 SdetTxPct = 29.2 − 17.2ma6 + 40.3ma32 − 16.1dh19 0.555 0.00 9.15
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in the biological metric using three hydrologic metrics 
(Table  4). Percentage of censored values for equations 
shown in Table 4 ranged from 0 to 33.3 percent, and root 
mean square error values ranged from 3.63 to 19.8 per-
cent. Modeled versus measured biological metric val-
ues were plotted with a 1:1 line (Figs. 3, 4, 5) to illustrate 
residuals in the best linear relations developed for each 
of the six biological metric categories (composition, habi-
tat, life history, reproductive, tolerance, trophic) using 
each of the three hydrologic datasets (POR, LTC, STC). 
Plots of measured (based on field data) versus modeled 
(based on regression models) biological metric values for 
the single best regression model in each biological metric 
category are presented in Figs.  3, 4, and 5 for the POR, 
LTC, and STC datasets, respectively. Plots in Figs.  3, 4, 
and 5 also illustrate the regression equations for the best 
linear relation in each category of biological metrics for 
each hydrologic dataset, the number of censored values 
in the regression, and pseudo-R2 values indicating how 
much of the variation in the biologic metric is explained 
by the hydrologic metrics.

The highest observed pseudo-R2 value was from the 
POR regression model describing the biological met-
ric “IntolerantTxPct”, which represents the percentage 
of intolerant taxa in a fish-community sample (Fig.  3E). 
Additional descriptions of how intolerant taxa are 
defined can be found in (MPCA 2014a). About 20 per-
cent of the IntolerantTxPct values were censored in 
regression models for all hydrologic datasets (Table  4). 
Streams with censored values for IntolerantTxPct were 
primarily streams that are classified as “impaired” for 
aquatic life condition (Krall et al. 2022) and likely did not 
have the water- or habitat-quality to sustain “intolerant” 
species that are sensitive to physical requirements. For 
non-censored values, the IntolerantTxPct metric seems 
to relate to a gradient of stream conditions in Minnesota 
that can be represented by hydrologic metrics computed 
using EflowStats.

Regression models based on FIBI scores and FIBI_
BCG4 scores (normalized to the impairment threshold 
for the stream class of the paired sites) are presented in 
Table  5. Relations between hydrologic metrics and FIBI 
scores and FIBI_BCG4 scores presented in Table 5 were 
significant (p-values < 0.0001). Pseudo-R2 values, percent 
of censored data, and root mean square error values were 
used to assess fit and uncertainty associated with regres-
sion models (Table  5). Pseudo-R2 values ranged from 
0.293 to 0.717 (Table  5), and the regression model with 
the strongest linear relation explained over 70 percent of 
the variation in FIBI_BCG4 using three hydrologic met-
rics from the LTC dataset. Linear relations were stronger 
for the FIBI_BCG4 metric than the FIBI metric for every 
hydrologic dataset (Table  5). Data used to develop the 

equations in Table  5 did not have any censored values, 
and root mean square error values ranged from 0.224 
to 14.0 percent. Root mean square error values were 
lower for the FIBI_BCG4 metric than the FIBI metric 
for all three hydrologic datasets. Plots of observed versus 
expected values for regression models representing FIBI_
BCG4 for the three hydrologic datasets are presented 
in Fig.  6. Definitions for biological metrics (response 
variables) represented in Tables 4 and 5 are presented in 
Table 1, and definitions for hydrologic metrics (explana-
tory variables) represented in Tables 3, 4, and 5 are pre-
sented in Table 2.

The two best regression models in the tolerance cat-
egory for each hydrologic dataset had identical biologi-
cal metrics (IntolerantTxPct and SensitiveTxPct, Table 4), 
and some overlap in the biological metrics used in the 
best regression models was observed among other bio-
logical metric categories and the three hydrologic data-
sets (Table 4). The most common hydrologic metrics in 
regression equations were related to bankfull flows and 
aspects of flow variability, especially seasonal predict-
ability. The 134 regression models associated with each 
hydrologic dataset represent paired sites throughout 
the State of Minnesota and encompassed differences in 
stream orders, hydrologic landscape units (Ziegeweid 
et al. 2015), and watershed sizes (Krall et al. 2022).

Most of the left-censored regression models presented 
in Table  4 and all the FIBI_BCG4 models presented in 
Table 5 had pseudo-R2 values greater than 0.50, indicat-
ing that more than 50 percent of the variability in the 
biological metric could be explained using only two or 
three hydrologic metrics. Regression results presented 
in Tables  4 and 5 support the concept of streamflow as 
a master variable controlling ecosystem processes (Poff 
et al. 1997).

Most regressions not presented in Tables 4 and 5 had 
pseudo-R2 values less than 0.50, which indicates that fac-
tors other than hydrology likely explain more of the vari-
ation in observed values for many biological metrics. This 
study did not consider other factors affecting biologi-
cal responses, such as land use, climate change, natural 
resource management activities, or interactions between 
other components of aquatic food webs. Incorporating 
these other variables may help explain more variability 
in biological response metrics. However, the HLUs that 
comprise Minnesota experience differences in precipi-
tation, land use, and climate (Wolock et al. 2004; Ziege-
weid et al. 2015; Lorenz and Ziegeweid 2016). Therefore, 
incorporating effects of these other factors on a statewide 
scale would be difficult, and these types of analyses were 
beyond the scope of this study.

Tolerance metrics had the strongest overall linear rela-
tions with hydrologic metrics (Table 4, Fig. 2) for all three 
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Fig. 5  Measured versus modeled value plots for the single best regression model in each of six biological metric categories and the short-term 
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hydrologic datasets used in this study (POR, LTC, and 
STC). Tolerance metrics are based on tolerances to speci-
fied flow and water-quality conditions and are more likely 
to include generalist fish species that are broadly found 
across streams and rivers of various stream orders and 
hydrologic landscape units (MPCA 2014a; Ziegeweid 
et al. 2015). Relations between biological and hydrologic 
metrics were more variable among datasets for the com-
position, habitat, life history, reproductive, and trophic 
categories. These five categories have metrics that are 
more attuned to specific characteristics of specialist spe-
cies that may vary more with stream order and may not 
be as ubiquitously distributed within or among HLUs or 
throughout the entire State of Minnesota.

The biological response metric SensitiveTxPct (per-
cent of sensitive taxa in a fish-community sample) was 
evaluated further because this metric had some of the 
strongest linear relations with hydrologic explanatory 
metrics (pseudo-R2 ≥ 0.50) in all three datasets (Table 4), 
and regression models for SensitiveTxPct did not con-
tain any censored values. In addition, SensitiveTxPct is a 
metric used to calculate fish-based index of biotic integ-
rity (FIBI) scores for all MPCA stream fish classes repre-
sented in this study (northern streams, northern rivers, 
southern rivers; MPCA 2014a; Krall et  al. 2022). Addi-
tional descriptions of how sensitive taxa are defined can 
be found in (MPCA 2014a). Figure 7 illustrates how lin-
ear relations between SensitiveTxPct and the dominant 
explanatory variable change using combinations of high 
and low values of the other two explanatory variables for 
all three hydrologic datasets. All plotted values are within 
observed ranges of values in the original datasets.

Using the POR hydrologic dataset (Fig.  7a), Sen-
sitiveTxPct decreased with an increase in the varia-
tion in maximum 90-day moving average flows (dh10), 
a decrease in the maximum number of days per year 
between flows that exceed a 1.67-year recurrence interval 
(dh24), and a decrease in the number of events greater 

than seven times the median flow of the period for which 
the hydrologic metrics are calculated (fh7). These results 
suggest that sensitive taxa generally are highest in Minne-
sota streams with regularly occurring extreme high-flow 
events, more stable high-flow periods, and longer peri-
ods of average-flow conditions between high-flow events. 
Carlisle et al. (2008) noted that impairments of fish and 
macroinvertebrate assemblages were strongly associ-
ated with agricultural land uses. Increased annual pre-
cipitation and subsurface drain tiling throughout most of 
southern Minnesota can cause intense peak streamflows 
with fast rises and falls that quickly convey water off the 
surrounding landscape, reducing the number and dura-
tion of stable high-flow periods that help sustain bio-
logical communities (Lenhart et al. 2011; Schottler et al. 
2013).

Different relations were observed between hydrologic 
explanatory metrics and biological response metrics 
using the LTC and STC datasets. Using the LTC hydro-
logic dataset (Fig.  7b), SensitiveTxPct decreased with 
increasing changes in variation in October flows (ma33), 
ratio of base flow to total flow (ml20), and median 90-day 
minimum flows (dl5). In contrast, using the STC hydro-
logic dataset (Fig.  7c), SensitiveTxPct decreased with 
increasing variation in September flows (ma32), increas-
ing maximum July flows (mh7), and an increase in flow 
predictability (ta2). SensitiveTxPct decreased in both the 
LTC and STC datasets when variability of typically stable 
fall flows increased (MNDNR 2020). Decreases in Sensi-
tiveTxPct corresponding to increased proportion of base-
flow in the LTC dataset could be attributed to increased 
precipitation (Novotny and Stefan 2007; MNDNR 2019), 
and the decreases in SensitiveTxPct corresponding to 
increased flow predictability in the STC dataset could 
be attributed to subsurface tile drainage bypassing natu-
ral infiltration processes and conveying precipitation 
directly to the stream in a more predictable manner (Len-
hart et al. 2011; Schottler et al. 2013; Cowdery et al. 2019; 

Table 5  Regression models and fit statistics for fish-based indices of biotic integrity (FIBI) scores and FIBI scores normalized to 
impairment threshold (FIBI_BCG4) for three hydrologic datasets: period of record (POR), long-term change (LTC), and short-term 
change (STC); see Table 1 for definitions of the biological metrics and Table 2 for definitions of the hydrologic metrics

Hydrologic dataset Biological response metric regression equation Pseudo-R2 Censored values 
(%)

Root mean 
square error 
(%)

POR FIBI = 1.25dh24–0.168dl9–308 0.396 0.00 13.2

POR FIBI_BCG4 = 0.0391dh24–0.00483dl9–10.1 0.539 0.00 0.299

LTC FIBI = 65.7–6.10ma21–40.7ml18 + 45.8dh6 0.608 0.00 10.3

LTC FIBI_BCG4 = 4.54–0.777ma1–1.03ml18–1.10ra5 0.717 0.00 0.224

STC FIBI = 85.1–37.6ml5 + 9.80mh11 0.293 0.00 14.0

STC FIBI_BCG4 = 0.456–1.05ma16 + 0.546ma33 + 1.26th3 0.423 0.00 0.327
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MNDNR 2019). Peak flows due to more intense summer 
rainfall events are increasing in Minnesota (Novotny 
and Stefan 2007), and this would help explain observed 
decreases in SensitiveTxPct with increases in maximum 
July flows (mh7) in the STC dataset. These results indi-
cate there are both separate and overlapping mechanisms 
of how long-term and short-term changes in streamflows 
affect sensitive taxa for streams and rivers in Minnesota. 

Plots used to compare changes in SensitiveTxPct with 
changes in values of hydrologic metrics could be gener-
ated for other biological metrics of interest (Krall et  al. 
2022).

Comparing the results for SensitiveTxPct using three 
different explanatory datasets illustrates the complexity 
of flow–biology relations through time and the poten-
tial effects of temporal variability. However, results 
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from all three datasets demonstrate that increases in 
the magnitude and variability of typically stable base 
flow periods contribute to reductions in sensitive taxa 
in Minnesota. These results indicate that measures 
designed to slow the transport of water from the sur-
rounding watershed to the stream may help to restore 
more natural streamflows (Cowdery et  al. 2019) and 
improve conditions for sensitive taxa. Results specific 
to sensitive taxa are further supported by broad-scale 
results. Hydrologic metrics related to the timing and 
number of events above or below bankfull streamflow 
were some of the most frequently used explanatory 

variables in final regression models among examined 
biological metrics (Table 3).

Results presented from this study support results 
obtained using similar methods to develop flow–biol-
ogy relations that focus on macroinvertebrate communi-
ties in streams throughout Minnesota (Fitzpatrick 2018). 
For streams with similar stream orders and watershed 
sizes, macroinvertebrate indices of biotic integrity (MIBI) 
scores responded most strongly to hydrologic metric 
dh7 (Fitzpatrick 2018), which is the variability of annual 
maximum 3-day moving average flows. Among the most 
significant linear relations presented in Table  4, dh10 
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Fig. 7  Plots illustrating the predicted relative abundance of sensitive taxa (SensitiveTxPct) in fish-community samples over a range of the dominant 
hydrologic explanatory variable and combinations of high and low values of the other two hydrologic explanatory variables for three different 
hydrologic datasets (Krall et al. 2022): a period of record (POR), b long-term change (LTC), and c short-term change (STC)
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(the variability of annual maximum 90-day moving aver-
age flows) was tied with ra5 (number of day rises) for the 
second-most frequently occurring hydrologic metric. The 
dh7 and dh10 metrics are similar and differ only in the 
time periods of the moving average maximum flows. The 
observed difference in significant time periods may rep-
resent differences in the timing and duration of life cycle 
processes between macroinvertebrates and fish. Further-
more, metrics dh6-10 all represent variability in differ-
ent types of annual maximum flows, and these metrics 
appear in Table 4 equations eight times, further support-
ing the relative influence of variability in high-flow con-
ditions on biological metrics. These results also illustrate 
the importance of having accurate peak flow data, which 
can often be underestimated when using flows based on 
regression models to estimate flow time series in Min-
nesota (Ziegeweid and Magdalene 2015; Ziegeweid et al. 
2015; Lorenz and Ziegeweid 2016).

In the POR dataset, FIBI_BCG4 scores responded 
strongly to dh24, or the maximum number of con-
secutive days that flows are below bankfull streamflow. 
Similarly, Fitzpatrick (2018) found that MIBI scores nor-
malized to numeric impairment threshold values of each 
MIBI class responded strongly to dh22, or the median 
number of days between flood events greater than bank-
full streamflow. Furthermore, hydrologic metrics related 
to bankfull streamflow were among the most frequently 
occurring significant explanatory variables in regression 
models of fish-based biological metrics in the LTC and 
STC hydrologic datasets (Table 4). These results demon-
strate the relative importance of bankfull streamflow in 
controlling aquatic communities in streams and rivers of 
Minnesota. Therefore, hydrologic alterations that affect 
the frequency or magnitude of conditions above bankfull 
streamflow have the potential to strongly affect macroin-
vertebrate and fish communities.

Factors affecting study results and future directions
Factors affecting the presented results must be acknowl-
edged to ensure that study results are used properly. First, 
there is a wide range in dates of available hydrologic and 
biological data for each site pair. Fish-community sam-
ples represent the fish communities of specific stream 
reaches at a single point in time, and fish-community 
samples used in analyses were collected over a span of 
20 years (1996–2015, MPCA Environmental Data Appli-
cation, https://​www.​pca.​state.​mn.​us/​envir​onmen​tal-​
data). In addition, streamgage records did not all start in 
the same year (U.S. Geological Survey 2019), and records 
were ended with the year of biological sample collection, 
which also varied among biological samples (Krall et  al. 
2022). Thus, the periods of streamflow records were not 
uniform across sites, and each paired biological sample 

and streamgage record represent different patterns of 
climate and land-use changes. These differences could 
have introduced variability in the results and hindered 
our ability to identify stronger flow–biology relations, but 
streamflow records likely were long enough to encom-
pass cyclical patterns of wet/dry cycles (Magdalene et al. 
2018) and a wide range of extreme high- and low-flow 
events.

Streams and rivers in this study are limited to stream 
orders 4–7, so results presented here are not representa-
tive of first, second, or third order streams. Small streams 
are flashy in nature and may go dry (Cai et  al. 2015), 
resulting in periods of zero flow, which contributes to 
the lack of streamgages with at least 10 years of continu-
ous streamflows records for low-order streams. This dif-
ficulty of operating continuous streamgages in low-order 
streams is another reason many studies rely on modeled 
streamflow records to develop relations between stream-
flow and biology. This study only used measured stream-
flow data, so study results are not comparable to results 
of other studies obtained using modeled streamflow data 
(Poff and Allan 1995; Cai et al. 2015; Herb et al. 2015a,b,c; 
McKay et al. 2019). However, future studies could focus 
on developing hydrologic metrics based on modeled 
flows and comparing them to metrics based on measured 
flows. Metrics calibrated to modeled flows could be used 
to predict the effectiveness of planned restoration activi-
ties (MNDNR 2010). A similar approach used on the 
Kootenai River was outlined by McDonald et al. (2016).

This study does not include climate- or landscape-
based explanatory variables, but we recognize that 
climate and landscape likely contributed to values of 
hydrologic metrics that were used as explanatory vari-
ables. Directly incorporating climate- or landscape-based 
explanatory variables may help explain more of the varia-
bility in biological metrics (response variables). However, 
this study focused only on the relations between altered 
hydrology and biological responses. We assumed that 
climate and landscape factors would contribute to altera-
tions in measured streamflows, and we did not make an 
effort to distinguish the relative contributions of factors 
that could alter streamflows. Therefore, climate- and 
landscape-based variables were excluded from presented 
analyses.

Previous studies of flow–biology relations have incor-
porated climate- and landscape-based variables into 
their analyses (Poff and Allan 1995; Carlisle et  al. 2011; 
Cai et  al. 2015; Herb et  al. 2015c; McKay et  al. 2019). 
In a nationwide study of streams in the conterminous 
United States, Carlisle et  al. (2011) demonstrated that 
alterations in streamflow were stronger predictors of 
biological integrity than other physical and chemical 
factors included in statistical analyses. However, most 

https://www.pca.state.mn.us/environmental-data
https://www.pca.state.mn.us/environmental-data
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of the streamflow alterations discussed in Carlisle et  al. 
(2011) were related to diminished streamflows as a result 
of anthropogenic water withdrawals. Streams in Minne-
sota typically have ecological issues caused by increases 
in streamflows because of anthropogenic changes to the 
surrounding landscape. Previous studies in Minnesota 
that incorporated climate- and landscape-based variables 
(Poff and Allan 1995; Cai et  al. 2015; Herb et  al. 2015c; 
McKay et  al. 2019) focused on specific regions of Min-
nesota with similar land-use and climate-related issues. 
Therefore, these studies were not designed to look at 
flow–biology relations for the entire State of Minnesota. 
Additional studies could be completed to further link 
hydrologic, climate, and landscape factors for the entire 
State of Minnesota.

This study used literature-based evidence to define 
periods for calculating hydrologic metrics and ratios 
in LTC and STC datasets (Lenhart et al. 2011; Schottler 
et  al. 2013). However, methods like double-mass curves 
(Searcy et al. 1960) could be used to define specific years 
in which hydrologic changes took place for each site in 
the study. Having specific years associated with hydro-
logic changes could help improve accuracy of pre- and 
post-change metric computations. Spatial and tempo-
ral patterns of hydrologic changes could be examined to 
identify causal links for specific hydrologic changes, such 
as shifts from small-grain crops to corn and soybeans 
(Lenhart et al. 2011; Schottler et al. 2013).

Finally, this study used only linear regression tech-
niques to develop relations between hydrologic explana-
tory metrics and biological response metrics. Other 
statistical methods that can identify nonlinear relations 
between explanatory and response metrics may describe 
other aspects of relations between hydrologic and bio-
logical metrics. Some commonly used methods include 
machine-learning approaches like boosted regression 
trees (Aertsen et  al. 2010) or multivariate statistical 
approaches like principal components analysis (Poff et al. 
2010; Rahman et al. 2017). Nonlinear statistical methods 
could further inform resource managers in Minnesota 
about relations between altered hydrology and biological 
responses.

Conclusions
In this study, we developed statewide flow–biology rela-
tions in Minnesota for 134 different computed biologi-
cal metrics using three different datasets of hydrologic 
metrics representing total periods of streamflow record 
and ratios of hydrologic metrics computed from different 
periods of streamflow record to estimate long- and short-
term changes in hydrology. Developed regression models 
represented paired streamgage records and fish-commu-
nity samples from throughout the State of Minnesota and 

encompassed differences in stream orders, hydrologic 
landscape units, and watershed sizes. The three hydro-
logic metrics most frequently used as explanatory vari-
ables in regression models for each hydrologic dataset 
were assumed to represent the hydrologic metrics that 
most broadly affect stream fish communities through-
out Minnesota. The most commonly used hydrologic 
explanatory metrics in regression equations were related 
to bankfull flows and aspects of flow variability, especially 
seasonal predictability. The regression model with the 
strongest linear relation for each biological metric cat-
egory and in hydrologic dataset explained at least 49.8 
percent of the variation in the biological metric.

The biological response metric SensitiveTxPct (percent 
of sensitive taxa in a fish-community sample) is used to 
calculate fish-based index of biotic integrity (FIBI) scores 
for all MPCA stream fish classes represented in this study 
(northern streams, northern rivers, southern rivers) and 
had some of the strongest linear relations with hydro-
logic explanatory metrics (pseudo-R2 ≥ 0.50) in all three 
datasets. Graphical representations demonstrated how 
changes in hydrologic metric values affected SensitiveTx-
Pct values. Study results can be used to vary the values of 
the hydrologic metrics and evaluate changes in biological 
metrics of interest for aquatic life management goals, and 
this information could be incorporated into decision-
support frameworks designed to improve the health of 
stream fish communities, such as the tiered-aquatic life 
use (TALU) framework (Yoder 2012) developed by the 
MPCA or the ecological limits of hydrologic alteration 
(ELOHA) framework developed by Poff et  al. (2009). 
Results can also be applied to evaluations of hydrologic 
simulations associated with stream restoration projects 
developed by the MNDNR (2010) to ensure that resto-
ration activities could address the hydrologic variables 
that have the strongest effects on aquatic life. Presented 
methods can be used by researchers to complete statis-
tical comparisons of hydrologic metrics computed from 
measured and modeled streamflows and expand these 
flow–biology studies to headwater streams and modeled 
flow data. Methods in this study used to develop flow–
biology relations could be applied to any stream locations 
outside of Minnesota with long-term streamgage and 
fish-community sample data.

Abbreviations
FIBI: Fish-based indices of biotic integrity; FIBI_BCG4: Fish-based indices of 
biotic integrity normalized to the biological condition gradient four impair-
ment threshold; HLU: Hydrologic landscape unit; MPCA: Minnesota Pollution 
Control Agency; IBI: Indices of biotic integrity; IHA: Indicators of Hydrologic 
Alteration; USGS: U.S. Geological Survey; mh: Hydrologic metrics representing 
high-magnitude flows; th: Hydrologic metrics representing timing associated 
with high flows; ma: Hydrologic metrics representing average-magnitude 
flows; ta: Hydrologic metrics representing the timing of average flows; ml: 
Hydrologic metrics representing low-magnitude flows; tl: Hydrologic metrics 



Page 23 of 25Ziegeweid et al. Ecological Processes           (2022) 11:41 	

representing timing associated with low flows; dh: Hydrologic metrics 
representing durations of high flows; fh: Hydrologic metrics representing 
frequencies of high flows; dl: Hydrologic metrics representing durations of 
low flows; fl: Hydrologic metrics representing the frequencies of low flows; 
ra: Hydrologic metrics representing rates of change of mean flows; TALU: 
Tiered-aquatic life use; ELOHA: Ecological limits of hydrologic alteration; NWIS: 
National Water Information System; dl18: Number of zero-flow days; dl19: 
Variability in number of zero-flow days; dl20: Number of zero-flow months; tl3: 
Seasonal predictability of low flow; fl3: Frequency of low pulse spells; lam1: 
Arithmetic mean streamflow; ma1: Mean of daily mean flow values for entire 
flow record; POR: Period of record; LTC: Long-term change; STC: Short-term 
change; MNDNR: Minnesota Department of Natural Resources; km: Kilometers; 
n: Sample size; α: Level of significance; VIF: Variance inflation factor; PRESS: 
Predicted residual error sum of squares; pseudo-R2: Pseudo-coefficient of 
determination; AMLE: Adjusted maximum likelihood estimation; AIC: Akaike’s 
Information Criteria; BIC: Bayesian Information Criteria; SensitiveTxPct: Percent-
age of sensitive taxa in a fish community sample; MIBI: Macroinvertebrate-
based indices of biotic integrity; IntolerantTxPct: Percentage of intolerant 
taxa in a fish community sample; dh10: Variation in maximum 90-day moving 
average flows; dh24: Maximum number of days per year between flows that 
exceed a 1.67-year recurrence interval; fh7: Number of events greater than 
seven times the median flow of the period for which the hydrologic metrics 
are calculated; ma33: Changes in variation in October flows; ml20: Ratio of 
base flow to total flow; dl5: Median 90-day minimum flows; ma32: Variation 
in September flows; mh7: Maximum July flows; ta2: Flow predictability; dh7: 
Variability of annual maximum 3-day moving average flows; ra5: Number of 
day rises; dh22: Median number of days between flood events greater than 
bankfull streamflow.

Acknowledgements
Members of an interagency Project Stakeholder Team provided input into 
study design and presentation of results, and the interagency Minnesota 
Drainage Management Team provided several insights and literature 
resources through a series of regular meetings. Gerald Storey, Jr. of the U.S. 
Geological Survey assisted with the formatting figures for publication.

Author contributions
JZ and GJ developed and led the overall study, the interagency Project 
Stakeholder Team, and the writing of the final paper. AK and SL provided 
insights on statistical analyses and wrote the code used to generate datasets, 
complete statistical analyses, and publish the data. KF helped compile data 
collected by the Minnesota Pollution Control Agency, select and interpret 
statistical analyses, and frame the results in a relevant ecological context. All 
authors read and approved the final manuscript.

Funding
This work was funded through Minnesota Pollution Control Agency Clean 
Water Legacy Funds (140809) and U.S. Geological Survey Cooperative Match-
ing Funds (1632A).

Availability of data and materials
All data and coding scripts used in published analyses are available in Krall 
et al. (2022).

Declarations

Ethics approval and consent to participate
This study did not involve any new data collection, but fish community data 
provided by the Minnesota Pollution Control Agency were collected using 
standardized nonlethal sampling protocols (MPCA 2017) according to specific 
animal care and use guidelines.

Consent for publication
Any use of trade, firm, or product names is for descriptive purposes only and 
does not imply endorsement by the U.S. Government.

Competing interests
The authors declare that they have no competing interests.

Author details
1 U.S. Geological Survey, California Water Science Center, 6000 J St, Placer Hall, 
Sacramento, CA 85819, USA. 2 U.S. Geological Survey, Upper Midwest Water 
Science Center, 2280 Woodale Dr, Mounds View, MN 55112, USA. 3 Minnesota 
Pollution Control Agency, 520 Lafayette Rd, St. Paul, MN 55155, USA. 4 Min-
nesota Pollution Control Agency, 7678 College Road, Suite 105, Baxter, MN 
56425, USA. 

Received: 22 January 2022   Accepted: 19 May 2022

References
Aertsen W, Kint V, Orshoven J, van Ozkan K, Muys B (2010) Comparison and 

ranking of different modeling techniques for prediction of site index in 
Mediterranean mountain forests. Ecol Model 221:1119–1130

Annear T, Chisholm I, Beecher H, Locke A, Aarrestad P, Coomer C, Estes C, Hunt 
J, Jacobson R, Jobsis G, Kauffman J, Marshall J, Mayes K, Smith G, Went-
worth R (2004) Instream flows for riverine resource stewardship (revised 
edition). Instream Flow Council, Cheyenne, WY, USA, 268 p.

Archfield SA, Kennen JG, Carlisle DM, Wolock DM (2014) An objective and par-
simonious approach for classifying natural flow regimes at a continental 
scale. River Res App 30:1166–1183. https://​doi.​org/​10.​1002/​rra.​2710

Breen R (1996) Regression models: censored, sample selected, or truncated 
data: Sage University Paper series on Quantitative Applications in the 
Social Sciences, 07–111, Thousand Oaks, CA

Breusch TS, Pagan AR (1979) A simple test for heteroskedasticity and random 
coefficient variation. Econometrica 47(5):1287–1294. https://​doi.​org/​10.​
2307/​19119​63.​JSTOR​19119​63.​MR054​5960

Bunn SE, Arthington AH (2002) Basic principles and ecological consequences 
of altered flow regimes for aquatic biodiversity. Environ Manag 30(4):492–
507. https://​doi.​org/​10.​1007/​s00267-​002-​2737-0

Cai M, Erickson J, Blann K, Herb W, Garano RJ, Jereczek J, Johnson L (2015) 
Classification of north shore tributary streams for use in predicting ecohy-
drologic conditions, Technical Report, 39 pages.

Carlisle DM, Hawkins CP, Meador MR, Potapova M, Falcone J (2008) Biological 
assessments of Appalachian streams based on predictive models for 
fish, macroinvertebrate, and diatom assemblages. J N Am Benthol Soc 
27(1):16–37. https://​doi.​org/​10.​1899/​06-​081.1

Carlisle DM, Wolock DM, Meador MR (2011) Alteration of streamflow magni-
tudes and potential ecological consequences: a multiregional assess-
ment. Front Ecol Environ 9(5):264–270. https://​doi.​org/​10.​1890/​100053

Cohn TA (1988) Adjusted maximum likelihood estimation of moments of 
lognormal populations from type I censored samples: AIC, 34 p.

Cowdery TK, Christenson CA, Ziegeweid JR (2019) The hydrologic benefits of 
wetland and prairie restoration in western Minnesota—lessons learned 
at the Glacial Ridge National Wildlife Refuge, 2002–15. U.S. Geological 
Survey Scientific Investigations Report 2019–5041, 81 p. https://​doi.​org/​
10.​3133/​sir20​195041.

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, Marquez JRG, 
Gruber B, Lafourcade B, Leitao PJ, Munkemuller T, McClean C, Osborne 
PE, Reineking B, Schroder B, Skidmore AK, Zurell D, Lautenbach S (2013) 
Collinearity: a review of methods to deal with it and a simulation study 
evaluating their performance. Ecography 36:27–46

Dunne T, Leopold LB (1978) Water in environmental planning. Freeman Press, 
New York, p 818

Fitzpatrick K (2018) Identifying linear relationships between streamflow 
metrics and benthic macroinvertebrate metrics in Minnesota. Retrieved 
from the University of Minnesota Digital Conservancy, http://​hdl.​handle.​
net/​11299/​201007

Fitzpatrick FA, Peppler MC (2010) Relation of urbanization to stream habitat 
and geomorphic characteristics in nine metropolitan areas of the United 
States. U.S. Geological Survey Scientific Investigations Report 2010–5056, 
29 p

Helsel DR, Hirsch RM, Ryberg KR, Archfield SA, Gilroy EJ (2020) Statistical meth-
ods in water resources. U.S. Geological Survey Techniques and Methods 
04-A3, 458 p. https://​doi.​org/​10.​3133/​tm4a3.

Henriksen JA, Heasley J, Kennen JG, Niewswand S (2006) Users’ Manual for the 
Hydroecological Integrity Assessment Process Software (including the 

https://doi.org/10.1002/rra.2710
https://doi.org/10.2307/1911963.JSTOR1911963.MR0545960
https://doi.org/10.2307/1911963.JSTOR1911963.MR0545960
https://doi.org/10.1007/s00267-002-2737-0
https://doi.org/10.1899/06-081.1
https://doi.org/10.1890/100053
https://doi.org/10.3133/sir20195041
https://doi.org/10.3133/sir20195041
http://hdl.handle.net/11299/201007
http://hdl.handle.net/11299/201007
https://doi.org/10.3133/tm4a3


Page 24 of 25Ziegeweid et al. Ecological Processes           (2022) 11:41 

New Jersey Assessment Tools). U.S. Geological Survey Open-File Report. 
pp. 1093–2006

Herb W, Johnson L, Garano RJ, Blann K, Cai M, Erickson J, Jereczek J (2015a) 
Assembly and calibration of hydrologic models for north shore tributary 
streams, Technical Report, 31 p.

Herb W, Blann K, Garano RJ, Jereczek J, Johnson L (2015b) Environmental flow 
statistics for the Superior north shore tributaries, Technical Report, 33 p.

Herb W, Blann K, Garano RJ, Jereczek J, White M, Johnson L (2015c) Analysis 
of impacts of climate and land use change on stream flow regime and 
predicted flows under future land use and climate, Technical Report, 39 p.

Kakouei K, Kiesel J, Kail J, Pusch M, Jähnig SC (2017) Quantitative hydrologi-
cal preferences of benthic stream invertebrates in Germany. Ecol Indic 
79:163–272. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2017.​04.​029

Karr JR (1991) Biological integrity: a long-neglected aspect of water resources 
management. Ecol App 1(1):66–84

Kennen JG, Henriksen JA, Nieswand SP (2007) Development of the hydroeco-
logical integrity assessment process for determining environmental flows 
for New Jersey Streams. U.S. Geological Survey Scientific Investigations 
Report 2007–5206, 55 p.

Kennen JG, Riskin ML, Reilly PA, Colarullo SJ (2013) Method to support total 
maximum daily load development using hydrologic alteration as a 
surrogate to address aquatic life impairment in New Jersey streams. 
U.S. Geological Survey Scientific Investigations Report 2013–5089, 86 p. 
http://​pubs.​usgs.​gov/​sir/​2013/​5089/

Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. 
Springer Science & Business Media, Berlin. https://​doi.​org/​10.​1007/​
978-0-​387-​71887-3

Krall AL (2019) Hydrologic indicator statistics used to examine changes in 
streamflows associated with changing land use practices in Minnesota, 
1945–2015. U.S. Geological data release. https://​doi.​org/​10.​5066/​P9ND1​
NPT.

Krall AL, Ziegeweid JR, Johnson GD, Levin SB (2022) Hydrologic metrics, 
biological metrics, R scripts, and model archives associated with regres-
sion analysis used to quantify relations between altered hydrology and 
biological responses in rivers of Minnesota, 1945–2015. U.S. Geological 
Survey Data Release. https://​doi.​org/​10.​5066/​P9CH6​7DV.

Lenhart C, Peterson H, Nieber J (2011) Increased streamflow in agricultural 
watersheds of the midwest: implications for management. Watershed Sci 
Bull, Spring Issue, p. 25–31.

Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. 
Freeman Press, San Francisco, p 522

Lorenz DL, Ziegeweid JR (2016) Methods to estimate historical daily stream-
flow for ungaged stream locations in Minnesota. U.S. Geological Survey 
Scientific Investigations Report 2015–5181, 18 p. https://​doi.​org/​10.​3133/​
sir20​155181.

Lynch DT, Leasure DR, Magoulick DD (2018) The influence of drought on flow-
ecology relationships in Ozark Highland streams. Fresh Biol 63:946–968. 
https://​doi.​org/​10.​1111/​fwb.​13089

Maddock I, Harby A, Kemp P, Wood P (2013) Ecohydraulics: an introduction. In: 
Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated 
approach. Wiley, Chichester. https://​doi.​org/​10.​1002/​97811​18526​576

Magdalene S, Johnson DK, Ziegeweid JR, Kiesling RL (2018) Report on the 
state of the lake: assessing Lake St. Croix in 2018 On the Way to the 2020, 
Final Report to the Wisconsin Department of Natural Resources, 40 p. 
https://​dnr.​wisco​nsin.​gov/​sites/​defau​lt/​files/​topic/​TMDLs/​Asses​singL​
akeSt​Croix​In201​8OnTh​eWayT​o2020​TMDLG​oals.​pdf.

Marquardt DW (1970) Generalized inverses, ridge regression, biased linear esti-
mation, and nonlinear estimation. Technometrics 12(3):591–612. https://​
doi.​org/​10.​2307/​12672​05

May JT, Brown LR, Rehn AC, Waite IR, Ode PR, Mazor RD, Schiff KC (2015) 
Correspondence of biological condition models of California streams at 
statewide and regional scales. Environ Monit Assess 187:4086. https://​doi.​
org/​10.​1007/​s10661-​014-​4086-x

McDonald RR, Nelson JM, Fosness RL, Nelson PO (2016) Field scale test of 
multi-dimensional flow and morphodynamic simulations used for resto-
ration design analysis. River Flow Conference Proceedings, 1390–1398

McKay SK, Theiling CH, Dougherty MP (2019) Comparing outcomes from 
competing models assessing environmental flows in the Minnesota 
River Basin. Ecol Eng 142(Supplement):100014. https://​doi.​org/​10.​1016/j.​
ecoena.​2019.​100014

MNDNR (2010) Resource Sheet 1: Streambank erosion and restoration. 4 p. 
https://​files.​dnr.​state.​mn.​us/​publi​catio​ns/​waters/​under​stand​ing_​our_​
strea​ms_​and_​rivers_​resou​rce_​sheet_1.​pdf. Accessed 1 Nov 2019

MNDNR (2019) DNR/MPCA Cooperative Stream Gaging. Available online at 
https://​www.​dnr.​state.​mn.​us/​waters/​csg/​index.​html. Accessed 1 Nov 
2019.

MPCA (2009) Fish community sampling protocol for stream monitoring 
sites (wq-bsm3–03). St. Paul: Minnesota Pollution Control Agency. 
https://​www.​pca.​state.​mn.​us/​sites/​defau​lt/​files/​wqbsm3-​03.​pdf. 
Accessed 1 Nov 2019

MPCA (2014a) Development of fish indices of biological integrity (FIBI) for 
Minnesota rivers and streams. St. Paul: Minnesota Pollution Control 
Agency. https://​www.​pca.​state.​mn.​us/​sites/​defau​lt/​files/​wq-​bsm2-​03.​
pdf. Accessed 1 Nov 2019

MPCA (2014b) Development of a macroinvertebrate-based Index of Biologi-
cal Integrity for assessment of Minnesota’s rivers and streams. Minne-
sota Pollution Control Agency, Environmental Analysis and Outcomes 
Division, St. Paul, MN. https://​www.​pca.​state.​mn.​us/​sites/​defau​lt/​files/​
wq-​bsm4-​01.​pdf. Accessed 1 Nov 2019

MPCA (2016) Development of biological criteria for tiered aquatic life uses: 
fish and macroinvertebrate thresholds for attainment of aquatic life 
use goals in Minnesota streams and rivers. Minnesota Pollution Control 
Agency, Environmental Analysis and Outcomes Division, St. Paul, MN. 
https://​www.​pca.​state.​mn.​us/​sites/​defau​lt/​files/​wq-​bsm4-​02.​pdf. 
Accessed 1 Nov 2019

MPCA (2017) Fish data collection protocols for lotic waters in Minnesota: 
sample collection, sample processing, and calculations of indices of 
biotic integrity. Minnesota Pollution Control Agency, Environmental 
Analysis and Outcomes Division, St. Paul, MN. https://​www.​pca.​state.​
mn.​us/​sites/​defau​lt/​files/​wq-​bsm3-​12b.​pdf. Accessed 1 Nov 2019.

Novak R, Kennen JG, Abele RW, Baschon CF, Carlisle DM, Dlugolecki L, 
Eignor DM, Flotemersch JE, Ford P, Fowler J, Galer R, Gordon LP, Hansen 
SE, Herbold B, Johnson TE, Johnston JM, Konrad CP, Leamond B, Seel-
bach PW (2016) Final EPA-USGS technical report: protecting aquatic life 
from effects of hydrologic alteration. U.S. Geological Survey Scientific 
Investigations Report 2016–5164, U.S. Environmental Protection 
Agency EPA Report 822-R-156–007, 156 p. http://​pubs.​usgs.​gov/​sir/​
2015/​5160/ and http://​www2.​epa.​gov/​wqc/​aquat​iclife-​ambie​nt-​water 
quality-criteria. Accessed 1 Nov 2019

Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate 
change. J Hydrol 334:319–333

Olden JD, Poff NL (2003) Redundancy and the choice of hydrologic indices 
for characterizing streamflow regimes. River Res App 19:101–121. 
https://​doi.​org/​10.​1002/​rra.​700

Peterson HM, Nieber JL, Kanivetsky R (2011) Hydrologic regionalization to 
assess anthropogenic changes. J Hydrol 408:212–225. https://​doi.​org/​
10.​1016/j.​jhydr​ol.​2011.​07.​042

Poff NL, Allan JD (1995) Functional organization of stream fish assemblages 
in relation to hydrological variability. Ecology 76:606–627

Poff L, Zimmerman J (2010) Ecological responses to altered flow regimes: a 
literature review to inform the science and management of environ-
mental flows. Freshw Biol 55:194–205

Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, 
Stromberg JC (1997) The natural flow regime: a paradigm for river 
conservation and restoration. Bioscience 47(11):769–784

Poff NL, Richter BD, Arthington AH, Bunn SE, Naiman RJ, Kendy E, Acreman 
M, Apse C, Bledsoe BP, Freeman MC, Henriksen J, Jacobson RB, Kennen 
JG, Merritt DM, O’Keeffe JH, Olden JD, Rogers K, Tharme RE, Warner A 
(2009) The ecological limits of hydrologic alteration (ELOHA): a new 
framework for developing regional environmental flow standards. 
Freshw Biol 55(1):147–170

Poff NL, Pyne MI, Bledsoe BP, Cuhaciyan CC, Carlisle DM (2010) Developing 
linkages between species traits and multiscaled environmental varia-
tion to explore vulnerability of stream benthic communities to climate 
change. J N Am Benthol Soc 29(4):1441–1458. https://​doi.​org/​10.​1899/​
10-​030.1

Power ME, Sun A, Parker M, Dietrich WE, Wootton JT (1995) Hydraulic food-
chain models: an approach to the study of food-web dynamics in large 
rivers. Bioscience 45:159–167

https://doi.org/10.1016/j.ecolind.2017.04.029
http://pubs.usgs.gov/sir/2013/5089/
https://doi.org/10.1007/978-0-387-71887-3
https://doi.org/10.1007/978-0-387-71887-3
https://doi.org/10.5066/P9ND1NPT
https://doi.org/10.5066/P9ND1NPT
https://doi.org/10.5066/P9CH67DV
https://doi.org/10.3133/sir20155181
https://doi.org/10.3133/sir20155181
https://doi.org/10.1111/fwb.13089
https://doi.org/10.1002/9781118526576
https://dnr.wisconsin.gov/sites/default/files/topic/TMDLs/AssessingLakeStCroixIn2018OnTheWayTo2020TMDLGoals.pdf
https://dnr.wisconsin.gov/sites/default/files/topic/TMDLs/AssessingLakeStCroixIn2018OnTheWayTo2020TMDLGoals.pdf
https://doi.org/10.2307/1267205
https://doi.org/10.2307/1267205
https://doi.org/10.1007/s10661-014-4086-x
https://doi.org/10.1007/s10661-014-4086-x
https://doi.org/10.1016/j.ecoena.2019.100014
https://doi.org/10.1016/j.ecoena.2019.100014
https://files.dnr.state.mn.us/publications/waters/understanding_our_streams_and_rivers_resource_sheet_1.pdf
https://files.dnr.state.mn.us/publications/waters/understanding_our_streams_and_rivers_resource_sheet_1.pdf
https://www.dnr.state.mn.us/waters/csg/index.html
https://www.pca.state.mn.us/sites/default/files/wqbsm3-03.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm2-03.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm2-03.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm4-01.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm4-01.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm4-02.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm3-12b.pdf
https://www.pca.state.mn.us/sites/default/files/wq-bsm3-12b.pdf
http://pubs.usgs.gov/sir/2015/5160/
http://pubs.usgs.gov/sir/2015/5160/
http://www2.epa.gov/wqc/aquaticlife-ambient-water
https://doi.org/10.1002/rra.700
https://doi.org/10.1016/j.jhydrol.2011.07.042
https://doi.org/10.1016/j.jhydrol.2011.07.042
https://doi.org/10.1899/10-030.1
https://doi.org/10.1899/10-030.1


Page 25 of 25Ziegeweid et al. Ecological Processes           (2022) 11:41 	

R Core Team (2019) R: a language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. https://​www.R-​
proje​ct.​org/

Rahman MATMT, Hoque S, Saadat AHM (2017) Selection of minimum indica-
tors of hydrologic alteration of the Gorai river, Bangladesh using principal 
component analysis. Sust Wat Res Manag 3:13–23. https://​doi.​org/​10.​
1007/​s40899-​017-​0079-6

Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon 
AL, Wallace, JB, Wissmar RC (1988) The role of disturbance in stream ecol-
ogy. J N Am Benth Soc 7:433–455

Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing 
hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174. 
https://​doi.​org/​10.​1046/j.​1523-​1739.​1996.​10041​163.x

Richter BD, Baumgartner JV, Wigington R, Braun DP (1997) How much water 
does a river need? Freshw Biol 37:231–249. https://​doi.​org/​10.​1046/j.​
1365-​2427.​1997.​00153.x

Rosgen D (2006) Watershed assessment of river stability and sediment supply 
(WARSSS). Wildland Hydrology, Fort Collins, CO.

Schottler S, Ulrich J, Belmont P, Moore R, Lauer JW, Engstrom D, Almendinger 
J (2013) Twentieth century agricultural drainage creates more erosive 
rivers. Hydrol Proc 28:1951–1961. https://​doi.​org/​10.​1002/​hyp.​9738

Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) On the 
cause of the 1930s Dust Bowl. Science 303(5665):1855–1859

Searcy JK, Hardison CH, Langbein WB (1960) Double-mass curves, with a 
section fitting curves to cyclic data. U.S. Geological Survey Water-Supply 
Paper 1541-B, 66 p. https://​doi.​org/​10.​3133/​wsp15​41B.

Thompson J, Archfield S, Kennen J, Kiang J (2013) EflowStats: an R package to 
compute ecologically-relevant streamflow statistics: American Geophysi-
cal Union, Fall Meeting 2013, abstract #H43E-1508. http://​adsabs.​harva​rd.​
edu/​abs/​2013A​GUFM.​H43E1​508T. Accessed 4 Nov 2015

U.S. Geological Survey (2019) The National Water Information System. https://​
doi.​org/​10.​5066/​F7P55​KJN. Accessed 1 Nov 2019

Van Liew MW, Arnold JG, Garbrecht JD (2003) Hydrologic simulation on agri-
cultural watersheds: choosing between two models. Trans Am Soc Ag 
Eng 46(6):1539–1551. https://​doi.​org/​10.​13031/​2013.​15643

Wolock DM, Winter TC, McMahon G (2004) Delineation and evaluation of 
hydrologic-landscape regions in the United States using geographic 
information system tools and multivariate statistical analyses. Environ 
Manag 34(1):71–88. https://​doi.​org/​10.​1007/​s00267-​003-​5077-9

Yoder CO (2012) Framework and implementation recommendations for tiered 
aquatic life uses: Minnesota rivers and streams. Midwest Biodiversity 
Institute report to the Minnesota Pollution Control Agency, 97 p. https://​
www.​pca.​state.​mn.​us/​sites/​defau​lt/​files/​wq-​s6-​24.​pdf. Accessed 1 Nov 
2019

Ziegeweid JR, Magdalene S (2015) Development of regression equations to 
revise estimates of historical streamflows for the St. Croix River at Stillwa-
ter, Minnesota (water years 1910–2011), and Prescott, Wisconsin (water 
years 1910–2007). U.S. Geological Survey Scientific Investigations Report 
2014–5239, 23 p. https://​doi.​org/​10.​3133/​sir20​145239.

Ziegeweid JR, Lorenz DL, Sanocki CA, Czuba CR (2015) Methods for estimat-
ing flow–duration curve and low-flow frequency statistics for ungaged 
locations on small streams in Minnesota. U.S. Geological Survey Scientific 
Investigations Report 2015–5170, 23 p. https://​doi.​org/​10.​3133/​sir20​
155170.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1007/s40899-017-0079-6
https://doi.org/10.1007/s40899-017-0079-6
https://doi.org/10.1046/j.1523-1739.1996.10041163.x
https://doi.org/10.1046/j.1365-2427.1997.00153.x
https://doi.org/10.1046/j.1365-2427.1997.00153.x
https://doi.org/10.1002/hyp.9738
https://doi.org/10.3133/wsp1541B
http://adsabs.harvard.edu/abs/2013AGUFM.H43E1508T
http://adsabs.harvard.edu/abs/2013AGUFM.H43E1508T
https://doi.org/10.5066/F7P55KJN
https://doi.org/10.5066/F7P55KJN
https://doi.org/10.13031/2013.15643
https://doi.org/10.1007/s00267-003-5077-9
https://www.pca.state.mn.us/sites/default/files/wq-s6-24.pdf
https://www.pca.state.mn.us/sites/default/files/wq-s6-24.pdf
https://doi.org/10.3133/sir20145239
https://doi.org/10.3133/sir20155170
https://doi.org/10.3133/sir20155170

	Quantifying relations between altered hydrology and fish community responses for streams in Minnesota
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Biological datasets
	Hydrologic datasets
	Paired site selection
	Statistical analysis
	Data synthesis

	Results and discussion
	Factors affecting study results and future directions

	Conclusions
	Acknowledgements
	References


