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Effects of altitude and slope on the climate–
radial growth relationships of Larix olgensis 
A. Henry in the southern Lesser Khingan 
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Abstract 

Background:  The relationship between climate and radial growth of trees exhibits spatial variation due to environ-
mental changes. Therefore, elucidation of how the growth–climate responses of trees vary in space is essential for 
understanding forest growth dynamics to facilitate scientific management with the ongoing global climate warm-
ing. To explore the altitudinal and slope variations of these interactions, tree-ring width chronologies of Larix olgensis 
A. Henry were analyzed in the southern Lesser Khingan Mountains, Northeast China.

Results:  The radial growth of L. olgensis exhibited significant 5- to 10-year periodic changes at three altitudes and two 
slopes, and the frequency change occurred mainly during the early growth stage and after 2000. The radial growth of 
L. olgensis was significantly negatively correlated with September precipitation only at low altitudes, but also with the 
mean temperature in July–August and the mean maximum temperature in June–August at high altitudes. The radial 
growth of L. olgensis at low and middle altitudes as well as on the sunny slope led to a higher demand for moisture, 
while temperature was the key limiting factor at high altitudes and on the shady slope.

Conclusions:  The climate–radial growth relationship of L. olgensis exhibits altitudinal and slope variability. This study 
quantitatively describes the spatially varying growth–climate responses of L. olgensis in the southern Lesser Khingan 
Mountains, which provides basic data for the management of L. olgensis forests and the prediction of future climate 
impacts on forest ecosystems.
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Introduction
Global warming has observably affected the environment 
(IPCC 2014; NASA 2021) and has changed the structure 
and function of forest ecosystems (Lenoir et  al. 2008; 
Lindner et al. 2010), especially in high latitudes and alti-
tudes in the Northern Hemisphere (Serreze et  al. 2000; 
Andreu et al. 2007; Zhang et al. 2016; Wang et al. 2017). 

Whether there are stable climate–radial growth relation-
ships of specific tree species has become a scientific issue 
of wide concern (Babst et al. 2018). Tree ring represents 
the footprint of tree growth (Ogden 1981; Babst et  al. 
2018; Silva et al. 2019) and is associated with advantages, 
such as high annual resolution, accurate age-dating, and 
wide sample distribution (Douglass 1941; Fritts 1976; 
He et al. 2019; Silva et al. 2019). Tree rings are one of the 
essential means to study climate–growth relationships 
and calculate and predict the variation of forest growth, 
forest biomass, forest stock volume, and forest carbon 
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storage at various time scales (Babst et al. 2014, 2018; He 
et al. 2019; Yu and Liu 2020).

Numerous studies investigating climate–radial growth 
relationships involve dominant tree species in alpine 
mountains, arid areas, and other monsoon climate 
regions (Yu et  al. 2006; Shen et  al. 2016; Babst et  al. 
2018; Panthi et al. 2018; He et al. 2019; Jiao et al. 2019). 
The findings consistently show that the radial growth of 
trees is significantly affected not only by weather-related 
environmental factors, but also by regional physiogno-
mic characteristics, especially altitude and slope  (Yu 
et al. 2013; Zhang et al. 2017; Zhu et al. 2018; Yu and Liu 
2020). Specifically, growth is mainly affected by precipita-
tion at low altitudes and temperature at high altitudes in 
Laobai Mountains, Lesser Khingan Mountains, Chang-
bai Mountains, and Hengduan Mountains (Zhu et  al. 
2018; Sun et al. 2020; Yu and Liu 2020). Temperature was 
the key limiting factor for tree distribution on different 
slopes of Changbai Mountains (Chi et al. 1982; Yu et al. 
2011, 2013; Yu and Liu 2020). However, these key limit-
ing climatic factors of tree growth are not necessarily 
applicable for other tree species at various altitudes and 
slopes in other regions (Yu et al. 2011; Babst et al. 2018; 
He et al. 2019; Li et al. 2020a, b, c; Zhang et al. 2020a, b, 
c). Therefore, extensive studies are needed to investigate 
the spatially varying growth–climate responses of widely 
distributed forests.

Rapid climate warming has been reported in the middle 
to high latitudes and high-elevation mountainous regions 
(Muhlfeld et  al. 2011). The Lesser Khingan Mountains 
are a typical region of climate warming due to its high 
latitude, where the climate–radial growth relationship of 
trees exhibits obvious regional characteristics (Shen et al. 
2015; Lei et al. 2016). Numerous studies focused on the 
mixed broad-leaved Korean pine (Pinus koraiensis Sie-
bold & Zucc.) forest have shown that the tree growth in 
this region is affected by temperature and precipitation, 
especially high temperatures (Yin et  al. 2009; Lei et  al. 
2016; Yu et al. 2017; Li et al. 2020a, b, c). Larix olgensis 
A.  Henry is the main afforestation tree species in the 
region, with a considerable distribution area (Wang et al. 
2011; Yu et  al. 2017; Li et  al. 2020a, b, c). With its sub-
stantial forest stock volume and carbon sequestration 
capacity, this tree species plays a pivotal role in regional 
and even global carbon and nitrogen cycles and sus-
tainable forest management (Wang et al. 2011; Lei et al. 
2016). However, comparatively fewer studies explored 
its climate–radial growth relationships, with inconsist-
ent results (Andreu et al. 2007; Yin et al. 2009; Lin et al. 
2013; Yu et al. 2017; Yu and Liu 2020). Climate warming 
promoted the radial growth of L. olgensis in the Chang-
bai Mountains (Lin et al. 2013). Its radial growth is sig-
nificantly limited by climate change in Iberian, which 

showed an upward abrupt at the end of the first half of 
the twentieth century and a downward shift during the 
mid-twentieth century (Andreu et  al. 2007). Climate 
warming exerted an inhibitory effect on its radial growth 
in other areas of Northeast China (Yu and Liu 2020). 
Therefore, how the radial growth of L. olgensis responds 
to climate change in the Lesser Khingan Mountains, 
Northeast China requires further exploration.

We hypothesized that the climate–radial growth rela-
tionship of L. olgensis is strongly regulated by the local 
climate in our study area. To investigate this hypothesis, 
we developed a widely distributed tree-ring width chro-
nology to analyze the diverse growth–climate relation-
ships over different altitudes and slopes. Our aims were 
(a) to elucidate the periodicity patterns of the radial 
growth of L. olgensis at different altitudes and slopes, 
(b) to detect the growth–climate relationships, and (c) 
to identify and quantify the climatic factors driving 
its radial growth. The findings provide first-hand data 
underlying the dynamic growth of L. olgensis and the pre-
diction of forest growth, biomass, stock volume, and car-
bon storage, which can guide sustainable regional forest 
management.

Materials and methods
Study area
The study area is located in Dongzhelenghe Nature 
Reserve in the southern Lesser Khingan Mountains, 
Northeast China (46° 29ʹ to 47° 06ʹ N, 128° 30ʹ to 129° 24ʹ 
E, 200–970 m, Fig. 1a and b). It has a temperate continen-
tal monsoon climate with warm rainy summers and long 
cold winters. The mean annual temperature recorded for 
the 1966–2018 period at the Yilan Meteorological Station 
(46° 18ʹ N, 129° 35ʹ E, 100.1 m, Fig. 1b) is 3.7 °C, with Jan-
uary being the coldest month (− 22.4 ℃) and July being 
the warmest (27.5 ℃). The mean annual precipitation is 
546.7  mm, approximately 82% of which is deposited in 
the warm season (May–September). Frost occurs often, 
and the frost-free period lasts only 90 to 110 days (end of 
May–beginning of September). Its main forest commu-
nity type is natural Korean pine and broad-leaved mixed 
forest. L. olgensis and P. koraiensis are distributed widely 
as the dominant coniferous tree species.

Sampling and chronology establishment
The sample cores of L. olgensis were collected at five sam-
pling sites in July 2019 (Fig.  1c and Table  1), spanning 
an elevation of 286–600  m. Sampling sites of different 
altitudes were set on a sunny slope, and those of differ-
ent slopes were set at an altitude of approximately 300 m 
(Table 1). All sample trees were visually assessed before 
sampling to ensure that only healthy trees in the upper 
part of the canopy were sampled. To minimize damage to 
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Fig. 1  Location and distribution of the sampling sites in the southern Lesser Khingan Mountains, Northeast China. a Location of the study area; b 
Yilan Meteorological Station; c Distribution of the sampling sites. Sampling sites are abbreviated as LA (Low altitude), MA (Middle altitude), HA (High 
altitude), SUN (Sunny slope), and SHA (Shady slope). Detailed information is available in Table 1

Table 1  Information of sampling sites

Sampling site LA
Low altitude

MA
Middle altitude

HA
High altitude

SUN
Sunny slope

SHA
Shady slope

Latitude (N) 46° 39′ 46.29″ 46° 43′ 17.99″ 46° 43′ 58.09″ 46° 39′ 56.47″ 46° 39′ 37.38″

Longitude (E) 129° 03′ 27.26″ 129° 01′ 29.75″ 128° 59′ 08.36″ 129° 06′ 01.57″ 129° 03′ 39.66″

Elevation (m) 286 461 600 305 302

Slope steepness (°) 12 12 13 16 14

Slope aspect (°) South by east 19 South by east 23 South by east 20 South by east 16 North by east 29

Soil Dark brown soil Dark brown soil Dark brown soil Dark brown soil Dark brown soil

Average DBH (mean ± SE, cm) 22.85 ± 0.66 28.05 ± 0.31 28.66 ± 0.79 24.64 ± 0.69 33.10 ± 0.80

Number of total samples (n) 95 64 63 83 85

Number of samples for chronology (n) 87 60 56 77 65
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the trees, only one core was extracted from each tree at 
diameter at breast height (DBH, 1.3 m above ground). In 
total, 390 cores were extracted.

The collected core samples were taken back to the 
laboratory for subsequent processing. The mounted 
cores were first polished with increasingly finer sandpa-
per from 100 to 1000 girt until the tree-ring boundaries 
were clearly visible. They were then visually cross-dated 
with the skeleton plot method under a Leica-S4E stereo 
microscope with LINTAB™ 6.0. Forty-five cores with 
abnormal ring features were excluded from the analysis, 
such as those with missing rings or indistinct bounda-
ries that made cross-dating difficult (Douglass 1941; Silva 

et  al. 2019). The tree-ring width was measured using a 
LINTAB™ 6.0 measuring system with an accuracy of 
0.01  mm. The quality of measurement and cross-dating 
was checked using the COFECHA program  (Holmes 
1983). To remove the effect of non-climatic factors, tree-
ring width series were detrended and standardized using 
the ARSTAN program  (Cook and Holmes 1986) with a 
67% cubic smoothing spline function at a 50% cutoff fre-
quency. The standard chronologies (STD), the residual 
chronologies (RES), and the autoregressive chronolo-
gies (ARS) in each site were established. Having taken 
all chronological statistical parameters (Fritts 1976) into 
account, we focused on STD (Fig. 2) and RES (Fig. 3) for 

Fig. 2  Tree-ring width standard chronologies (solid black line) with their sample depths (grey-shaded area) along the altitudinal gradient

Fig. 3  Tree-ring width residual chronologies (solid black line) and the sample depths (grey-shaded area) at different slopes
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the following analysis at different altitudes and slopes, 
respectively.

Climate data
As the local meteorological stations were far from our 
sampling sites, the monthly temperature and precipita-
tion of the Climate Research Unit (CRU) TS 4.04 (land) 
gridded dataset from 1966 to 2018 were utilized for 
this study. The Palmer Drought Severity Index (PDSI) 
was used to represent the soil water balance and reflect 
drought conditions in this study (Mika et al. 2005), which 
was downloaded from the self-calibrating PDSI Global 
dataset of the CRU spanning 1966–2017. The above data-
sets were collected from the Royal Netherlands Meteoro-
logical Institute (KNMI) climate explorer (http://​clime​
xp.​knmi.​nl) with a spatial resolution of 0.5° × 0.5°. Con-
sidering the growth characteristics of L. olgensis and the 
possible lagged effects of weather conditions on it, the 
climatic factors from May of the past year to September 
of the current year were selected for subsequent analysis 
(Fig. 4).

Statistical analysis
The Mann–Kendall method (Kendall and Gibbons 1992) 
and wavelet analysis (Addison 2002) were used with 
MATLAB to analyze the trends and phase mutation of 
radial growth and its periodic change patterns on mul-
tiple time scales, respectively. Radial growth–climate 
relationships among different altitudes and slopes were 
determined by response and correlation function analy-
sis with the DendroClim2002 program (Biondi and Wai-
kul 2004). Then, they were further tested by redundancy 
analysis (RDA) with CANOCO 5.0 software (Ter Braak 
and Smilauer 2012). The impact of each climatic factor 
on the radial growth of L. olgensis at different altitudes 
and slopes was quantitatively described by simplified 

regression equations with R software. Figures were drawn 
with Origin 16.0.

Results and discussion
Interannual characteristics of climate change
The mean, mean minimum, and mean maximum annual 
temperature has been rising since 1966 (Fig.  4a–c). The 
mean minimum temperature has risen almost three 
times as much as the mean maximum temperature. The 
precipitation and air relative humidity fluctuated in a 
small range, with the overall trend decreasing first and 
increasing slightly subsequently (Fig. 5d and e). The PDSI 
ranged from − 3.36 to 2.67, much of which was less than 
− 2, and its rate of decrease was 0.024  year−1 (Fig.  5f ). 
The region showed obvious climate warming and drying, 
consistent with the overall climate change in Northeast 
China (Sun et al. 2005; Ye et al. 2019a, b).

With this trend enhanced and its affected areas 
expanded, more extensive and severe droughts will occur 
in the land area in the next 30–90  years (Huang et  al. 
2016; Ye et al. 2019a, b). The adverse effects of drought, 
such as tree mortality and forest degradation, have been 
confirmed by some studies  (Tang et  al. 2015; Jiao et  al. 
2019). Barber et al. (2000) found reduced growth of Alas-
kan white spruce from temperature-induced drought 
stress in most areas of the northern United States. The 
widespread decline and mortality of trees have also been 
confirmed in the shelterbelt forests of northern China in 
recent decades and may become more severe (Li et  al. 
2020a, b, c). At the same time, the spruce–fir–Korean 
pine forest would replace Pinus  sylvestris  var.  sylves-
triformis in the community ecotone of the Changbai 
Mountains under this continuous trend (Yu et al. 2006). 
Similarly, the current regional climate warming and dry-
ing have affected the growth of L. olgensis, which can 
hamper the maintenance of its existing dominant eco-
logical niche.

Fig. 4  Interannual (left) and monthly (right) variations of temperatures (mean, maximum, minimum) and precipitation in Dongzhelenghe Nature 
Reserve from 1966 to 2018

http://climexp.knmi.nl
http://climexp.knmi.nl
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Statistical characteristics of tree‑ring width chronologies
There were no significant differences in growth rate 
among the five chronologies, with a mean growth rate of 
0.9894 mm year−1 (Table 2). The standard deviations and 
correlations between trees ranged from 0.12 to 0.22 and 
0.30 to 0.71, respectively, which showed that the estab-
lished chronologies had high regional consistency and 
could reflect the growth status of L. olgensis at different 
altitudes and slopes. The mean sensitivity varied from 
0.15 to 0.23, and the signal-to-noise rate varied from 4.69 
to 12.14, indicating that all chronologies retained abun-
dant climatic information. The variation in first eigenvec-
tor ranged from 33.5 to 78.1%. The expressed population 

signal ranged from 0.966 to 0.995, which all exceeded a 
threshold of 0.85. The chronology statistics are similar 
to those reported in previous studies for this (Lin et  al. 
2013; Shen et al. 2016; Yu and Liu, 2020) and other spe-
cies (Yin et al. 2009; Yu et al. 2017; Li et al. 2020a, b, c). 
The established chronologies are suitable for climate–
growth analyses.

Periodicity of the tree‑ring width index
The overall change trends of the tree-ring width index of 
L. olgensis were similar at different altitudes and slopes, 
with large fluctuations from 2007 to 2012 (Figs.  2 and 
3). The minimum value of the tree-ring width index was 

Fig. 5  Climatic interannual changing trend in the study area during the period of 1966–2018. a Mean temperature, b mean minimum temperature, 
c mean maximum temperature, d precipitation, e PDSI, and f air relative humidity. The dashed lines are indicative of the significant linear regression 
trends with the equations, p values, and R2 values highlighted

Table 2  Statistics of tree-ring width chronologies and common interval analysis

Statistic characters Standard chronology Residual chronology

Low altitude Middle altitude High altitude Sunny slope Shady slope

Chronology length (year) 29 34 44 27 53

Mean growth rate (mm year−1) 0.9767 0.9771 0.9868 1.0051 1.0012

Common intervals 1992–2018 1987–2018 1979–2017 1992–2018 1969–2017

Mean sensitivity 0.2314 0.1998 0.1918 0.1924 0.1530

Standard deviation 0.2212 0.1989 0.1737 0.1750 0.1202

Correlation between trees 0.707 0.617 0.364 0.540 0.302

First order autocorrelation 0.1614 0.2670 0.1407 -0.0628 -0.1384

Signal-to-noise rate 9.675 9.672 10.864 4.690 12.140

Expressed population signal 0.995 0.989 0.969 0.989 0.966

Variation in first eigenvector (%) 78.1 68.5 41.3 65.6 33.5
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detected at high altitudes and on shady slope in 2007 
and at other altitudes and sunny slope in 2012, while the 
maximum value was found in 2009. The severe autumn 
drought of 2007, the low temperature and heavy summer 
rainfall of 2012, and the  Dendrolimus  superans infesta-
tion in some areas during this time adversely affected 
the growth of L. olgensis (Li et al. 2016; Liang et al. 2018), 
which was reflected in periodic change in its radial 
growth.

A statistically significant decrease or increase in tree-
ring width index was observed in the early growth stage 
and after 2000, despite the absence of precise mutation 
year (Fig.  6). The rapid warming in Northeast China 
after 2000 may have contributed to these results (Zhou 
et  al. 2020). In addition, during the early growth stage, 
the roots of trees grow relatively slowly and exhibit 
poor water use efficiency, making trees more sensi-
tive to hydrothermal conditions, resulting in significant 
fluctuation in radial growth  (Schenk and Jackson 2002; 
Rozas et al. 2009; Brunner et al. 2015). Relevant studies 
also proved that trees in the early growth stage are more 
sensitive to climatic factors, such as Quercus rubra L. in 
the northern USA, Smith fir (Abies forrestii var. smithii 
R.  Vig. & Gaussen) in the northeast Tibetan Plateau, 
black spruce (Picea mariana [Mill.] Britton, Sterns & 
Poggenb.) in the semi-humid climate region of Mani-
toba, and Juniperus thurifera L. in the semi-humid cli-
mate region of north-central Spain (McMillan et al. 2008; 
Rozas et al. 2009; Haavik et al. 2011; Li et al. 2013).

The tree-ring width index of L. olgensis showed signifi-
cant 5- to 10-year periodic variations at various altitudes 
and slopes during different periods. It was 2003–2018, 
2004–2017, and 1996–2018 with the altitude increased 
and 2002–2018 and 2009–2018 on the sunny slope and 
shady slope, respectively (Fig. 7). These may be related to 
large-scale climate change and non-climatic pressures, 
such as global climatic oscillation and land–sea thermal 
differences  (Piraino and Roig 2013; Venegas-González 
et al. 2015; Zhu et al. 2017; Yu et al. 2021). Similar results 
were reported in the Changbai Mountains, Qinling 
Mountains, and Tianshan Mountains, indicating a uni-
versal impact of large-scale climate on tree growth  (Yu 
et al. 2018, 2021; Jiang et al. 2019; Jiao et al. 2019).

Growth–climate relationships
Altitudinal variability of the growth–climate relationships
The radial growth of L. olgensis at various altitudes was 
mainly affected by the climatic factors of the current year 
(Fig. 8). The impact of temperature increased, while pre-
cipitation decreased with increasing altitude (Figs. 8, 9a). 
Similar studies conducted in Northeast China (including 
Changbai Mountains), Qilian Mountains, and Hengduan 
Mountains reported the same conclusions (Zhang et  al. 
2017; Zhu et al. 2018; Sun et al. 2020; Yu and Liu, 2020).

Temperatures and hydrothermal conditions in sum-
mer play a critical role in the radial growth of L. olgensis 
at high altitudes (Fig.  8). Specifically, the radial growth 
was significantly negatively correlated with the current 

Fig. 6  Mann–Kendall mutation test curves of tree-ring width index with forward statistic UF (solid line) and backward statistic UB (dashed line) at 
the 0.05 significance level (dotted horizontal lines). The intersection of the UF and UB curves is located between the critical lines, corresponding to 
the time the mutation begins
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July–August Tmean (r = − 0.359, r = − 0.313) and the 
current June–August Tmax (r = − 0.317, r = − 0.446, 
r = − 0.310) and significantly positively correlated with 
the current July PDSI (r = 0.361) and the current June–
July RH (r = 0.434, r = 0.516). Summer is the peak grow-
ing season of L. olgensis (Wang et al. 2011). Nevertheless, 
excessively high temperatures decrease moisture in the 
atmosphere and soil, adversely affecting its growth by 
disrupting its basic metabolic balance (Will et  al. 2013; 
Zhang et al. 2020a, b, c). Similar studies involving Pinus 
armandii Franch. in Qinling Mountains, Picea abies (L.) 
H.  Karst. in the central part of the Ceskomoravska 
Upland, and four dominant conifer species in western 
Labrador, Canada,  showed that high temperatures in 
summer led to the formation of narrow rings (Nishimura 
and Laroque 2011; Rybnícek et  al. 2012; Wang et  al. 
2016).

The adverse effects of current September precipita-
tion on radial growth were intensified with decreas-
ing altitude, which showed a significant negative 

correlation at low altitudes (r = − 0.484), a slight nega-
tive correlation at middle altitudes (r = − 0.252), and 
no correlation at high altitudes (r = − 0.054) (Figs.  8, 
9a). This is consistent with the results of studies inves-
tigating the radial growth response to climate in major 
conifers on Haba Snow Mountain in Southwest China 
and areas in southern Europe  (Caminero et  al. 2018; 
Zhang et  al. 2020a, b, c). Temperature decreases rap-
idly in September (Fig.  9), and the first snowfall and 
frost will advance if precipitation continues to increase 
at this time, which increases the risk of chilling and 
freezing injury to trees (Horimoto and Araki 1999). At 
the same time, this weather does not facilitate nutri-
ent accumulation and lignification in trees by regu-
lating the activities of soil microorganisms related to 
the emission and absorption of carbon dioxide (CO2) 
and methane (CH4) (Bukata and Kyser 2007; Bhat-
tacharyya et  al. 2013; Wagner et  al. 2016; Praeg et  al. 
2017), which shortens the growing season and prema-
turely terminate their radial growth (Babst et al. 2014). 

Fig. 7  Real part wavelet coefficient contour map of tree-ring width index at a low altitude, b middle altitude, c high altitude, d sunny slope, and e 
shady slope. Y-axis is the scale in year, and X-axis is the time in year
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Nevertheless, the results of this study differ from those 
associated with the radial growth response of L. olgen-
sis to climate in the Changbai Mountains and Picea 
crassifolia Kom. in Qilian Mountains  (Yu and Liu, 
2020; Zhang et  al. 2020a, b, c). The possible reasons 
are as follows: first, the study areas, located in different 
climatic provinces, exhibit distinct climate variation; 
second, regional differences lead to different pheno-
logical characteristics and growth rhythm of trees; and 
third, the differences in the microenvironment of the 
sampling sites may also contribute to these differences.

Slope variability of the growth–climate relationships
The radial growth of L. olgensis was mainly limited by 
temperature on the shady slope but by the moisture con-
ditions of soil and air on the sunny slope (Figs. 8, 9b). Spe-
cifically, on the shady slope, it was significantly negatively 
correlated with the current August Tmean (r = − 0.288), 
the current September Tmin (r = − 0.315), the current 
July–August Tmax (r = − 0.300, r = − 0.370), and the 
current May and previous December RH (r = − 0.343, 
r = − 0.282). It had a significantly positive correla-
tion with the current May Tmax (r = 0.332), the current 

Fig. 8  Response of radial growth of L. olgensis to monthly climatic factors at different altitudes (the upper half ) and slopes (the lower half ). The 
capitalized P means months from the past year and C from the current year. The gradual change of color from blue to red indicates a gradual 
change of correlation from negative to positive. *p < 0.05; **p < 0.01
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July–August RH (r = 0.356, r = 0.394), and the current 
August and previous July–September PDSI (r = 0.274, 
r = 0.279, r = 0.299, r = 0.305). Because of the shorter 
duration and weaker intensity of direct solar radiation on 
the shady slope (Chi et  al. 1982), tree growth increases 
the demand on temperature, particularly at the begin-
ning of and the growing season. Temperature increases in 
May during the start of L. olgensis growth in this region 
(Ogden 1981; Wang et al. 2011; Silva et al. 2019), accel-
erating the metabolic activities of soil microorganisms 
such as methanotrophs (Praeg et  al. 2017) and promot-
ing carbon and nitrogen cycles of the ecosystem (Bukata 
and Kyser 2007; Bhattacharyya et  al. 2013; Babst et  al. 
2014), which contributes to the accumulation of organic 
matter in plants (Wagner et  al. 2016), thus facilitating 
the radial growth of trees. Studies on the growth–climate 
relationships of Larix decidua Mill. in the French Alps, 
Abies georgei Hand.-Mazz. in Haba Snow Mountain, and 
the southern part of the Asian boreal forests in Northeast 
China also corroborated our results (Saulnier et al. 2019; 
Li et al. 2020a, b, c; Zhang et al. 2020a, b, c).

The PDSI in current June had the strongest impact on 
the radial growth of L. olgensis on sunny slope, followed 
by the current March air relative humidity (Figs.  8, 9b). 
The correlation between the two was positive (r = 0.500) 
and negative (r = − 0.386), respectively. The results are 
consistent with those of other relevant studies, in which 
moisture availability was a major limiting factor for pine 
forests in Southwest and Northeast China  (Zhu et  al. 
2018; Bi et al. 2020). In March, the mean temperature is 

still below 0 ℃ in the southern Lesser Khingan Moun-
tains (Fig. 9), when trees are more vulnerable to freezing 
injury under increased air relative humidity (Horimoto 
and Araki, 1999). Further, the high temperature in June–
August leads to high water evaporation; therefore, trees 
on the sunny slope benefit from the increased soil mois-
ture (Kim et al. 2011). Studies on the northern and east-
ern slopes of the Changbai Mountains also established 
the slope variability of the growth–climate relation-
ships (Yu et al. 2011, 2013; Yu and Liu, 2020).

Simulation of growth–climate relationships
No multicollinearity was found among the explana-
tory variables, and the statistical characteristics (R2 and 
p-values) of the established models were generally high 
(Table 3). Temperature had the strongest limiting effect at 
high altitudes, with an explanation rate of 48.95%. Mois-
ture was the main limiting factor for the radial growth 
of L. olgensis at low and middle altitudes, accounting for 
72.71% and 94.92%, respectively. In addition, tempera-
ture had a high limiting effect on the radial growth of L. 
olgensis on the shady slope (with the explanation rate of 
47.60%), while moisture had a high explanation rate of 
76.89% on the sunny slope. The established models fit 
the objective law of the influence of climate factors on 
the radial growth of L. olgensis and prove the altitude and 
slope variability in radial growth–climate relationships.

Differences in radial growth response to climatic fac-
tors cannot be explained merely by geographic location, 
growth characteristics, microenvironment, and spatial 

Fig. 9  Redundancy analysis (RDA) for the chronologies and the monthly climatic factors at different altitudes (a) and slopes (b). Significant (p < 0.05) 
climatic factors are indicated by solid line arrows and named as “the climatic factor-corresponding month” (e.g., the mean temperature in July of the 
current year named as Tmean-C7). Arrow (vector) length and the cosine of the angle between two vectors depict the magnitude of variables and 
their correlation. The longer the vector, the more important the climatic factor. Vectors crossing at sharp angles, obtuse angles, and right angles, 
respectively, indicate a positive correlation, a negative correlation, and a near-zero correlation
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competition. Large-scale climate phenomena, such as 
global climatic oscillation and land–sea thermal differ-
ences, global carbon and nitrogen cycles, and non-cli-
matic pressures also contribute to the differences (Bukata 
and Kyser 2007; Bhattacharyya et  al. 2013; Piraino and 
Roig 2013; Babst et  al. 2014; Venegas-González et  al. 
2015; Zhu et  al. 2017; Yu et  al. 2021). Admittedly, our 
study is only based on L. olgensis in the region and does 
not cover long-term climate change on a large scale. 
Therefore, further studies of climate–radial growth rela-
tionships with a more extensive and intensive sampling 
of multiple species are critically important. These efforts 
will better understand the applicability of current laws 
and provide a theoretical basis for estimating the carbon 
stock and sequestration and management of L. olgensis 
forests, such as afforestation and harvesting.

Conclusions
The radial growth of L. olgensis in the southern Lesser 
Khingan Mountains shows obvious 5- to 10-year perio-
dicity. The temporal instability mainly occurred in the 
early growth stage and after 2000. The growth–climate 
response exhibits distinct altitudinal and slope variability. 
The radial growth of L. olgensis at low altitudes is mainly 
affected by precipitation, but also by temperature, espe-
cially the high temperature in summer at high altitudes. 
Temperature is the key climate limiting factor for the 
distribution of L. olgensis on shady slope. Future climate 
changes will exacerbate the challenges underlying the 
adaptive growth of L. olgensis in this region.
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