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Abstract 

Background:  Non-native wild pigs (Sus scrofa) threaten sensitive flora and fauna, cost billions of dollars in economic 
damage, and pose a significant human–wildlife conflict risk. Despite growing interest in wild pig research, basic life 
history information is often lacking throughout their introduced range and particularly in tropical environments. Simi-
lar to other large terrestrial mammals, pigs possess the ability to shift their range based on local climatic conditions 
or resource availability, further complicating management decisions. The objectives of this study were to (i) model 
the distribution and abundance of wild pigs across two seasons within a single calendar year; (ii) determine the most 
important environmental variables driving changes in pig distribution and abundance; and (iii) highlight key differ-
ences between seasonal models and their potential management implications. These study objectives were achieved 
using zero-inflated models constructed from abundance data obtained from extensive field surveys and remotely 
sensed environmental variables.

Results:  Our models demonstrate a considerable change in distribution and abundance of wild pigs throughout 
a single calendar year. Rainfall and vegetation height were among the most influential variables for pig distribution 
during the spring, and distance to adjacent forest and vegetation density were among the most significant for the fall. 
Further, our seasonal models show that areas of high conservation value may be more vulnerable to threats from wild 
pigs at certain times throughout the year, which was not captured by more traditional modeling approaches using 
aggregated data.

Conclusions:  Our results suggest that (i) wild pigs can considerably shift their range throughout the calendar year, 
even in tropical environments; (ii) pigs prefer dense forested areas in the presence of either hunting pressure or an 
abundance of frugivorous plants, but may shift to adjacent areas in the absence of either of these conditions; and 
(iii) seasonal models provide valuable biological information that would otherwise be missed by common modeling 
approaches that use aggregated data over many years. These findings highlight the importance of considering 
biologically relevant time scales that provide key information to better inform management strategies, particularly for 
species whose ranges include both temperate and tropical environments and thrive in both large continental and 
small island ecosystems.
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Background
Native to Eurasia, wild pigs (Sus scrofa) have been iden-
tified as one of the most prolific large mammals on the 
planet due to their domestication around 9000 years ago 
(Larson et  al. 2005) and subsequent human-facilitated 
introductions to novel ecosystems for food provisioning 
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and livestock (Barrios-Garcia and Ballari 2012). As a 
result, wild pigs have established populations on six out 
of the seven continents and have been documented in a 
multitude of climates ranging from the tropics of Oce-
ania and the Caribbean to the more temperate regions 
of Scandinavia and Canada (IUCN 2021). Recently, 
wild pig populations appear to be increasing through-
out their native and introduced ranges and are begin-
ning to recolonize areas throughout Europe that have 
been devoid of wild pigs for centuries (Saito et al. 2012; 
Massei et al. 2015). Similarly, over the past few decades 
regions throughout North America are experiencing 
increasing populations. Invasive wild pig populations 
have expanded northward from their introduction in 
the southern United States to states as far north as New 
Hampshire and Michigan and the Saskatchewan and 
Manitoba provinces of Canada (Brook and Beest 2014; 
Bevins et al. 2014; McClure et al. 2015; Snow et al. 2017).

The expansion of wild pig ranges and increasing pop-
ulations have had an influence on the extent of both 
human–wildlife conflicts and the threats wild pigs pose 
to resident flora and fauna (Barrios-Garcia and Ballari 
2012). Among the most problematic conflicts between 
humans and wild pigs are their ability to damage agri-
cultural crops, collisions with vehicles, and capacity to 
transmit disease (Barrios-Garcia and Ballari 2012; Bevins 
et  al. 2014; Keiter and Beasley 2017). Although data on 
the economic impacts and damage to agricultural crops 
are limited, the economic losses are substantial, varying 
from $190 million a year in crop losses across 11 U.S. 
States (Anderson et al. 2016), $61 million a year in dam-
ages in just the state of Georgia, U.S.A. (Mengak 2012), 
$10,146 per landowner in the state of Texas, United 
States (Adams et al. 2005), and $100 million per year in 
Australia (Choquenot et al. 1996). Based on limited data, 
Pimental (2007) estimated that wild pigs cost the United 
States $1.5 billion annually as a result of damages caused 
by wild pigs and the costs to control these wild popula-
tions. Their ability to carry and transmit pathogens also 
poses a considerable and yet vastly understudied threat 
to humans, livestock, and resident flora and fauna (Bev-
ins et al. 2014; Perroy et al. 2021).

Aside from human–wildlife conflicts, wild pigs are 
among one of the most damaging species to natu-
ral areas and the flora and fauna that reside there. 
Recently, wild pigs were identified as threatening 672 
species globally and were implicated in the declines 
of 414 species of conservation concern, including 14 
extinction events (Risch et al. 2021). Threats from wild 
pigs are indiscriminate, threatening a wide variety of 
species through direct predation, habitat disturbance, 
disease transmission, competition with other species, 
and hybridization with other species in the Suidae 

family (Risch et  al. 2021). These threats are persistent 
throughout their introduced and native ranges and 
anticipated to increase (McClure et al. 2018). A recent 
study by O’Bryan et  al. (2021) also suggests wild pigs 
play a role in contributing to climate change through 
the release of CO2 stored in soil. Thus, management of 
wild pigs is a global issue, impacting multiple sectors as 
diverse as agriculture, wildlife conservation, forestry, 
and private landowners.

In spite of this growing interest in increasing wild pig 
populations and their subsequent impacts, there remain 
large gaps in our understanding of their basic biologi-
cal requirements and ecological interactions (Beasley 
et al. 2018). In particular, data on the spatial and tempo-
ral ecology of pigs across the diversity of habitats they 
occupy are sparse, and most efforts have taken place at 
large spatial scales that might not be useful for develop-
ing regional or site-specific management strategies for 
agencies on the ground (Beasley et  al. 2018). For local 
management strategies to be effective, managers must 
have an adequate understanding of both the distribution 
and abundance of the target species (Yañez-Arenas et al. 
2012; Ureña-Aranda et  al. 2015). Understanding these 
two components of an invasive species allows for the 
subsequent prioritization of targeted control efforts (e.g., 
aerial shooting, exclusion fencing, Judas pig method) 
ultimately minimizing control costs and increasing 
the effectiveness of control efforts (Beasley et  al. 2018). 
Furthermore, an understanding of the distribution and 
abundance of wild pig populations in relation to environ-
mental conditions may shed light on the potential for pig 
populations to expand into favorable surrounding areas 
(McClure et al. 2015, 2018; Snow et al. 2017). Most stud-
ies have taken place within the continental United States, 
Europe, or Australia (Hone 2002; Mitchell et  al. 2007; 
Morelle and Lejeune 2015; McClure et  al. 2015; Lewis 
et al. 2017; Froese et al. 2017; Amendolia et al. 2019) and 
few studies have addressed these issues in island environ-
ments (Risch et al. 2020).

Species distribution models are an increasingly rec-
ognized tool to address spatial and temporal challenges 
in managing both species of conservation concern and 
invasive or pest species (Guisan et al. 2013; Tulloch et al. 
2015). Distribution models allow individuals to quantify a 
correlation between the presence or abundance of a spe-
cies and its surrounding environment. Using these cor-
relations researchers are then able to predict likelihood 
of presence or relative abundance to areas outside of the 
sampled locations. These approaches have been widely 
used in the past several decades to great success in iden-
tifying previously undiscovered populations of threat-
ened species (Raxworthy et  al. 2003; Bourg et  al. 2005), 
controlling problematic species (Aragón et al. 2010), and 
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quantifying the likelihood of invasion of non-native spe-
cies (Barbet-Massin et al. 2018).

To date, the application of distribution models to help 
manage wild pig populations has been limited. There 
have been several large-scale modeling attempts that 
identified distribution and abundance of wild pigs at the 
country or global scale (McClure et al. 2015, 2018; Snow 
et al. 2017; Lewis et al. 2017) and these efforts have shed 
light on critical issues regarding current wild pig popu-
lations, their potential for expansion, and species at-risk. 
However, due to their large-scale (country, continent, or 
global), the coarse resolution of these outputs, they may 
not be useful to decision-making for smaller municipali-
ties or regions.

Furthermore, these large-scale efforts often use an 
accumulation of data acquired from numerous survey-
ing efforts over long time scales, compressed into models 
that do not account for temporal nuances. Using Max-
ent, a presence-only based modeling approach, Morelle 
and Lejeune (2015) and Amendolia et  al. (2019) iden-
tified changes in seasonality of wild pig occupancy at 
relatively fine scales (regional or natural reserve) in Bel-
gium and Italy, respectively. Their approach shows the 
potential for modeling changes in the distribution of 
wild pigs throughout time, to better inform management 
decisions. Similarly, Risch et  al. (2020) used established 
methods of monitoring wild pigs to estimate a relative 
abundance metric and model the distribution of wild pigs 
across a large Hawaiian island. Metrics of relative abun-
dance are important from a decision-making perspec-
tive as it allows managers to prioritize areas based on the 
expected abundance of animals, in contrast to Maxent 
type approaches (e.g., presence-only, presence–absence) 
that provide information on the likelihood of occupancy. 
However, to our knowledge, the temporal principles 
applied in the Morelle and Lejeune (2015) and Amendo-
lia et  al. (2019) studies have not yet been applied to an 
abundance modeling approach for wild pigs.

Here, we aimed to incorporate the principles applied 
in Morelle and Lejeune (2015) and Amendolia et  al. 
(2019), principally the inclusion of biologically relevant 
time intervals, and apply them to the relative abundance 
modeling framework established by Risch et  al. (2020). 
In this study, we used data of wild pigs captured by cam-
era traps across two seasons (spring and fall) to quantify 
their relative abundance and subsequently model and 
compare seasonal distribution trends. We aimed to iden-
tify differences in the seasonal distribution of wild pigs 
and the underlying environmental conditions driving 
those changes, to elucidate the potential utility of mod-
eling relative abundance of wild pigs at finer resolutions 
across relevant temporal gradients and their resulting 
applications to game and wildlife management. A better 

understanding of the processes driving the distribution 
and abundance of wild pigs throughout space and time 
are essential to mitigate the impacts of wild pigs on sen-
sitive flora and fauna and to minimize human–wildlife 
conflict.

Methods
Study area
The island of Maui is the second largest Hawaiian Island 
and has a land area of 1883  km2 (Fig. 1). There are two 
main mountain ranges, the West Maui mountains 
with elevations up to 1764  m and East Maui moun-
tains (Haleakalā) with elevations up to 3055 m. The East 
Maui mountains were created through volcanic activ-
ity that began around 840,000  years ago and remained 
active until as recently as 1790 (Sinton 1979). East Maui 
is a shield volcano characterized by its gradual sprawl-
ing slopes due to limited exposure to erosion in geologic 
time. The West Maui mountains were created through 
several volcanic series that began at least 1.2 million 
years ago and subsided around 500,000  years ago (Sin-
ton 1979). In contrast to East Maui, West Maui has been 
exposed to erosive weathering for nearly 400,000  years 
longer, resulting in steep topography that is generally 
inaccessible by foot. Long-term mean annual rainfall 
varies greatly across the island from 250  mm to over 
10,000 mm (Giambelluca et al. 2012). The north-eastern 
face of Haleakalā receives the greatest amount of rain-
fall due to the predominant northeasterly trade winds. 
Coastal and low elevation areas are generally dominated 
by developed or agricultural lands. Large swaths of areas 
classified as agriculture are in fact fallow sugar cane 
fields as a result of the demise of the sugar cane indus-
try in the late twentieth century and eventual closure in 
2016. Mid-elevations generally comprise either mixed 
(native and non-native) forest or shrublands while much 
of the forested northern slopes of Haleakala remain rela-
tively intact (native plant-dominated). Sub-alpine areas 
on Haleakalā are dominated by native shrublands and 
serve as some of the last remaining habitat for a num-
ber of threatened and endangered species (United States 
Fish and Wildlife Service 2016). There are three other 
wild ungulate species present on Maui, including Axis 
deer (Axis axis), feral goats (Capra hircus), and feral cat-
tle (Bos taurus), all of which are non-native. Axis deer are 
widely abundant throughout mid to low elevation shrub-
lands and agricultural lands while feral goats dominate 
arid sparsely vegetated areas from coastal to sub-alpine 
areas. The presence of feral cattle is typically site-spe-
cific, resulting from escaped or illegally released animals. 
There are no natural predators of wild ungulates, but wild 
dog populations have been known to cull some animals 
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and there is an active hunting community (Luat-Hū‘eu 
et al. 2021; Luat-Hūʻeu 2020).

Species abundance data
The relative abundance of wild pigs was calculated from 
data obtained from two seasons of intensive camera trap-
ping effort in 2018 across the island of Maui, Hawaiʻi 
per the methods described by Risch et al. (2020). Survey 
locations for each season were separately selected using 
a stratified random sampling design. An equal num-
ber (n = 15) of survey locations were randomly selected 
across each of three altitudinal bands (0–999  m, 1000–
1999  m, and 2000–3055  m) for each season resulting 
in 45 potential survey locations each for spring and fall 
of 2018. Survey locations were a minimum distance of 
500 m from one another to ensure spatial independence. 
This minimum distance was chosen as it was determined 

to be a reasonable estimate of pig home range size in 
Hawaiʻi (Salbosa and Lepczyk 2009), while also retaining 
a relatively fine spatial resolution. At each survey loca-
tion, six game cameras (Bushnell Trophy Cams, Bushnell, 
Overland Park, KS) were distributed at 50-m intervals to 
maximize the detection probability of capturing wild pigs 
within the area. Six cameras were chosen as our previ-
ous efforts indicated this number of cameras was likely 
a conservative estimate to appropriately capture site-
level variation of wild pigs (Ringma et al. 2017). Cameras 
were deployed at waist height on surrounding vegeta-
tion or on poles in the absence of vegetation. Cameras 
were deployed in a similar manner (angle, depth of view, 
height) across all survey locations to ensure detection 
probability remained constant. In cases where randomly 
selected survey locations could not be safely accessed, the 
site was moved to the closest analogous location within 

Fig. 1  Location of the study area on the island of Maui, Hawaiʻi. Location of spring survey locations are shown by circles (n = 30) and location of fall 
survey locations are shown by triangles (n = 31). Red-hatched hunting units are closed for pig hunting from February through June
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500 m or else was excluded from the study. Camera traps 
were deployed in either the spring (March–May) or fall 
(October–December) of 2018 and a total of 30 and 31 
locations (total = 61 unique locations) were surveyed 
for each season, respectively. Camera trap data are com-
monly used to calculate a relative abundance index (RAI) 
for the target species, typically calculated as the num-
ber of observations per camera trap days (O’Brien et al. 
2003; Palmer et al. 2018). As the number of camera trap 
days was standardized (2 weeks) across all survey loca-
tions for this study, we calculated the relative abundance 
of wild pigs at each site by averaging the total number of 
camera captured observations by the number of cam-
eras deployed at each survey location. The resulting RAI, 
hereafter referred to as ‘abundance data’, was used as the 
response variable in the modeling process.

To address differences in the distribution and relative 
abundance of wild pigs throughout the survey period, 
we partitioned the dataset into three biologically rel-
evant time intervals (spring, fall, combined). The spring 
(March–May) and fall (October–December) represent 
unique differences in the availability of food types (i.e., 
fruiting period), temperature, rainfall, and hunting pres-
sure (open vs. closed). Many of the most common fruits 
(Psidium cattleianum, Passiflora tarminiana) in Hawaiʻi 
typically exhibit peak fruiting from December to April, 
coinciding with the data collected during the spring. 
These fruits are a common food source for wild pigs and 
are thought to play a role in driving range shifts through-
out the year (Diong 1982; Wehr et al. 2018). Similarly, the 
months during the fall survey period are typically char-
acterized by wetter conditions compared with the spring 
survey period. Hunting pressure also varied seasonally 
with certain hunting units being closed to game mammal 
hunting during the fall survey period (Fig.  1). We also 
chose to include the combined dataset of both seasons 
(henceforth referred to as ‘combined’) for comparison, as 
a vast majority of SDM studies use aggregated datasets 
across biologically relevant time intervals (e.g., seasons) 
or over multiple years. Using the combined dataset, we 
wanted to address how the predicted distribution from 
that dataset might differ from the seasonal models. Each 
of these partitioned datasets (spring, fall, combined) were 
used to construct separate distribution models of pig rel-
ative abundance.

Environmental and climate data
Environmental and climate data used in the modeling 
process were chosen based on the expected ecological 
requirements of wild pigs and the influence of anthro-
pogenic features (Risch et  al. 2020). In total, eight envi-
ronmental features were used to create sets of covariates 
(hereafter referred to as “covariate sets”) that individual 

species distribution models were constructed from 
(Wenger and Freeman 2008). These environmental fea-
tures were vegetation density, vegetation height, mean 
annual rainfall, elevation, native vegetative cover, distance 
to ungulate exclusion fences, distance to hiking trails, and 
distance to forest. We used data obtained from the State 
of Hawaiʻi’s Office of Planning, United States Geological 
Survey (USGS) Gap Analysis Project (Gergely and McK-
errow 2013), the Rainfall Atlas of Hawaiʻi (Giambelluca 
et  al. 2012), and other layers (ungulate exclusion fences 
and hiking trails) provided by the Hawaiʻi Department of 
Land and Natural Resource (DLNR) Division of Forestry 
and Wildlife (DOFAW).

Distance and density-related variables (native cover, 
distance to ungulate exclusion fences, distance to hik-
ing trails, and distance to forest) were manually gener-
ated from existing base features: USGS GAP Land Cover 
(30 m × 30 m), ungulate exclusion fence polygon (DLNR), 
and Nā Ala Hele trail system (DLNR). To generate dis-
tance-related covariates, base features were rasterized 
from their original resolution to 500 × 500 m and resam-
pled using the method “majority” (Morelle and Lejeune 
2015). All spatial layers used in the analysis were stand-
ardized at 500 × 500 m resolution as this was determined 
to be a reasonable estimate of the mean home range size 
for feral pigs in Hawaiʻi and would allow each survey 
location to be spatially independent (Salbosa and Lep-
czyk 2009; Risch et  al. 2020). Distance-related variables 
were then created from these layers using the Euclidean 
distance tool in ArcGIS Pro (Version 2.7.0 Redlands, CA: 
Environmental Systems Research Institute, Inc. 2021). 
The distance to forest predictor layer was generated using 
only mesic and wet forests as the base layer (USGS GAP 
Land Cover) was unreliable in distinguishing between 
dry forests and sparse dry shrubland. A density-related 
variable (native cover) was created by masking USGS 
GAP Land Cover data to any vegetative cover classified 
as “native” and resampling the base feature (30 × 30  m) 
to 500 × 500 m using the method “bilinear” in the raster 
package to calculate a density-related output (Hijmans 
et al. 2017).

The vegetation height layer obtained from USGS GAP 
inadequately classified buildings in urban areas as tall 
vegetation, which required reclassifying values associated 
with urban areas to 0 using the raster package in R (Hij-
mans et  al. 2017). Collinearity between predictors was 
considered using pairwise Pearson coefficients and any 
predictors with relation > 0.75 were removed from the 
modeling process (Elith et al. 2010; Dormann et al. 2013).

Species distribution modeling
Species distribution models for each partitioned data-
set (spring, fall, combined) were constructed using the 
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abundance data described above as the response vari-
able and different configurations of the environmental 
covariates (referred to as “covariate sets”) as predictors 
in a stepwise model fitting process (Wenger and Free-
man 2008; Risch et  al. 2020). During this process, data 
were fitted to several types of regressive models with 
varying distributions to address model overfitting and 
issues associated with over- or under-dispersion (Hoef 
and Boveng 2007; Risch et  al. 2020). Dispersion can be 
defined as more variance than might be expected based 
on mean–variance scaling and is often present in count 
data due to the inherent heterogeneity of biological 
data (e.g., detection probability) (White and Bennetts 
1996). It is imperative to test for this additional vari-
ance as it can bias the mean values and standard errors 
of parameter estimates (Hilbe 2011). To account for dis-
persion, different types of models can be fitted, in this 
case a generalized linear model (GLM) or a zero-inflated 
model. Additionally, these models can be fitted to differ-
ent distribution types (Poisson or negative binomial) or 
additional environmental covariates can be included to 
explain the unexpected variance. Camera data were fit-
ted to Poisson and negative binomially distributed GLMs 
(Poisson or NB) from the stats and MASS packages (Ven-
ables and Ripley 2002) in R (R Core Team 2019) and zero-
inflated mixture models (ZIP or ZINB) with the same 
distributions from the pscl package (Zeileis et  al. 2008) 
to account for issues of over or under-dispersion (White 
and Bennetts 1996; Martin et al. 2005; Wenger and Free-
man 2008; Sileshi et  al. 2009; Oppel et  al. 2012; Dénes 
et al. 2015; Lyashevska et al. 2016). Zero-inflated models 
were included in the modeling process as they provide 
a means of partitioning the model into two parts (zero-
component and count-component) which help explain 
dispersion caused by false-negative counts and imperfect 
detection (Martin et al. 2005).

Covariate sets were constructed based on a priori 
hypothesis of response–covariate relationship (Wenger 
and Freeman 2008). Given the number of survey loca-
tions, each covariate set included a maximum of three 
covariates used to build each respective model (see 
Table 1 for a sample of the best-fit covariate sets). Up to 
two additional covariates were included for the zero com-
ponent when the data were fitted to zero-inflated mod-
els. Each covariate set was fitted to models of increasing 
complexity (Poisson, NB, ZIP, ZINB) until dispersion was 
appropriately accounted for and model overfitting was 
not present (Risch et al. 2020). Predicted model outputs 
were visually assessed for any indication of predictor 
overfitting (Elith et  al. 2010). Covariate sets were con-
structed to consider first and second order relationships 
of each covariate used in model building and to explore 
interactions between covariates. The same covariate sets 

were used to identify best-fit models for the spring, fall, 
and combined data (Table 1). Best-fit models were chosen 
based on Akaike Information Criteria (AIC) and the ratio 
of the sum of the squared Pearson’s residuals henceforth 
referred to as the dispersion parameter (Anderson et al. 
1994; Zuur et al. 2009; Cox 2018). The dispersion param-
eter ( ϕ ) is calculated using Eq.  1 where ϕ values equal 
to one indicate no dispersion and values greater or less 
than one indicate over- and under-dispersion, respec-
tively (Zuur et al. 2009, p. 226). Models with a dispersion 
parameter exceeding 1.5 were considered over-dispersed 
and those with much less than 1.0 were considered 
under-dispersed (Zuur et  al. 2009). These models were 
either corrected for dispersion by fitting a different distri-
bution (Poisson or negative binomial), model type (GLM 
or zero-inflated) or else not considered for selection as 
best-fit models. Best-fit models were then used to predict 
wild pig abundance at an island-wide scale. Model out-
puts were predicted across the entirety of Maui despite 
some areas being fenced and ungulate-free:

Seasonal differences in distribution and abundance
To identify differences in model outputs across each of 
the best-fit temporally scaled models, we compared the 
predicted abundances from each best-fit model (spring, 
fall, and combined). In doing so, we wanted to identify 
the direction and magnitude of change in predictions 
from each of the models. First, assuming a stable wild pig 
population, we standardized each of the three model out-
puts on a scale of 0 to 1 by dividing each of the model 
outputs by their respective max values using the “raster” 
package in R software. We then separately stacked each 
of the seasonal models with the combined model to iden-
tify all areas where there was either an increase, decrease, 
or no change in relative abundance in comparison to the 

(1)ϕ =

n
i ε

2

i

n− p
.

Table 1  A sub-sample of the larger covariate sets including the 
best-fit covariate sets for spring, fall, and combined observations

The zero-component terms, for covariate sets that had them, were excluded 
from GLMs and instead only the count-component terms were used due to 
the inability to separately model the count and zero processes using GLMs. 
*indicates the inclusion of an interaction between model covariates 

Covariates

Covariate set Count component Zero component

A Native cover*vegetation density NA

B Vegetation height, elevation Vegetation height

C Annual rainfall, vegetation height Vegetation height

D Vegetation density, distance to forest Vegetation height
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combined model or the opposing seasonal model. Fur-
ther, to identify differences in abundance across land-
cover types for each model, we aggregated the abundance 
estimates by landcover type and tested for significance 
using the Kruskal–Wallis test (Kruskal and Wallis 1952). 
This process was repeated for all pig abundance estimates 
that fell within areas with seasonal hunting closures 
(Fig. 1) to identify differences in landcover use with vary-
ing hunting pressure.

Results
Model outputs
Across all temporal models, estimates of relative abun-
dance for wild pigs varied throughout the entirety of their 
range. We found that annual rainfall, vegetation height, 
vegetation density, elevation, and distance to forest were 
all significant covariates in predicting wild pig abun-
dances at different times throughout the year (Fig.  2). 
Annual rainfall and vegetation height were found to be 
the best predictors of wild pig abundance for the spring 
model while elevation and vegetation height were the 
best predictors of wild pig abundance for the combined 
model (Fig.  2). Annual rainfall had a significant nega-
tive model coefficient for the spring model, indicating a 
decrease in pig abundance with increasing amounts of 
rainfall (Fig. 2). In contrast, vegetation height had a sig-
nificant positive model coefficient for both the spring and 
combined model, indicating an increase in pig abundance 
with increasing vegetation height (Fig.  2). Vegetation 
height was also found to be a significant predictor for the 
zero-component of the spring model and a non-signifi-
cant predictor for the zero-component of the combined 
and fall models. Vegetation height had a negative model 
coefficient for the zero-component of all models indicat-
ing that with increasing vegetation height the probability 
of false zeroes decreased.

Aside from the influence of vegetation height on false 
zeroes, none of the environmental covariates that were 
significant predictors for the abundance of pigs in the 
spring and combined model performed well for the fall 
model. Instead, vegetation density and distance to forest 
were found to be the most significant covariates in pre-
dicting pig abundances for the fall model. Both vegetation 
density and distance to forest had significant negative 
model coefficients indicating a decrease in pig abun-
dance with increasing vegetation density and distance to 
forest. Although vegetation height was not found to be 

significant for predicting the probability of false zeroes, 
it was included in the fall model as AIC and dispersion 
values indicated better fit with its inclusion.

Models were constructed based on a priori under-
standing of the ecological requirements of wild pigs and 
AIC and dispersion values show that our chosen mod-
els performed well (Table 2). Based on AIC, GLMs with 
negative binomial distribution (GLMNB) performed 
marginally better than negative binomially distributed 
zero-inflated (ZINB) models (Table  2). However, the 
ZINB models tended to result in lower, more acceptable 
dispersion values and upon visual inspection of model 
outputs the ZINB models had less overfitting issues to 
environmental covariates. Both GLMs and zero-inflated 
models with Poisson distributions performed poorly 
when compared to GLMNBs and ZINBs. For the spring, 
the ZINB model with covariate set C was chosen due 
to its acceptable dispersion value and overfitting issues 
exhibited by the four models with lower AIC values. For 
the fall, the ZINB model with covariate set D was chosen 
despite marginally higher AIC as the visual inspection 
revealed the ZINB model to produce more acceptable 
model outputs with no signs of overfitting. Similarly, the 
ZINB model with covariate set B was chosen over the 
GLMNB for the combined dataset as the ZINB model 
resulted in a dispersion value closer to 1.

Seasonal differences in distribution and abundance
Differences between seasonal models and seasonal to 
combined models show temporal shifts in both distri-
bution and abundance of pigs across the island of Maui 
throughout the year (Figs. 2, 3, 4 and 5). Differences from 
spring to fall show widespread decreases in pig abun-
dance across large portions of the island with high eleva-
tion areas dominated by shrublands showing increases 
in pig abundance in the fall (Figs. 2, 3 and 4). The same 
is evident between the spring and the combined model 
with more noticeable decreases in predicted pig abun-
dances in lower elevation areas and increases in abun-
dance in higher elevation areas (Fig.  3). However, when 
comparing the fall to the combined model the differences 
are more marginal. We see only slight decreases in pig 
abundance throughout the lower elevation areas when 
comparing the fall model to the combined model and 
these differences are more likely a result of variance in 
the model predictions (Figs. 3 and 4). Many areas appear 
to show no change in predicted abundances between the 

(See figure on next page.)
Fig. 2  Best-fit distribution models for each dataset (spring, fall, and combined) and their corresponding response curves for the set of covariates 
used to build each best-fit model. The two top-most response curves for each model represent the count (i.e., abundance) component of the 
zero-inflated model. The bottom-most response curve for each model is the probability of false zeroes as predicted by the environmental covariate 
used in the zero-component of the model. Estimates, standard errors (SE), and the p-values for each covariate used in the best-fit model are 
displayed on the response curve plots. All black dots represent a single abundance estimate for each 500 × 500 m cell
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Fig. 2  (See legend on previous page.)
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fall and combined model; however, changes in predicted 
pig abundances at high elevation areas are more nuanced 
between these two models, particularly on east Maui. The 
abundance of wild pigs significantly differed by landcover 
type across the seasonal model outputs (Fig. 4). Wild pigs 
were significantly more abundant in forested areas in the 
spring compared to the fall and significantly less abun-
dant in shrublands (Fig. 4). Similarly, wild pigs were sig-
nificantly more abundant in forested areas when hunting 
was open in the spring (Fig. 5). However, when hunting 
was closed in these same units, wild pigs were predicted 
to be significantly less abundant in forested areas and sig-
nificantly more abundant in both shrublands and grass-
lands (Fig.  5). Generally, pigs appear to utilize unique 
core areas at different times throughout the year and shift 
from one core area to another depending on season.

Discussion
By identifying differences in wild pig distribution and 
abundance between seasons, our study highlights the 
importance of separately modeling a species distribu-
tion over biologically relevant time intervals (Schurr 
et al. 2012; Schliep et al. 2018). Best-fit models for spring 
and fall show a change in abundance and distribution of 
wild pigs between seasons, indicating a potential shift 
in habitat-use or resource selection from predominantly 
forested areas in the spring to more open cover types 

Table 2  Results of the top five best-fit models for spring, fall, and 
combined data. A breakdown of covariate set configurations can 
be found in Table 1

ZINB zero-inflated negative binomial distribution, ZIP zero-inflated Poisson 
distribution, NB generalized linear model (GLM) negative binomial distribution, 
Poisson = generalized linear model (GLM) Poisson distribution. *indicate best-fit 
models chosen for each dataset

Data Model Covariate set AIC Δ AIC φ

Spring ZINB B 196 0 1.00

Spring GLMNB D 196 0 0.77

Spring GLMNB B 198 2 0.89

Spring ZINB D 199 3 0.83

Spring* ZINB* C* 203* 7* 1.08*

Fall GLMNB D 240 0 1.24

Fall* ZINB* D* 241* 1* 1.24*

Fall GLMNB B 244 4 1.24

Fall GLMNB C 246 6 0.71

Fall ZINB A 247 7 0.90

Combined GLMNB B 446 0 1.29

Combined GLMNB D 448 2 1.44

Combined* ZINB* B* 448* 2* 1.25*

Combined ZINB D 452 6 1.39

Combined GLMNB A 452 6 0.78

Fig. 3  Differences in relative abundance of wild pigs on Maui between the spring and fall model (a), spring and combined model (b), and fall and 
combined model (c)
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(e.g., shrublands) in the fall. The spring and combined 
models identify amount of rainfall, height of vegetation, 
and elevation as predictors for the abundance of wild 
pigs. Spring and combined model results suggest that 
pigs are largely abundant throughout forested areas with 
tall mature trees, often comprising non-native species 
introduced from continental systems such as Cook pine 
(Araucaria columnaris), Sugi pine (Cryptomeria japon-
ica), numerous eucalyptus (Eucalyptus spp.), and Albizia 
(Falcataria moluccana). These results are consistent with 
both continental and island studies that found forested 
habitats were commonly selected by wild pigs (Bratton 
1975; Giffin 1978; Fonseca 2007; Rodrigues et  al. 2016). 
Previous studies suggest that these areas may offer pro-
tection from human disturbance, provide thermal refuge 
from both hot and cold climates, and contain abundant 
sources of food (Merli and Meriggi 2006; Thurfjell et al. 
2009).

All state-managed hunting units were open for both 
game mammal and game bird hunting during the spring 

survey period, while several units were closed for game 
mammal hunting during the fall survey period. Recrea-
tional activities and hunting pressure have been shown 
to have a significant impact on ungulate behavior, selec-
tively shifting their home ranges to areas with increas-
ing cover to avoid detection (Mysterud and Østbye 
1999; Merli and Meriggi 2006; Stankowich 2008). While 
there are no natural predators of wild pigs in the Hawai-
ian Islands, the hunting of wild pigs is a common rec-
reational activity (Duffy and Lepczyk 2021; Luat-Hūʻeu 
2020). While hunting was open in seasonal units, pigs 
were significantly more abundant in forested areas that 
presumably provided cover and protection from human 
disturbance (Merli et al. 2017). Conversely, when hunting 
was closed in these same areas in the fall, pigs were sig-
nificantly more abundant in areas characterized by open 
cover (shrublands and grasslands) and significantly less 
abundant in forested areas, indicating behavioral changes 
as a direct result of hunting pressure.

Fig. 4  Relative abundance estimates of wild pigs from model outputs (spring, fall, and combined) across landcover types. Blue brackets represent 
the comparisons being made using the Kruskal–Wallis test. Asterisks imply significance and NS means no significant difference (p > 0.05)
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The spring survey period coincided with the latter 
half of the fruiting season for many plant species com-
monly consumed by wild pigs. Common guava (Psidium 
guajava), strawberry guava (Psidium cattleyanum), and 
banana poka (Passiflora tarminiana), all of which are 
introduced pest species, are widely abundant through-
out low-to-mid elevation forested areas in the Hawaiian 
Islands and exhibit peak fruiting from around Decem-
ber to April (Giffin 1978; Stone et al. 1992). While peer-
reviewed research on the relationship between these 
fruiting species and the distribution of wild pigs is lim-
ited, both hunter interviews (Luat-Hūʻeu 2020) and 
previous dietary analysis (Diong 1982) suggest pigs are 
drawn to fruiting areas in Hawaiʻi. Our results presented 
here provide further empirical evidence that fruiting may 
drive seasonal patterns in the distribution of wild pigs.

Further, our results suggest that during the spring 
period and in areas of higher hunting pressure through-
out the year, forested areas with tall mature trees play a 
crucial role in supporting abundant populations of wild 
pigs in tropical and sub-tropical environments as they 
offer refuge from human disturbance and abundant 
sources of food. The fall model underscored the impor-
tance of vegetation density, distance to forest, and height 
of vegetation as predictors for abundance of wild pigs. 
Although pigs were found to be most abundant in areas 

with moderate to low vegetation density in the fall, the 
distance to surrounding forests was a significant envi-
ronmental covariate, with higher abundance closer to 
forests, suggesting pigs were still utilizing these habitats 
as a source of refuge (Fig. 2). Our fall model results indi-
cate a severe decline in the abundance of wild pigs at dis-
tances greater than 2000 m from a forested environment 
(Fig.  2), with the greatest abundances occurring just on 
the periphery of forested areas, suggesting forest edge 
effects (Yahner 1988).

Results from the fall model show a markedly different 
distribution of wild pigs compared to the spring model 
and generally predicted wild pigs to be more abundant 
at higher elevations that comprise a higher proportion 
of threatened and endangered species than some of the 
non-native forested habitats predicted by the spring and 
combined models (Additional file  1: Fig. S1). Wild pigs 
are known to frequent these high elevation sub-alpine 
shrublands despite an apparent lack of food resources 
and cover (Giffin 1978). It is presumed that wild pigs for-
age on small ferns or roots in these environments, which 
may provide an additional source of food when fruits 
found in adjacent forested environments are out of sea-
son (Giffin 1978). In contrast to both of our seasonal 
models, our combined model predicted pigs to be abun-
dant at alpine habitat nearing the summit of Haleakalā 

Fig. 5  Relative abundance estimates of wild pigs from model outputs (spring, fall, and combined) across landcover types only for areas with 
seasonal hunting (open vs. closed). Blue brackets represent the comparisons being made using the Kruskal–Wallis test. Asterisks imply significance 
and NS means no significant difference (p > 0.05). Seasonal hunting areas can be seen in Fig. 1
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National Park and was the only model to show no eleva-
tional threshold for pig abundance (Additional file 1: Figs. 
S1). Despite Haleakalā National Park currently being 
fenced and ungulate-free, it is highly unlikely that the 
alpine habitat found near the summit would have sup-
ported any number of pigs prior to the construction of 
the fence due to the cinder desert being largely devoid of 
palatable vegetation. In this case, the combined model 
may have performed poorly due to inherent differences 
between seasonal detection rates and an inability of the 
model to accurately quantify these differences.

The differences in environmental covariate importance 
and the resulting distribution maps produced from the 
seasonal and combined models show a need to incor-
porate biologically relevant time scales in a distribution 
modeling framework. Incorporating relevant temporal 
scales (often excluded from species distribution mod-
eling) is a crucial step to providing the most reliable and 
robust information to develop optimal management 
strategies (Elith et al. 2010; Schliep et al. 2018). These dif-
ferences throughout time have important implications 
for management of any species of interest, but especially 
for those at non-equilibrium (Elith et al. 2010).

In our case, areas of increased conservation value at 
high elevations on Maui experienced an increase in the 
abundance of wild pigs during the fall, potentially threat-
ening numerous threatened and endangered species. 
These areas provide some of the last remaining critical 
habitat to a wide variety of threatened and endangered 
species including several critically endangered birds and 
numerous plants and invertebrates (United States Fish 
and Wildlife Service 2016). While traditional annual or 
aggregate based modeling methods may have identified 
the threat to these areas, the seasonal change in magni-
tude of the threat might have been underestimated. The 
opposite may also hold true for our seasonal models, 
where survey locations with the largest differences in pig 
abundance may have influenced model predictions at an 
island-wide scale leading to an overestimate of shifts in 
abundance in areas that were not surveyed. However, this 
is an inherent limitation of modeling efforts and should 
be thoroughly examined in relation to known species 
behaviors in any distribution modeling study. Nonethe-
less, our models identify the months when these range 
shifts occur and may be used to more effectively design 
conservation strategies to mitigate the seasonal increase 
in threat from wild pigs to critical areas. As conserva-
tion resources are often limited, efforts to prioritize 
where conservation resources are focused are becoming 
increasingly important (Wilson et al. 2006). In this case, 
knowing that critical habitat for threatened and endan-
gered species may be more threatened by wild pigs during 
the fall than the spring (or vice versa) allows conservation 

efforts to be redirected to areas deemed most vulnerable 
and ultimately improving cost-effectiveness of conserva-
tion efforts.

Seasonal abundance information can also help inform 
the management of wild pigs as a game species, includ-
ing opening or closure of hunting units, hunting sea-
son dates, and restrictions (e.g., hunting method or bag 
limit). Improved game management strategies may not 
only positively influence game management objectives 
(e.g., hunter satisfaction, food security, economic rev-
enue), but will also likely have desirable secondary effects 
to conservation goals and agriculture production. In our 
case, we identified that within areas that undergo sea-
sonal hunting closures, the lack of hunting pressure in 
the fall likely caused a significant shift in wild pigs from 
non-native forested areas into more open native shrub-
lands and grasslands that also provide critical habitat 
for threatened and endangered species. From a game 
management perspective, maintaining year-round hunt-
ing in these hunting units may be mutually beneficial by 
providing additional hunting opportunities and reducing 
seasonal threats from wild pigs to critical habitat. Finally, 
targeting undesirable frugivorous plants shown to bolster 
wild pig populations and influence their distribution may 
provide an indirect approach to pig population control 
with typically lower time and resource investment than 
direct methods of pig removal (Beasley et al. 2018).

This study is the first to our knowledge to explicitly 
incorporate biologically relevant time intervals in a 
relative abundance modeling framework and identify 
seasonal trends in the abundance and distribution of a 
large omnivorous mammal. In this case, we observed a 
general trend of wild pigs moving from predominantly 
forested areas in the spring to more open shrubland and 
grassland areas in the fall. It is likely that a combination 
of reduced hunting pressure, changes in environmental 
conditions, and a lack of available food sources drove 
this shift. It may also be likely that survey locations 
that fell within areas of varying hunting pressure may 
have disproportionately affected overall model outputs 
thereby influencing estimates in areas with constant 
hunting pressure. However, since model results could 
be largely explained by known species behaviors, trends 
identified in this study are likely reliable. Further, model 
results from our combined dataset indicated a failure 
to accurately predict wild pig distribution in certain 
key areas despite model evaluation statistics indicating 
good fit. Future studies examining these influences on 
model outputs at finer spatial scales over longer peri-
ods of time are desperately needed. By separately mod-
eling the seasonal distribution and abundance of wild 
pigs in a single calendar year, we were able to provide 
high-resolution information on seasonal movement 
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patterns as well as identify core areas that host high 
abundances of wild pigs. Biologically relevant temporal 
scaling of data used as inputs for distribution modeling 
is increasingly discussed in the literature yet is still not 
widely adopted in most distribution modeling efforts 
(especially for those using historical data gathered over 
multiple years) (Elith and Leathwick 2009; Schurr et al. 
2012; Schliep et  al. 2018). Our results highlight the 
importance of considering biologically relevant tempo-
ral scales and the implications they have on resulting 
management recommendations. This approach may not 
only improve model reliability it also provides essential 
information in the development of effective manage-
ment plans to mitigate impacts of invasive species, pri-
oritize conservation of at-risk species, and reduce risk 
of human–wildlife conflicts. For the appropriate man-
agement of any species, it is imperative to incorporate a 
thorough understanding of species ecology as it relates 
to both space and time. We hope that the approach 
presented in this study may shed light on the utility of 
incorporating biologically relevant time intervals and 
spur further discussion on the inclusion of appropriate 
spatial and temporal scales in future modeling efforts.
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