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A hierarchical path-segmentation movement 
ecology framework
Wayne M. Getz1,2*   

Abstract 

This paper lays out a hierarchical, appropriate-complexity framework for conceptualizing movement-path segments 
at different spatiotemporal scales in a way that facilitates comparative analyses and bridges behavior and mathemati-
cal concepts. It then outlines a process for generating a multimode, multiscale stochastic simulation model that can 
be used to test animal movement hypotheses and make predictions of movement responses to management and 
global change. Many methods for analyzing movement data begin by generating step-length (SL) and turning-angle 
(TA) distributions from relocation time-series data, some of which are linked to ecological, landscape, and environ-
mental covariates. The frequency at which these data are collected may vary from sub-seconds to several hours. The 
kinds of questions that may be asked of these data, however, are very much scale dependent. The hierarchical path-
segmentation (HPS) framework presented here clarifies how the scale at which SL and TA data are collected relates 
to other sub- and super-diel scales. Difficulties arise because the information contained in SL and TA time series are 
often not directly relatable to the physiological, ecological, and sociological factors that drive the structure of move-
ment paths at longer scales. These difficulties are overcome by anchoring the classification of movement types 
around the concept of fixed-period (24 h) diel activity routines and providing a bridge between behavioral/ecological 
and stochastic-walk concepts (means, variances, correlations, individual-state and local environmental covariates). 
This bridge is achieved through the generation of relatively short segments conceived as characteristic sequences 
of fundamental movement elements. These short segments are then used to characterize longer canonical-activity-
mode segments that emerge through movement at behaviorally relevant sub-diel scales. HPS thus provides a novel 
system for integrating sub-minute movement sequences into canonical activity modes (CAMs) that, in turn, can be 
strung together into various types of diel activity routines (DARs). These DARs both vary among individuals within a 
given day, and for any given individual across time and under the influence of landscape factors. An understanding 
of how DARs are influenced by environmental inputs will help us predict the response of supra-diel lifetime move-
ment phases (LiMPs) of individuals, as well as their complete lifetime tracks (LiTs), to anthropogenically induced global 
change.

Keywords: Hierarchical path segmentation (HPS), Fundamental movement elements (FuMEs), Canonical activity 
modes (CAMs), Diel activity routines (DARs), Life-history movement phases (LiMPS), Multi-CAM metaFuME Markov 
(M-cubed) models, Biased correlated random walk models
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Introduction
A recent paper by Nathan and 36 others in the jour-
nal Science (Nathan et  al. 2022) discusses how big-data 
approaches lead to an increased understanding of the 
ecology of animal movement. In particular, Nathan 
et  al.  point out how the introduction of the four-com-
ponent movement ecology framework (1.  internal state; 
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2.  motion capacity; 3.  navigation capacity; and 4.  exter-
nal factors), together with the rapid development of new 
technologies and data processing tools for analyzing 
these movement paths (Joo et  al. 2020; Williams et  al. 
2020), has led to a recent major upsurge in movement 
ecology research. One of the important points made by 
Nathan et  al. (2022), in their section on Patterns and 
mechanisms across spatiotemporal scales, is that quanti-
fying how movement patterns and drivers change across 
scales remains one of the major challenges in move-
ment ecology. Meeting this challenge requires that we 
develop a hierarchical framework to link discussions of 
movement processes across different behavioral scales 
of analysis. In this paper, we propose such a hierarchical 
path-segmentation (HPS) framework, using the concept 
of the diel activity routine (DAR) to provide a behavioral 
anchor to the segmentation of lifetime tracks. Such seg-
mentation, as Nathan et al. (2022) point out, is an impor-
tant goal “for elucidating how behavior, cognition, and 
physiology develop across spatial and temporal scales 
and in relation to environmental changes.”

In proposing a hierarchical path-segmentation (HPS) 
framework for conceptualizing movement behavior 
across spatiotemporal scales, it is desirable from both 
computational and behavioral points of view to identify 
an anchoring scale that is of fixed duration. The 24-h diel 
time scale provides the only such naturally occurring 

anchor (Fig.  1): all others (see Glossary for the defini-
tion of acronyms and an explanation of terms)—whether 
the subdiel canonical activity modes (CAMs) viewed as 
sequences of fundamental movement elements (FuMEs), 
or supradiel lifetime movement phases (LiMPs) that can 
be aligned sequentially to produce the lifetime tracks 
(LiTs) of individuals—have variable durations of occur-
rence (Fig.  1). For definiteness, we refer to repeated 
24-h movement path segments as diel activity routines 
(DARs), although the time of day at which these segments 
begin and end needs to be selected. The most appropri-
ate start/finish times for DARs may vary among species, 
depending on their behavioral routines. For example, in 
the case of the black rhino 6 am turns out to be a bet-
ter start/finish point than noon, 6 pm or midnight from 
the point of view of reduced variation in spatial displace-
ments over 24-h periods. Such displacements were found 
to frequently be smaller at dawn than at dusk or at their 
midday and midnight resting periods (Seidel et al. 2019).

Elaborating on the issue of variable durations for move-
ment path segmentation, at sub-DAR scales (Fig. 1), the 
length of time that individuals are involved in different 
canonical activity modes (CAMs) (Getz and Saltz 2008; 
e.g., periods of rest, feeding/foraging, heading towards 
a target location some distance away from the current 
location) is likely be quite variable, with CAM dura-
tion depending on environmental factors, motivation 

Fig. 1 A graphical depiction of a hierarchical path-segmentation (HPS) formulation that classifies segments of the lifetime tracks of individuals at 
four biologically relevant scales. The indicated time scales on the horizontal axis at the top of the diagram are mostly applicable to medium and 
large terrestrial animals, but need to be adjusted for some aerial and marine species, small vertebrates, and invertebrates. Round (blue), triangular 
(yellow to orange), square (green), pentagonal (red), and hexagonal (grey) icons are, respectively, used to represent N1 FuME types, N2 CAM types, 
N3 DAR types, N4 LiMP types, and an open-ended number of n LiT types (one for the lifetime of each movement group type to which an individual 
can belong). Horizontal whiskers on icons represent variations in the length of examples of the same type within a category. Only DARs have fixed 
duration. Vertical whiskers indicate some building-block variation within the same type, except for FuMEs which are much more stereotyped, and 
hence much less variable within types than other segmentation categories. Color shades within categories represent different types within those 
categories. Colorless strings of icons indicate how each category can be considered as a string of the next lower category elements (i.e., shapes and 
general color denote hierarchical level, while different shades of the same color indicate within level variation). Because FuMEs are hard to identify 
using relocation data only, a hierarchical segmentation of lifetime tracks will typically be supported by a statistically defined metaFuME baseset 
rather than by a set of FuMEs themselves
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and physiological states. How far we can drill down to 
scales finer than the CAMs, depends on the frequency at 
which the relocation data are collected. At high enough 
frequencies one can identify the mechanically produced 
set of fundamental movement elements (FuMEs char-
acterized by single-step sequences involved in walking, 
running, slithering, undulating in water, flapping wings, 
etc.), although other kinds of data, such as accelerometer 
data from multiple points on the body of an individual, 
may be needed to decide when a particular type of move-
ment step begins and ends. When frequencies are not 
sufficiently high or appropriate data are not available to 
decide when a particular FuME begins and ends, statis-
tical quantities—which I refer to as metaFuMEs—can 
be defined. The construction of metaFuMEs is discussed 
more fully in the next section (also see Luisa Vissat et al. 
2022), where we will see that metaFuMEs provide a basis 
for constructing all track segments (as portrayed in 
Figs. 2 and 3; much as nucleic acids are the basis for cod-
ing strings of DNA).

At supra-DAR scales (Fig.  1), different lifetime move-
ment phases (LiMPs) consisting of multiple diel activity 
periods (such as summer versus winter range activities, 
as well as migrations among such ranges) are also likely 
to be of variable duration, depending on the severity of 
winters, mildness of summers, the variation in annual 
rainfall and temperature conditions, as well as the inten-
sity of competition for resources and pressure from pred-
ators and natural enemies (Elith et al. 2010). Ideally, if a 
relocation data set is available from an individual’s birth 
until its death, than its lifetime track (LiT), which will 
also vary among individuals of the same species, can be 
parsed into a sequence of LiMPs, each of variable dura-
tion. These LiMPs, in turn, are composed of sequences 
of DARs of different types, with different LiMPs being 

characterized by the frequencies and ordering of their 
composite DARs.

An example of how an HPS approach provides a link 
between movement path relocation data and behavioral 
narratives is provided in Luisa Vissat et al. (2022), where 
DAR segments were extracted from a population of 44 
barn owls (Tyto alba), each tracked on average for peri-
ods close to half a year. This study identified 7 different 
types of DARs and analyzed how these different among 
individuals by gender, age, season and location. The study 
also identified idiosyncratic behaviors that depended on 
the particulars of specific family groups. The insights that 
were obtained in this study could not have emerged with-
out hierarchical path segmentation and the categoriza-
tion of segments a particular scale—in this case the DAR 
scale—into several different types.

It is worth stressing that the HPS framework pro-
posed in this paper provides a set of concepts not used 
in current statistical methods for developing narratives 
based on comparative analyses of how individual move-
ment within and across species differ: current methods 
either ignore spatiotemporal scaling or do not emphasize 
behavioral differences across scales. I also outline how 
this framework can be used to generate complex random 
walks (hierarchical, multimodal, biased, correlated; see 
Morales et al. 2004; Bartumeus et al. 2005; Johnson et al. 
2002; Codling et al. 2008; Ahearn et al. 2017; Getz et al. 
2020) that span all the hierarchical segmentation levels 
appropriate for comparison with a particular relocation 
time series. More specifically, in this paper, the ques-
tion is addressed of how we may reconcile the fact that 
the step length (SL) and turning angle (TA) distributions 
extracted (Kareiva and Shigesada 1983; Turchin 1998) 
directly from the relocation times series are not directly 
interpretable in terms of behavioral and ecological 

Fig. 2 Parsing the walk W into a set of metaFuMEs. Associated with each point t is a set of running values 
s(t), a(t), vss(t), vaa(t), vas(t), other possible covariates  . Cluster analysis may be used to generate metaFuME categories. For purposes of 

illustration, we depict three types of metaFuMEs with associated lists of time steps—i.e., metaFuME sequence index sets—that can then be used to 
define the ensemble of values associated with each metaFuME type: blue = T1, red = T2 , and green = T3 . Note that we expect transition points 
between strings of metaFuMEs of one type (broken line segments), such as t − 6 , t − 1 and t + 4 , could well be outliers in the clustering process. 
Outliers may be assigned to the cluster to which they are closest in some suitably defined sense (as indicated by the colors of the broken lines)
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processes (e.g., resting, stalking, hiding, gathering); 
though, depending on the spatiotemporal scale of the 
relocation data, phenomenological interpretations are 
made using scale-appropriate activity designators (John-
son et al. 2002; Giotto et al. 2015).

Finally, a deeper understanding of the connections 
between path SL and TA time series and the designa-
tion of the so-called behavioral state of an individual at 

each of its relocation points requires that we find a way 
to reconcile narratives constructed using two differ-
ent kinds of vocabularies. The first is the language of 
biological designators arising from behavioral and eco-
logical concepts. Our primary tools here are the appli-
cation of path segmentation methods (Nams 2014; 
Edelhoff et  al. 2016; Seidel et  al. 2018) that include 
hidden Markov models (HMMs; Michelot et  al. 2016; 

Fig. 3 The segment structure of movement paths at different scales according to the scheme proposed in Fig. 1. A A multi-season lifetime track 
(LiT) W (Eq. 1) can be segmented into different types of lifetime movement phases (LiMPs), each of which can then be segmented into diel activity 
routines (DARs) and again segmented into canonical activity modes (CAMs). Each CAM is constructed from different proportions of metaFuMEs 
(aggregates of correlated fundamental movement elements), where each metaFuME is derived from a bivariate step-length/turning-angle 
distribution derived from time series with specific first-order correlative statistics. Short-duration CAMs (e.g., CAM 3) can easily be missed and 
averaged into longer duration CAMs (e.g., CAMs 1 and 2), if DAR segmentation analyses are not undertaken at a sufficiently fine scale. B An 
illustrative example of a simple two-CAM return-to-home-with-a-water-stop DAR where the two types of metaFuMEs that generate the traveling 
CAM are shown under magnification
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Franke et al. 2004; Langrock et al. 2012; Zucchini et al. 
2016) and behavioral change-point analyses (BCPA; 
Gurarie et  al. 2009, 2016; Owen-Smith and Martin 
2015). The second is the language of mathematical 
stochastic walks (Kareiva and Shigesada 1983; Bar-
tumeus et  al. 2005; Patterson et  al. 2008) that makes 
no attempt to associate biological concepts with points 
or segments of the relocation data time series, but uses 
purely statistical methods to assign best-fitting model 
parameter values (Chatfield 2016) to movement paths, 
with the possible inclusion of individual and environ-
mental covariates (Jonsen et  al. 2003; Preisler et  al. 
2004; Johnson et  al. 2008; Fleming et  al. 2014; Cala-
brese et al. 2016).

A pragmatic view of HPS
The view that large segments of individual movement 
paths can be parsed into strings of fundamental move-
ment elements (FuMEs—see glossary; Fig.  1, Table  1) 
with characteristic frequencies and patterns of occur-
rence is highly idealized. Identifying FuMES is generally 
a biomechanical problem that is beyond the scope and 
capabilities of analyses based on relocation data alone. 
Other kinds of data, such as audio recordings, have been 
used to identify FuMEs: e.g., wing flaps of small birds 
(Sapir et al. 2010; Northrup et al. 2019) or footfalls of for-
aging ungulates (Northrup et al. 2019). If the frequency 
of our relocation data, however, spans strings of around 
10–100 FuMEs, occurring either repetitively or in corre-
lated groups of a couple of FuME types, then we may be 

Table 1 Hierarchical organization of a typical vertebrate lifetime track (LiT)

SL step-length, TA turning-angle

The indicated spatiotemporal scaling applies best to most medium and large vertebrates, with faster/smaller scales needed for many smaller vertebrates, birds, and 
invertebrates.)
∗Fundamental movement elements; †canonical activity modes; ‡diel activity routines
§Lifetime movement phases; #lifetime tracks
∗†Machine/deep learning methods can be applied at any scale but may be particularly useful here
∗‡Around 5 s to 1 min
∗∗Includes hidden Markov models (HMMs) and behavioral change-point analyses (BCPA)
††See “Stochastic walk statistics” section in main text

Scale/segment Time Space Categories Data Some approaches and 
methodsConstraint level: type of analysis

FuMEs∗ 0.1–few secs 0–1000 cm Stride, trot, run, twist, 
jump, flap

Accelerometer video Machine learning∗† , 
Newtonian mechanics

Highly constrained: biomechanical analyses

Meta- FuMEs∗ Resolution of relocation 
data∗‡

Average step length Bivariate SL and TA 
distributions

SL and TA means, 
variances and correla-
tions††

Cluster analysis ensem-
ble filtering

Base level: movement ecology analyses

Short duration CAMs† 0.1–10 min A few meters to a few 
kms

Resting, browsing, rid-
ing thermals

secs to mins, Path segmentation∗∗

Highly flexible: sub-hourly/hourly analysis metaFuMEs and covari-
ate data

Long duration CAMs† 10–100 min A few meters to many 
kms

Feeding traveling mins to hours,

Highly flexible: sub-diel analysis Short CAMs and 
Covariate data

DARs‡ Fixed 24-h Diel range Central-place foraging 
Ranging

24 h of data CAM 
eequences

Periodograms (Fourier, 
wavelets)

Time constrained: diel cycle analysis

LiMPs§ Several days to a few 
months

Home ranges and their 
shifts over time

Philopatry, dispersal, 
migration, nomadic, 
recursion

DAR sequences Clustering methods, 
ideal-free/despotic 
distribution analyses

Strongly constrained: lunar and seasonal cycle analyses

Partial or whole LiTs# Paths encompassing 
several LiMPs

Habitat types Territorial ranging, 
migratory nomadic

LiMP sequences GIS toolbox, deep-learn-
ing∗† , pattern anal.

Moderately constrained: question-at-hand analysis
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able to reliably identify different strings of predominantly 
one type of FuME, or stereotypical mixed sequences of 
particular FuMES, which we call “metaFuMEs”. With 
this definition, for relatively high-frequency relocation 
data, all the different metaFuMEs, in a set of metaFuME 
types, may have the same or different fixed lengths deter-
mined by the time between consecutive relocation points 
and the number of points in each type used to construct 
each metaFuME type bivariate SL and TA distribution 
(e.g., see Getz et  al. 2020), and auto- and cross-correla-
tion time-series coefficients (Chatfield 2016). Such sets 
of metaFuMEs can then be used as a basis for represent-
ing different types of identifiable activities (e.g., foraging 
or focused traveling to a selected location), referred to as 
canonical activity modes (CAMs—see glossary; Getz and 
Saltz 2008).

Segmenting relocation data at a metaFuME level only 
make sense if the data have been sampled at frequencies 
that lie somewhere between the time it takes to execute 
several typical FuMEs (i.e., on the order 10 s) and the 
time it takes to perform a short-period CAM that is rel-
evant to movement ecologists (i.e., on the order of a few 
minutes, except for sharp burst of movement related to 
predation or defense). Fortunately, current technologies 
facilitate the collection of data at frequencies of 0.01 to 1 
Hz in birds (Harel et al. 2016b; Harel and Nathan 2018) 
and mammals (de Weerd et al. 2015; McGavin et al. 2018) 
of even relatively small size. Beyond GPS methods for 
collecting high-frequency data are other methods such 
as reverse GPS (e.g., the Atlas system; Weiser et al. 2016; 
Toledo et al. 2016); but reverse GPS is generally limited 
in spatial extent to some tens or hundreds of square kilo-
meters. Also, high-frequency movement data have been 
collected using video equipment for small (e.g., ants) to 
moderately sized (e.g., mice) organisms in a laboratory 
setting (Spink et al. 2001; Kane et al. 2004; Delcourt et al. 
2013). From a practical point of view, though, particu-
larly since the size of relocation data sets can be rather 
large when collected at frequencies of around 0.01 to 1 
Hz, it may be useful to carry out a metaFuME identifica-
tion process on selected segments of the full path (such 
as CAMs), and then use a suitable method to reconcile 
disparate identification efforts to obtain a consensus set 
of metaFuME types that can be applied to the full move-
ment path.

At this point, it is worth emphasizing that the distribu-
tions used to characterize directions taken and distances 
moved per sampling interval, depend on the relocation 
sampling frequency (Codling and Hill 2005; Codling 
and Plank 2011). This frequency, in turn, limits the set of 
questions that can be addressed to those that are com-
patible with the scale of the collected data. Thus, reloca-
tion data collected every 5 min is more than adequate 

for estimating the maximum displacement (i.e., maxi-
mum distance from the start of a movement segment) 
of a DAR, as shown by Luisa Vissat et al. (2022) for the 
barn owl. Such data, however, would be inadequate for 
estimating the distance moved by an individual search-
ing an area, if that individual changed direction on aver-
age more often than every 5 min. This constraint must 
be kept in mind if high-frequency data are re-sampled to 
reduce the relocation frequency to a more manageable or 
appropriate scale.

Assuming that a set of metaFuMEs has been identified, 
as discussed in more detail below, then it may be possible 
to stably identify different kinds of short-duration CAMs 
with periods varying from around 10 metaFuMEs (i.e., a 
couple of minutes) to a few hours (Fig.  1, Table 1). Fol-
lowing this, longer duration CAMs may be more conven-
iently parsed in terms of several shorter duration CAMs 
rather than in terms of metaFuME types. To emphasize 
this, both short and long duration CAMs are identi-
fied in the hierarchical scheme laid out in Table  1. Due 
to the importance of circadian rhythms as physiological 
and behavioral drivers (Takahashi et al. 2008; Yerushalmi 
and Green 2009; Hardin and Panda 2013), the diel cycle 
provides an empirically obvious segmentation window 
for the identification of various types of diel activity rou-
tines (DARs; set of green boxes in Fig. 1; also see Table 1), 
although the start and end of a DAR cycle might vary for 
diurnal, nocturnal and crepuscular species. Several types 
of DARs may then be identified in terms of differences 
in the type and frequency of their constituent CAMs. 
For example, different types of DARs have been identi-
fied in terms of the portion of their diel cycle that vari-
ous groups of lemurs are active (Donati et al. 2016) and 
of the variation in the diel travel rates of turtles (Jonsen 
et al. 2006).

DARs, in turn, can be strung together to create life-
history movement phases (LiMPs; sets of red pentagons 
in Fig.  1) that, depending on the longevity of the spe-
cies, may be periodic (e.g., annual migration; for a review 
see Milner-Gulland et al. 2011) or episodic (e.g., disper-
sal; for a review see Bowler and Benton 2005). Finally, a 
sequence of LiMPs sequentially strung together from the 
birth-to-death of an individual constitutes its full lifetime 
track (LiT; Nathan et al. 2008; indicated by the grey pen-
tagons in Fig.  1; also see Table  1). Beyond LiMPs, LiTs 
from several individuals can be used to map out space-
use by populations rather than just the movement path of 
any single individual (Mueller and Fagan 2008).

Beyond the relevance of diel cycles to movement 
behavior (Wittemyer et  al. 2008), are lunar (Polan-
sky et  al. 2010) and seasonal cycles (Marra et  al. 2015); 
and even weekly cycles if the influence of humans has 
some impact on the movement of animals in urban and 
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suburban areas. The critical nature of the diel scale in 
driving movement behavior is reflected in our identifica-
tion of the fixed-period DAR category as a central con-
struct in our framework, depicted in Fig. 1. In contrast, 
the lunar cycle may be more relevant to some organisms 
than others (Polansky et  al. 2010). Thus beyond DARs 
only seasonally or life-history-relevant LiMPs segments 
are identified with seasonal segments only being rel-
evant to organisms with life-spans long enough to expe-
rience several seasonal cycles (Marra et  al. 2015; Allen 
et al. 2018). For some organisms, particular LiMPs, such 
as dispersal, occur only once; while migration behavior 
may vary from year to year, influenced by inter-annual 
variations in climatic conditions—perhaps linked to 
multiyear marine (Mysterud et  al. 2001; Grémillet and 
Boulinier 2009) or sunspot (Myers 2018) cycles. Further, 
periodically driven movement patterns may also change 
with age (e.g., exploration when young) and life-history 
stage (e.g., elephants in musth). Thus, beyond DARs, 
other cyclic patterns become either less obvious or more 
species-specific.

The data compatibility problem
A relocation data time series W consists of a series of 
two (or in some cases three) dimensional points:

The temporal resolution of these data will determine 
whether it is possible to identify metaFuMEs, short (e.g., 
vigilance behavior during grazing; Fortin et  al. 2004) or 
long duration CAMs (e.g., heading to water; Polansky 
et al. 2015), or only movement patterns at diel scales and 
beyond (Spiegel and O’Farrell 2019; Owen-Smith 2013; 
Giotto et al. 2015; Seidel et al. 2019).

Parsing a movement path into its elements is somewhat 
like picking out words from a voice recording. The human 
brain does this very well, as do modern digital machines 
using deep-learning methods (Hinton et al. 2012; Zhang 
et al. 2018). In an extremely crude sense, FuMEs are com-
parable to syllables, metaFuMEs to words, short dura-
tion CAMs to sentences and long duration CAMs to 
paragraphs. DARs may be thought of as single pages in a 
book-of-life, where each page can be identified as belong-
ing to one of a rather limited number of types (e.g., a typi-
cal winter versus summer day or a day during a migratory 
versus non-migratory LiMP). Thus, the stories being told 
are rather boring, page-by-page repetitions, with impor-
tant cyclic variations, as well as other variations due to 
environmental influences.

Despite the current, technology driven, exponential 
growth in the quantity and quality of movement data 

(1)W =
{(

t; x(t), y(t)
)∣

∣t = 0, . . . , tf
}

.

(including relocation, accelerometer, physiological, and 
environmental measurements; Williams et  al. 2019), 
collecting the kind of multi-body-placement accelerom-
eter and relocation data needed to identify the start and 
finish of individual FuMEs (i.e., with a spatial accuracy 
of centimeters rather than meters or even decimeters) 
may still be beyond the budgets of most movement ecol-
ogy studies. Other technologies, such as audio (Sapir 
et  al. 2010; Hurme et  al. 2019; Northrup et  al. 2019), 
magnetometer (Williams et al. 2017; Chakravarty et al. 
2019), and video (Spink et  al. 2001; Kane et  al. 2004; 
Delcourt et  al. 2013) may well be more cost effect in 
terms of  identifying the start and finish times of indi-
vidual FuMES. Thus, for some time to come, relocation 
data collected at fixed frequencies slower than around 
1 Hz are going to be significantly misaligned in time (at 
least to within half a second) with the start and finish 
of each of the FuMEs that make up a path segment of 
interest.

At this point, it is worth noting that accelerometer data 
alone have been used to parse out relatively short time 
scale (order of 10 s) behavioral elements along movement 
paths using machine learning methods (Nathan et  al. 
2012; Thessen 2016; Wang et al. 2015). These behavioral 
elements, which almost certainly include several FuME 
steps, in reality are partial elements of more extensive 
short-duration CAMs that typically last tens of seconds 
to several minutes. Accelerometer data, for example, 
have been used to categorize standing, running, preen-
ing, eating, and active and passive flight CAMs in vul-
tures with 80–90% accuracy (Nathan et al. 2012). It may 
be possible for some FuMEs, however, such as the time 
taken to complete a FuME when walking versus running, 
to be identifiable directly from accelerometer data (as we 
find in modern digital watches that are able to monitor 
the number of steps we take while moving).

In summary, location data on their own (i.e., without 
accompanying subsecond accelerometer, acoustic, mag-
netometer or video data) are fundamentally incompat-
ible with the identification of FuMEs because FuMEs are 
characterized by the movement of body parts while loca-
tion data apply to a body as a whole. For this reason, it is 
worth reemphasizing the following: 

1. Given that the identification of individual FuMEs 
from relocation data is not generally possible, we are 
left with the rather challenging task of extracting a 
set of metaFuME elements, where each metaFuME 
type is characterized by its own SL–TA distributional 
pair and correlations with and between consecutive 
and simultaneous values.
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2. The complete set of metaFuME types, once identi-
fied, can then be used as a basis for constructing 
an appropriate complexity (Getz et  al. 2018; Larsen 
et al. 2016), HPS framework of CAM, DAR and LiMP 
segments, where the latter is used to classify differ-
ent types of lifetime tracks (Table 1), beginning with 
CAM sequences constructed using a multi-CAM 
metaFuME Markov (M-cubed) modeling approach 
described in more detail below.

Stochastic walk statistics
At any time scale, movement time series may be analyzed 
using purely statistical methods applied to the SL and 
TA time series derived from W to generate various run-
ning statistics. These statistics may include the means, 
variance, autocorrelations of SL and TA time series data 
and cross-correlations between the two (Chatfield 2016; 
McCulloch and Cain 1989; Bergman et  al. 2000; Byers 
2001). Running versions of these statistics can then be 
used to identify points in time where abrupt changes in 
their values occur, using methods referred to as behav-
ioral change-point analyses (BCPAs; Owen-Smith and 

Martin 2015; Chen and Gupta 2011; Matteson and James 
2014; Killick and Eckley 2014; Gurarie et al. 2009, 2016) 
or, more generally, path segmentation methods (PS; 
Nams 2014; Edelhoff et  al. 2016; Seidel et  al. 2018). A 
graphic indicating the most important of these methods 
and the scale at which they typically are applied is pro-
vided in Fig. 4.

As discussed earlier, though, identifying a set of FuMEs 
is a problem that requires biomechanical (Delp and Loan 
2000), audio (Sapir et al. 2010), or other kinds of covari-
ate data (Chakravarty et  al. 2019) than relocation data 
on their own. With relocation data alone, a hierarchical 
analysis of a path can only be underpinned by elements 
that are derived statistically from the relocation time 
series W (Eq. 1).

From this time series, we can extract a 1-D time series 
of step lengths and another 1-D time series of turning 
angles as follows:

• Generate the step-length (SL) time series 

(2)S = {(t, s(t))| t = 1, . . . , tf },

Fig. 4 Current scale-dependent analytical methods for analyzing movement paths. The temporal range is only suggestive and best applied 
to medium and large vertebrates. Also the image placements are not precise and some methods, such as machine learning (Thessen 2016), 
can be applied to data at any scale, but here are associated with the scale at which they are likely to be most useful. In addition, deep learning 
(useful for identifying different types of long-term patterns) is actually a subset of machine learning (where other machine techniques, such as 
random forests and support vector machines have been applied to accelerometer data; Nathan et al. 2012; Fehlmann et al. 2017). Stochastic walks 
include correlated and biased random walks (Johnson et al. 2008). Space–time residence analyses represent a family of methods that include 
first-passage-time (FPT; Fauchald and Tveraa 2003; McKenzie et al. 2009) and related approaches (Torres et al. 2017), while recurrence analyses cover 
a plethora of methods used to identify recursive movement patterns (Berger-Tal and Bar-David 2015; Bar-David et al. 2009). The melange of images 
is extracted from publications in the literature (Nathan et al. 2012; Panzacchi et al. 2016; Morales et al. 2004; DeCesare et al. 2012; Wittemyer et al. 
2008; Lyons et al. 2013; Abrahms et al. 2017; Fleming and Calabrese 2017; Pohle et al. 2017; Torres et al. 2017; Gurarie et al. 2017), as well as created 
for this publication
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 using the derived values 

• Generate the turning-angle (TA) time series 

 using the derived values 

From these two time series we can obtain their means 
and variances, respectively, denoted by (µℓ, σℓ) , ℓ = s, a, 
and then use them compute the following three variation 
related time series:

• Generate two normalized (by the appropriate vari-
ances) “running-term autocorrelation” time series 

 where 

• Generate a normalized “running-term cross-correla-
tion” time series 

 where 

We are now challenged with the task of using the five time 
series above (step length, turning angle, two autocorre-
lation and one cross-correlation)—and, perhaps, other 
covariate data when available (e.g., acoustic, accelerom-
eter, local environmental)—to parse W (Eq. 1) into several, 
say � (capital lambda), different single-step metaFuME 
ensembles (Fig.  2). The most obvious approach is to use 
clustering methods, but this should be accompanied by 
some sort of range standardization procedure for each 
variable to improve the performance of the clustering algo-
rithm (Van Moorter et  al. 2010). Each of these � ensem-
bles, belonging to the same metaFuME type, can now be 
regarded as a set of drawings from the same bivariate dis-
tribution D�(s, a), � = 1, . . . ,� . If the relocation sampling 

(3)
s(t) =

√

(x(t)− x(t − 1))2 +
(

y(t)− y(t − 1)
)2
.

(4)A = {(t, a(t))| t = 2, . . . , tf },

(5)
a(t) = arctan

(

y(t)− y(t − 1)

x(t)− x(t − 1)

)

− arctan

(

y(t − 1)− y(t − 2)

x(t − 1)− x(t − 2)

)

.

(6)
V ℓℓ ={(t, vℓℓ(t))| t = tb, tb + 1, . . . , tf }

for ℓ =s (tb = 2), a (tb = 3),

(7)vℓℓ(t) =

(

ℓ(t)− µℓ

)(

ℓ(t − 1)− µℓ

)

σℓ
.

(8)Vas
= {(t, vas(t))| t = 2, . . . , tf },

(9)vas(t) =

(

a(t)− µa

)(

s(t)− µs

)

√
σaσs

.

period, except for speed bursts, encompasses around 
10–50 FuMEs (i.e., more than around 5 s but less than 
about a minute—e.g, fast walking in humans crudely cor-
responds to 2 steps per second, though most movement is 
slower than this); then, in the proposed HPS framework, 
we are in the metaFuME segment zone (Fig.  1, Table  1). 
If the relocation sampling period is on the order of tens 
of minutes to several hours, then each relocation likely 
encompasses hundreds to tens of thousands of FuMEs. In 
this case, set of states are more appropriately identified as 
short or long duration CAMs than as metaFuMEs.

Once a set of metaFuMEs has been identified from a par-
ticular ensemble of segments of the same CAM or DAR 
type, along with the accompanying metaFuME sequence 
index sets (Fig.  2), we are still faced with the task of rec-
onciling various metaFuME sets obtained from different 
CAM or DAR ensembles into a comprehensive metaFuME 
set. Such a set will then underlie all LiMPs of a particular 
type, but not necessarily across a complete lifetime track, 
because we might expect metaFuME sets for, say, juveniles 
versus adults to be different for same species. Many differ-
ent types of cluster analyses (McGarigal et  al. 2016) can 
be tried to identify metaFuMEs. Also, multicriteria opti-
mization methods using, for example, genetic algorithms 
or approximate Bayesian computations (Coello 2003; Odu 
and Charles-Owaba 2013; Marin et al. 2012) could be used 
to reconcile metaFuME sets obtained from ensembles of 
different types of segments. Such investigations, however, 
are well beyond the scope of this “concepts” paper, but are 
undertaken elsewhere (Getz et al. 2020).

Once the time series W and, hence, the corresponding 
SL and TA time series have been parsed into ensembles 
and organized into a set of � metaFuMEs, the associated 
metaFuME sequence index sets T�, � = 1, . . . ,� (Fig.  2) 
can be identified. The distributions of all the joint pairs 
(s(t),  a(t)), where t ∈ T�, � = 1, . . . ,� , can then be fit-
ted to an appropriate metaFuME bivariate distributions 
D�(s, a), � = 1, . . . ,� and the metaFuME sequence index 
set ensemble T� = {T�|� = 1, . . . ,�} can be used to 
estimate transition rates among metaFuME sequences. In 
essence, we have estimated a set of bivariate metaFuME 
distributions:

and a matrix of values (P)�κ = p�κ (with �, κ = 1, . . . ,� ) 
that represent the probability of sampling values from the 
distribution D�(s, a) when the previous drawing was from 
the distribution Dκ(s, a).

We can now use the set of distributions D� and transi-
tion matrix P , essentially as a Markov metaFuME move-
ment model, to construct a CAM segment of a walk 
W (tf ) . We do this by first generating a set of T drawings 
(the hat notation represents drawings):

(10)D� = {D1(s, a), . . . ,D�(s, a)},
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and then generating a segment of W (tf ) from these draw-
ings using the following equations (Patterson et al. 2008), 
where θ(t) is the absolute angle of heading at time t:

Thus, in short, we use the extracted identified 
metaFuME-distribution-set and Markov transition-
matrix pair (D�,P) to generate a CAM segment of a walk 
W that is one instantiation of an ensemble of CAM seg-
ments generated using Eqs. 11 and 12.

To generate different sets of CAM sequences and string 
these together to form particular DARs requires that we 
have additional distributional descriptions for the length 
of different CAM sequences found in particular DARs, 
and matrix probabilities for transitioning among CAMs 
within such DARs. The outlines of model to accom-
plish this task, referred to as a multi-CAM metaFuME 
Markov (M-cubed) model is described in the next sec-
tion. In terms of a single CAM metaFuME Markov model 
embodied in Eqs. 11 and 12, the appropriate number of 
metaFuME distribution pairs � in the set D� (Eq. 10) is, 
a priori, unknown. A first guess at this number might be 
the number of modes in step length time series derived 
for different types of CAM segments, if such modes 
are evident. The problem of finding the best mixture of 
unimodal pairs (DSL

�
,DTA

�
) of distributions that best fit 

such derived empirical data is a challenging estimation 
problem that can be approached in several ways, includ-
ing ensemble Kalman filtering (Dovera and Della  Rossa 
2011) under the assumption that the underlying distri-
butions are log-concave (Walther et al. 2009). A prudent 
approach may be to proceed by first looking for the two 
best-fitting pairs of bivariate distributions:

and then moving on to three, four, and so on, until no 
improvement in fit is obtained at the next value for � in 
an information theoretic sense (Symonds and Moussalli 
2011). We may then use existing segmentation meth-
ods (e.g., BCPA) to identify possible CAMs that may 
emerge from the simulated data and compare them to 
the CAMS identified in the original data. If the fit is sat-
isfactory, we may then use our multi-CAM metaFuME 
Markov (M-cubed) model (Getz et  al. 2020) to pre-
dict how individuals may respond to management or 
global change in terms of local and intermediate scale 

(11)

T drawings := {(ŝt , ât) sampled from Dκ(s, a)

with probability p�κ |t = 0, . . . , tf − 1},

(12)
x(t + 1) = x(t)+ ŝt cos

(

θ(t)+ ât
)

,

y(t + 1) = y(t)+ ŝt sin
(

θ(t)+ ât
)

,

θ(t + 1) = θ(t)+ ât .

(13)D2 = {D1(s, a),D2(s, a)},

movements. We note, though, that the M-cubed mod-
eling approach described in the next section contains 
no global directional information. Thus, additional con-
structs will be needed to obtain movement motivated by 
headings to specific distant target sites. The performance 
of M-cubed-type models and their extensions are investi-
gated elsewhere (Getz et al. 2020).

M‑cubed model construction
The basis of the M-cubed model is to take ensembles 
of CAM segments of the same type and identify a set 
of metaFuMEs that can be used to simulate the local 
structure of such CAMs. If this is done for all the kinds 
of CAMs that constitute a particular DAR type, then 
the model can be used to string several types of CAMs 
together to conform to observed sequences and frequen-
cies of CAMs characteristic of type of DAR under consid-
eration. This approach to constructing M-cubed models 
has been explored and evaluated elsewhere (Getz et  al. 
2020). Such M-cubed models, however, do not account 
for movement towards specific distant targets. To 
include such phenomena requires that M-cubed models 
be appropriately extended to include directional biases 
induced by an attraction to distant geographic locations 
or a repulsion related to the existence of boundaries to 
movement (e.g., landscape topography or water).

Extraction of an M-cubed model from relocation data 
requires that the frequency of the data be available at the 
metaFuME scale, which from Table  1 for medium-to-
large terrestrial vertebrates is likely to be around 0.01 to 
0.1 Hz. Although details of the approach can be found 
in (Getz et al. 2020), for the sake of completeness, a brief 
summary of the approach is enumerated here.

Summary of approach

1. Path relocation data, W data (Eq.  1) are parsed into 
ensembles of DARs of various types, using an appro-
priate method (e.g., based on net-square daily dis-
placement or other suitable daily measures; see Bun-
nefeld et al. 2011; Bischof et al. 2012; Abrahms et al. 
2017; Owen-Smith and Martin 2015; Owen-Smith 
et al. 2010).

2. CAM segments are identified from DAR segment 
ensembles of the same type (Fig. 3), using appropri-
ate methods such as BCPA (Nams 2014; Edelhoff 
et  al. 2016; Seidel et  al. 2018) or HMM (Zucchini 
et al. 2016). In the latter case, the HMM will need to 
be performed on a subset of the data subsampled at a 
scale suitable for identifying CAMs of interest (e.g., if 
CAMs of interest are assumed to last around 20 min 
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or longer, then data should be subsampled using a 
consecutive point intervals of, say, at most 5 min).

3. All the data from the ensemble of path segments 
identified as belonging to the same CAM type within 
the same DAR type should be strung together into a 
set of points. If we assume that � such CAM-DAR 
compound types are identified, use W ensembleφ , 
φ = 1, . . . ,� to denote these sets of points.

4. Cluster analyses or other type of categorization 
procedure should be performed, using the values 
(

s(t), a(t), vss, vaa, vas
)

 ( Eqs.  2–9) for all times t for 
which there are points in the sets W ensembleφ to iden-
tify sets of metaFuME types specific to each of the 
sets W ensembleφ , φ = 1, . . . ,� (Fig. 2).

5. For each ensemble type φ , distributions 
(

D
φ

�

)

 , 
�φ = 1, . . . ,�φ , should be fitted to each of the �φ 
metaFuME types identified in the previous step, with 
some effort to reconcile metaFuME types identified 
across different ensembles W ensembleφ , φ = 1, . . . ,�

6. Distributions Dφ

�
 , � = 1, . . . ,�φ can be fitted to each 

of the metaFuME types identified in ensemble φ , 
φ = 1, . . . ,� , and an associated Markov transmis-
sion matrix 

(

P
φ
)

 estimated to obtain the characteriz-
ing pairs 

(

D
φ
�φ

,Pφ
)

 , which can then be used in a 
Markov metaFuME movement model to generate 
CAMs of type φ, for φ = 1, . . . ,�.

7. The metaFuME Markov models derived in the pre-
vious step for each type of CAM can be combined 
into a multi-CAM metaFuME Markov (M-cubed) 
model that produces sequences of CAMs with CAM 
lengths and CAM-type transition statistics that are 
extracted from the DAR ensemble data.

8. The performance of the M-cubed model can be 
evaluated by comparing the CAMs obtained directly 
from W data , using existing BCPA and HMM meth-
ods, with CAMs produced by the M-cubed model 
simulations.

General discussion
Without an underlying framework to organize informa-
tion and bridge processes conceived at different spa-
tiotemporal scales, a deep understanding of both our 
physical and biological worlds is impossible. In the con-
text of movement ecology, the classification of movement 
types at different spatiotemporal scales is of consider-
able interest, although approaches to date have been 
somewhat informal. At the lifetime track level, basic 
life-history types regarding, interalia, dispersal and 
migration behavior may be identified. In the movement 
ecology literature, we see many studies interested in diel 
activity routines (DARs; Rahimi and Owen-Smith 2007; 

Owen-Smith 2013; Owen-Smith and Goodall 2014), life-
time movement phases (LiMPs; Fahr et  al. 2015; Marra 
et  al. 2015) and over all lifetime tracks (LiTs: Abrahms 
et al. 2017). Contrasting DAR types may include distinc-
tions among nomadic, central-place foraging, or ter-
ritorial behavior, where a single lifetime track may have 
movement phases dominated by one or other diel activ-
ity routine. An example is male springboks in Etosha 
National Park, Namibia, that exhibit territorial behav-
ior during the wet season and nomadic behavior during 
the dry season, with daily excursions to the same water-
hole around midday during the wet season (Lyons et al. 
2013). Thus DARs are also very likely to be influenced 
by seasonal factors, as in pandas that change daily levels 
of activity in response to seasonal drivers (Zhang et  al. 
2017).

Extensive effort has also been made to parse diel and 
longer segments into various types of sub-diel activity 
modes (Owen-Smith et al. 2010; Donati et al. 2016) that, 
if stably identifiable across different segments, can be 
organized into a set of canonical activity modes (CAMs; 
Getz and Saltz 2008). At finer time scales, however, 
beyond using accelerometer, acoustic and magnetom-
eter data to identify behavioral states (Williams et  al. 
2017; Hurme et  al. 2019; Nathan et  al. 2012; Fehlmann 
et al. 2017; Chakravarty et al. 2019; Sapir et al. 2010; Zuc-
chini et  al. 2016), very little work has been undertaken 
to identify sets of fundamental movement elements 
(FuMEs) from which CAMs are constructed. As pointed 
out in this paper, using relocation data alone, we cannot 
endeavor to identify an underlying set of FuMEs. The best 
we can hope for, provided sub-minute relocation data are 
available, is the identification of a set of metaFuMEs con-
sisting of repeated or correlated strings of FuMES, and 
characterized by particular step-length and turning-angle 
distributions.

We should not underestimate the analytical and com-
putational challenge required to extract a comprehensive 
and stable (across many segments at various scales) set 
of metaFuME elements. The best methods to do this still 
remain to be developed and how well this may be accom-
plished remains to be seen; although satisfying progress 
has already been made (Getz et  al. 2020). Future pro-
gress may require many of the ideas presented here to be 
refined or modified. There is no denying, however, that a 
formalized, widely accepted HPS framework will greatly 
facilitate efforts to address outstanding questions in 
movement ecology, particularly those involving compara-
tive analyses within species (Wittemyer et  al. 2019), as 
well as across species. Within species variation may allow 
us to assess differences along geographic clines with 
application to the behavioral adaptation of species under 
landscape and climate change (Seebacher and Post 2015). 
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It may help us assess fitness in the context of feeding 
strategies, social behavior (Harel et al. 2016a, 2017), areas 
attractive to populations (Giotto et  al. 2015), or map-
ping out landscapes in terms of their overall resistance to 
movement (Zeller et al. 2012). It may also be diagnostic 
of changes in movement behavior when individuals are 
stressed, ill, have genetic defects, or females are pregnant 
(Spink et al. 2001; Owen-Smith 2013); or it may be pre-
dictive in terms of pathogen transmission and the spread 
of disease (Cross et al. 2007; Tracey et al. 2014; Dough-
erty et al. 2018; Zidon et al. 2017). Differences in various 
species’ movement profiles at various scales may be criti-
cal when it comes to taking a multispecies approach to 
assessing the impacts of ecosystem management on spe-
cies conservation (Brodie et al. 2015; Runge et al. 2014).

Additionally, a formalized HPS framework of appropri-
ate complexity (Getz et al. 2018; Larsen et al. 2016) can 
be used, for example, to address the dozen plus ques-
tions that were recently posed regarding the movement 
ecology of marine megafauna (Hays et al. 2016)—but are 
equally applicable to all animal species. These questions 
include: (1) Are there simple rules underlying seemingly 
complex movement patterns and hence common drivers 
for movement across species? and (2) How will climate 
change impact animal movements? An ability to address 
both of these question, as well as those raised above and 
others besides, in a comparative way—with a level of con-
sistency and coherency that only a universally accepted 
classification framework can provide—is needed with 
great urgency, as the field of movement ecology matures.

Conclusion
The hierarchical path-segmentation (HPS) formulation 
presented in this paper provides a coherent approach to 
deconstructing the movement paths of animals into sets 
of categorized segments at four biological relevant scales, 
anchored around the fixed 24-h, diel activity routine 
(DAR) scale. Once an appropriate set of DARs has been 
identified, as was done by Luisa  Vissat et  al. (2022) for 
barn owls (Tyto alba), these DARs can then be parsed in 
sub-diel segments, using various biological change point 
or hidden Markov methods. These sub-diel segments 
then provide us with a set of canonical activity modes 
(CAMs) (Fig.  1), where the duration of the smallest 
CAMs that may be identified depends on the frequency 
of the empirical path relocation data. The DARs them-
selves also provide a basis for defining different lifetime 
movement phases (LiMPS) in terms of each phase being 
characterized by a particular frequency and sequence of 
several DAR types.

If empirical relocation data are available at a sufficiently 
high frequency to identify a set of statistically defined meta 
fundamental movement element (metaFuME) constructs, 

then these metaFuMEs can be be used as a basis for pre-
dicting how movement patterns may respond to envi-
ronmental change. In particular, the M-cubed modeling 
approach summarized in this paper can be used to simu-
late CAM segments (Getz et  al. 2020) that, in the pres-
ence of particular environmental factors, may be used to 
assess how the movement behavior of individuals adapt to 
global change. It will likely take models of this complexity 
to address the two questions posed in the last paragraph 
of the “General discussion” section above, as well as those 
posed elsewhere in the context of theoretical and applied 
movement ecology. The latter are of particular importance 
in addressing questions related to conservation biology, 
resource management, and global change assessment. In 
short, the HPS formulation presented in this paper, pro-
vides a multiscale, spatiotemporal approach to developing 
models able to meet Nathan et  al. (2022)’s stated goal of 
elucidating how movement behaviors adapt in response to 
environmental change.

Glossary
BCPA  Behavioral change point analysis. Behavioral change-point analy-

sis refers to a group of methods used to determine how the sta-
tistics of a biological variable y (e.g., its mean, variance, autocor-
relation, or rate of change in slope or curvature), dependent on 
a second variable x, switches at threshold points with changes 
in x [e.g., space, time, or the abscissa in a stress-response rela-
tionship; Morales et al. (2004), Andersen et al. (2009), Chen and 
Gupta (2011), Jonsen et al. (2007)]. Note, more generally, x could 
be vector-valued.

CAM  Canonical activity mode. This is a stably classifiable subdiel 
behavioral mode (pattern of movement) such as a foraging 
bout, resting period, or purposeful heading (i.e., traveling) to a 
distant target location.

DAR  Diel activity routine. This is a stably classifiable 24-h sequence of 
CAMs that occur at characteristic frequencies and times of the 
day. We note that the start and end of a DAR cycle may vary for 
diurnal, nocturnal and crepuscular species.

FuME  Fundamental movement elements [pronounced “fume” and 
same as FME defined in Getz and Saltz (2008)]. This is a relatively 
rapid, highly repeatable, stereotypic set of body movements that 
forms the basis of the locomotory capacity of an individual (e.g., 
a walk step, a running step, a wing flap, a jump, etc.)

HMM  Hidden Markov model. A time series of observable values that 
depend in a probabilistic sense on the values of an associated, 
but unobservable Markov chain process [a set of states where 
the transition from one state to another depends only on the 
value of the current state; Zucchini et al. (2016)]

HPS  Hierarchical path segmentation. This refers to the formulation 
that is centered around diel activity routines (DARs), which can 
be parsed in canonical activity modes (CAMs) or strung together 
to produce lifetime movement phases (LiMPs) (see Figs. 1 and 3).

LiMP  Lifetime movement phase. This is a path segment that typically 
reflects a life-history relevant movement behavior such as dis-
persal (episodic), migration (periodic), or other periodic behav-
iors at a greater-than-diel scale.

LiT  Lifetime track. This is the total movement path of an individual 
from its birth to its death.

MetaFuME  A correlated stereotypical or characteristic sequence of FuMEs of 
fixed duration equal to the time between consecutive relocation 
points (only applicable to relatively high-frequency data: ideally, 
metaFuMEs should contain no more than several tens of FuMES).
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M-cubed  Multi-CAM metaFuME Markov (model). A model based on the 
metaFuME set D� of CAM-specific distributions (Eq. 10) and 
CAM-specific Markov transition matrices P�, � = 1, . . . ,� , 
derived from the set T� of metaFuME sequence index set 
ensembles (see Fig. 2). This model contains only local movement 
information and cannot be used to simulate movement patterns 
motivated by headings to distant targets.

PS  Path segmentation. This is the process of breaking up a move-
ment path into reliably stable metaFuMEs, CAMs, DARs, and 
LiMPs using a suite of methods that include BCPA and HMM 
approaches (Nams 2014, Edelhoff et al. 2016; Seidel et al. 2018).

SL  Step length. The distance between consecutive relocation 
points, as generated from Eq. 1 using Eq. 3.

TA  Turning angle. The change in the angle of heading across three 
consecutive relocation points, as generated from Eq. 1 using 
Eq. 5.
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