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Patterns and drivers of tree carbon stocks 
in Kashmir Himalayan forests: implications 
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Abstract 

Background:  Temperate forests are major carbon sinks because of their high storage potential and low decomposi-
tion processes.  We quantified tree carbon (TC) storage from 143 plots distributed across three major forest types of 
Kashmir Himalaya, relative to differences in ecological factors. Combined regression and Random Forest (RF) analysis 
were used to examine the distribution of TC stock along ecological gradients and recognize the role of driving factors 
on TC stocks.

Results:  Among the three forest types, sub-alpine (SA) forest was the primary TC sink, accounting for 228.73 t ha−1 of 
carbon, followed by mixed conifer (MC; 181.29 t C ha−1) and blue pine (BP; 133.04 t C ha−1) forests. The distribution 
of TC stocks among the three forest types differed significantly (χ2 = 18.87; P = 0.000). Relative carbon stock analysis 
demonstrated that Abies pindrow and Pinus wallichiana accounted 91% of TC stocks across the landscape. Basal area, 
mean diameter at breast height (DBH), elevation, disturbance and precipitation had significant effects on TC stocks in 
bivariate regression models. The RF model explained 86% of the variation; basal area interpreted 30.15%, followed by 
mean DBH (17.96%), disturbance complex (10.64%), precipitation (8.00%) and elevation (7.34%).

Conclusions:  Kashmir Himalayan forests are significant carbon sinks as they store a substantial quantum of carbon 
in trees. Forest carbon, an essential climatic indicator, is determined by a complex interaction of other ecological vari-
ables, particularly stand structural features. The study provides insights into the role of these natural forests in climate 
change mitigation and in REDD+/national commitments to offset the carbon.
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Background
The global carbon cycle relies greatly on biomass stored 
in forest ecosystems. More than 50% of the global gross 
primary output is accounted by forests (Beer et al. 2010; 
Pan et  al. 2011), which alone represent nearly 48% of 
the planet’s total terrestrial carbon (Watson et  al. 2000; 
Liu et  al. 2014). In natural forests, carbon can be accu-
mulated as above-ground (AG) and below-ground (BG) 
in the form of vegetation, litter and soil organic carbon 

(Malhi et  al. 2002). Soil and forest vegetation together 
hold around two-thirds of the terrestrial carbon (Lal 
2005). The estimated 861 ± 66 gigatons (Gt) carbon in 
forest ecosystems of which 44% is found in soil, 42% is 
biomass, 8% is dead wood, and 5% is litter components 
(Pan et al. 2011), provides an important climate modulat-
ing service. Forest vegetation biomass is essential since it 
sequesters around 2.4 ± 0.4 Gt carbon per year (Pan et al. 
2011), mitigating 21% of the yearly human emissions of 
10.7 ± 1.2 Gt carbon (Le Quéré et  al. 2018). Temperate 
forests encompass 767 million ha (16% of the cumulative 
forest area; Hansen et  al. 2010) and retain 46.6 Pg car-
bon. For regions with data limitations, such as the Kash-
mir Himalayan forests, where collecting field-based data 
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on carbon forestry is challenging, carbon estimation in 
forests is vital. With a predominance of coniferous tree 
species such as Abies pindrow and Pinus wallichiana, 
which have significant ecological relevance in the con-
text of "Reducing emissions from deforestation and forest 
degradation" (REDD+), these forests serve as significant 
carbon sink. To comprehend the importance of the forest 
in mitigating activities to reach the National Determined 
Commitment (NDC), such as REDD+, accurate quantifi-
cation of forest carbon is necessary (Kishwan et al. 2012).

Forest carbon, an essential climatic indicator, is, nev-
ertheless, a complex and non-directional function of 
other ecosystem processes. Factors such as topography, 
climate, soil, stand features and disturbance are hypoth-
esized to govern carbon reserves within the forest (Wei 
et al. 2013; Zhang et al. 2013). The interactions between 
these elements determine the efficiency of carbon fixa-
tion in forests. Such fundamental interactions, which 
have received little attention, have been stressed for pre-
cise carbon estimation, thus reducing uncertainties and 
leading to better decision-making on carbon mitigation 
programs. Understanding the connection between for-
est structure and ecological processes has gained much 
attention (Shugart et  al. 2010). By efficiently allocating 
available resources via niche complementarity and facili-
tation mechanisms, structural diversity tends to increase 
productivity (Fotis et al. 2018; Ouyang et al. 2019). Fewer 
big trees, regardless of their stand density and richness, 
have been observed to constitute a significant percentage 
of the basal area and effectively predict AG biomass and 
carbon (Lung and Espira 2015; Slik et al. 2013). However, 
despite their significant contribution to carbon cycling, 
diverse size class trees may not produce the same amount 
of biomass as a few large-diameter trees (Lutz et al. 2018; 
Meakem et  al. 2018). These findings point to a varied 
biomass distribution across trees of various sizes, but 
it is yet less understood if these distribution patterns of 
carbon hold or change depending on vegetation type. 
Although basal area and stand density are anticipated 
to be the main structural factors driving carbon stocks, 
a size-class-related approach might help to expand our 
knowledge. By improving canopy packing and light 
capture, stand density may enhance productivity (For-
rester and Bauhus 2016). Contrastingly, tree abundance 
can also negatively affect productivity (Chen et al. 2016; 
Fortunel et  al. 2018). Furthermore, in mountain forest 
ecosystems, topography has been an excellent spatial 
indicator of biomass production (de Castilho et al. 2006; 
Alves et al. 2010). Elevation influences vegetation growth 
and efficiency through temperature variations (Xu et  al. 
2017). To improve prediction models of how future cli-
mate can influence the global carbon cycle, it will be 
essential to reduce epistemic uncertainties in existing 

carbon stock measurements and determine crucial fac-
tors linked to vegetation growth and biomass (Anderson 
et al. 2011; Pan et al. 2013). Along these lines, a thorough 
investigation of biomass in forest ecosystems is critical to 
quantifying their commitment to carbon reserves.

On account of advanced observation systems and inter-
pretation methods, understanding the nature, distribu-
tion patterns and carbon reserves of forest ecosystems 
are progressively advancing (Saatchi et  al. 2011; Asner 
et al. 2012). Asia represents 31% of the forest area of the 
planet earth, whereas 21%, 17%, 17%, 9% and 5% cor-
respond to South America, Africa, North and Central 
America, Europe and Oceania, respectively (FAO 2010). 
Coniferous forests, a distinguished temperate forest 
ecosystem with simple vegetation composition, varied 
stand age and heterogeneous tree size structure, account 
for approximately 14% of the global total forest carbon 
reserves (Pan et al. 2011). The maximal extent of carbon 
stocks in temperate ecosystems is typically located in 
vegetation biomass (Peichl and Arain 2006; Pugh et  al. 
2019). Despite the significant advances in understanding 
the temperate carbon cycle, the data on Indian temper-
ate mountain forests, primarily the Kashmir Himalayas, 
remain limited. Temperate Kashmir Himalayan forest 
ecosystems are critical to carbon cycle management and 
are incredibly susceptible to the stimulatory effects of cli-
mate modifications, land-use transformations and frag-
mentation, besides habitat destruction (Wani et al. 2016; 
Rashid et al. 2017). In this study, we analyzed how forest 
structural attributes, disturbances, topography and cli-
matic variables affect the tree carbon in forests of Kash-
mir Himalaya. In order to address the following research 
questions, we analyzed 143 vegetation plots in three for-
ests, i.e., low-level blue pine (BP), mixed conifer (MC), 
and sub-alpine (SA) forests: (i) Do the three forest types 
vary in terms of tree carbon (TC) stocks? (ii) Does rela-
tive contribution of species to TC stocks differ? and (iii) 
What are the contributions and relative importance of 
interpreting drivers on TC stocks? Disentangling the 
determinants that influence tree carbon storage might 
lead to a better understanding of reducing climate change 
impacts by increasing forest carbon stocks.

Materials and methods
Site description
The study area lies in Kashmir Himalaya, a part of 
the Himalayan biodiversity hotspot, located in the 
geographical coordinates of 33° 30′ 31.2228″–34° 39′ 
53.7768″ E and 74° 29′ 43.7064″–75° 3′ 43.6392″ N in 
the north of India (Fig.  1). Kashmir valley is charac-
terized by a temperate climate exhibiting four distinct 
seasons with harsh winters and pleasant summers. 
The mean annual precipitation is 1005.5 ± 197.6  mm, 
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and the mean minimum and maximum temperature 
range between 5.4 ± 0.4 and 17.6 ± 0.8  °C (Dad et  al. 
2021). Snowfall besides rain is frequent during winter 
season, and the period begins in October and extends 
till March. The landscape of the investigated area is 
mountainous, steep and rugged, with a mean elevation 
of 2553 m (1807–3300 m). The study area is transverse 
with a dense drainage structure comprising many riv-
ers viz., Dodhganga, Romush, Veshaw, and Neelam, 
and small tributaries, streaming in various directions. 
Forest cover is mainly distributed from 2000 to 3300 m 
depending upon the physio-climatic conditions. Due 
to topography-induced alterations in climatic and 
edaphic characteristics, diverse vegetation types exist 
across the landscape. The major vegetation types are 
coniferous evergreen forests along with sub-alpine and 

alpine plant communities. The elevational distribution 
of three forest types includes low-level blue pine (BP), 
mixed conifer (MC) and sub-alpine (SA) forest types 
characterized by Pinus wallichiana, Abies pindrow 
and Pinus wallichiana, and Abies pindrow, respec-
tively (Dar and Parthasarathy 2022, Dar et  al. 2022). 
The understory vegetation is dominated by Viburnum 
grandiflorum, Rosa webbiana, Fragaria nubicola, Poa 
alpina and Stipa sibirica. The area is predominantly 
covered by entisols, alfisols and inceptisols with a 
loamy texture derived from Precambrian slates, phyl-
lites and quartzites (Krishnan 1982). The study area 
has been jeopardized by natural and anthropogenic 
disturbances such as snow, windthrow, land-use con-
versions, tourism, grazing, plant material extraction of 
nutritional and medicinal significance, etc.

Fig. 1  Study area and geographical distribution of sampling plots in Kashmir Himalayan coniferous forests
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Experimental design and field survey
Field inventory across three forest types in Kash-
mir Himalaya was conducted between April–July 
2019. The tree vegetation was sampled in 143 plots of 
0.25 ha (50 m × 50 m) placed at random with an inter-
plot distance of at least 500 m (Dar and Parthasarathy 
2022). Efforts were made to replicate plots propor-
tionally among the forest types, but this was unreal-
istic due to logistic constraints and accessibility. To 
minimize the confounding influence of the margins, 
all plots were laid within 100 m from the forest edges. 
Each plot was partitioned into 25 (10  m × 10  m) sub-
quadrats, and all trees ≥ 10  cm in diameter at breast 
height (DBH; 1.37 m) were recognized to species-level, 
and their diameters were measured over-bark to char-
acterize vegetation structure following standardized 
methods (Pearson et  al. 2005). The diameter of the 
stem at breast height, i.e., DBH (1.37 m above ground 
level), was used to compute the basal area (BA) as 
BA = 0.00007854 × DBH2. The basal area of all trees is 
added and scaled to hectare level by dividing the area 
sampled (m2 ha−1). Tree density, expressed as the num-
ber of trees per unit area, is defined as the individuals 
per hectare (ind ha−1).

We estimated above-ground biomass  (AGB) from 
DBH with get_biomass() function available in the 
"allodb" version (V) 0.0.1.9000 library for R (Gonza-
lez-Akre et  al. 2021). In addition, the identification of 
species is essential for choosing suitable allometric 
equations. Species names were validated using correct-
Taxo() from the "BIOMASS" library to ensure consist-
ency in spelling and nomenclature (Réjou-Méchain 
et  al. 2017). The family names of the respective cor-
rected species names were extracted using tax_name() 
in "taxize" library (Chamberlain et  al. 2020) in R. 
Additionally, the site coordinates are required to con-
sider climatic zones. Using the "kgc" R library, "allodb" 
determines the Köppen climatic zone of a particular 
place (Bryant et al. 2017). The resultant climate is then 
matched with the Köppen zone(s) of allometric equa-
tions and utilized in the weighting system. The below-
ground biomass (BGB) is determined from the acquired 
above-ground counterpart by taking into account a 
root/shoot ratio of 26%, as recommended by Cairns 
et al. (1997). The total biomass is evaluated by consid-
ering the AGB and BGB together. Tree carbon (TC) 
stocks are then assessed via the result of all tree bio-
mass determined from the biomass calculations and 
constant factor of 0.47 as recommended by Martin and 
Thomas (2011), implying 47% of biomass as carbon. 
The carbon content of individual trees within each plot 
is summarized and scaled to the hectare level (t ha−1).

Predictors of forest TC stocks
Within each plot, the topographic (slope, aspect, eleva-
tion), climatic (mean annual temperature (hereafter 
temperature) and mean annual precipitation (hereafter 
precipitation)), and structural factors (mean DBH, basal 
area and density) are determined. Geographical posi-
tion and elevation are recorded with a hand-held Global 
Positioning System (GPS; JUNO 3E). Slope and aspect 
are determined with Digital Elevation Model (DEM; 
30 m resolution) in ArcGIS 10.3 (Luedeling et al. 2007). 
Climate data are extracted from WorldClim (V2.1; ~ 1 
km2 spatial resolution; Fick and Hijmans 2017) based on 
field geo-coordinates using getData() function in “raster” 
library (https://​CRAN.R-​proje​ct.​org/​packa​ge=​raster) for 
R. The data are downscaled to 30-m resolution to main-
tain spatial uniformity with slope and aspect. To adjust 
for variations in scale, plot disturbances, non-timber for-
est product extraction, grazing, trails crossing the plot, 
lopping and counting the number of tree stumps are 
scaled and linearly integrated into a disturbance com-
plex using Principal Component Analysis (PCA) axis-1 
in “FactoMineR” V2.4 library (https://​CRAN.R-​proje​ct.​
org/​packa​ge=​Facto​MineR). Test scores of the PCA-1 are 
described as the disturbance complex.

Data analyses
Kruskal–Wallis test and kernel density are used to 
examine the mean differences and distribution of car-
bon stocks among forest types in "stats" V4.1–2 library 
(https://​CRAN.R-​proje​ct.​org/​packa​ge=​STAT). Multiple 
group comparisons are performed using the post hoc 
test. The Pearson’s correlation coefficient (r) and vari-
ance inflation factor (VIF) in “metan” V1.16.0 (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​metan) and “car” V3.0–
12 (https://​CRAN.R-​proje​ct.​org/​packa​ge=​car) libraries 
are estimated to analyze multi-collinearity and factors 
having non-collinear relationships (r < 0.6 and VIF < 5) 
are chosen for regression analysis. To satisfy the require-
ments of normality, the response and predictor variables 
are log-transformed (natural log scale) and standard-
ized (mean = 0; standard deviation = 1), which enhances 
the interpretability of model estimates (Schielzeth 2010; 
Muscarella et  al. 2020). Regression analysis is used to 
acknowledge the preselected non-collinear predictors 
(basal area, mean DBH, precipitation, aspect, slope, 
tree density, tree species richness and disturbance) of 
TC stocks in “stats” V4.1.2 and “ggplot2” V3.3.5 (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​ggplo​t2) libraries.

Random Forest (RF), a supervised machine-learn-
ing algorithm/technique, is used to derive the relative 
importance of individual predictor variables in shaping 
TC stocks (Liaw and Wiener 2002). In the data matrix, 

https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=FactoMineR
https://CRAN.R-project.org/package=FactoMineR
https://CRAN.R-project.org/package=STAT
https://CRAN.R-project.org/package=metan
https://CRAN.R-project.org/package=metan
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
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70% (100) of plots are selected to train (calibration) the 
bagged trees, while the remaining 30% (43) plots (out-
of-bag (OOB)) are used independently to cross-validate 
(validation) the performance of the RF model (Cao et al. 
2019). Two specifications need to be set to operate the RF 
technique: the number of decision trees to grow (ntree) 
or bootstrap samples drawn and the random sample 
of predictors selected as split candidates (mtry) at each 
node. The default setting of ntree = 500 is inadequate for 
producing consistent results. Therefore, the optimized 
number of trees (ntree) in the forest is set to 3000. How-
ever, we examined the predictive capability of the algo-
rithms with various mtry values (from one to the total 
number (11) of predictor variables) in order to choose 
the most effective mtry in terms of minimal possible 
OOB mean square error (MSE) using a loop function 
in R. The tests validated that three sub-set of randomly 
selected independent variables made accessible for node 
splitting, i.e., mtry = 3, worked best. The "randomForest" 
V4.7–1 library (https://​CRAN.R-​proje​ct.​org/​packa​ge=​
rando​mFore​st) is used to generate the model. The rel-
evance of each exogenous variable on the response vari-
able is analyzed using "rfpermute" V2.5.1 library (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​rfPer​mute). Moreo-
ver, model significance and cross-validated (CV) R2  are 
tested with 5000 iterations of the dependent variable (TC 
stocks) in "A3" V1.0.0 library (https://​CRAN.R-​proje​ct.​
org/​packa​ge=​A3). Statistical analyses are concluded in R 
environment Rv4.2.1 (R Core Team 2021).

Results
Patterns of tree biomass and carbon stocks
The mean total biomass across the landscape is 
386.05 ± 15.84 t ha−1 and in the three forests in 
decreasing order as 486.66 ± 35.80 t ha−1 (SA forest), 
385.73 ± 20.22 t ha−1 (MC forest) and 283.07 ± 24.89 t 
ha−1 (BP forest). The mean above-ground carbon (AGC) 
is maximal in SA forest (181.53 ± 13.36 t  C ha−1) fol-
lowed by MC forest (143.88 ± 7.54 t  C ha−1) and mini-
mal corresponds to BP forest (105.59 ± 9.29 t  C ha−1). 
Similarly, the below-ground carbon (BGC) across the 
landscape is higher (37.44 ± 1.54 t  C ha) than BP forest 
(27.45 ± 2.41 t C ha) and is equal (37.41 ± 1.96 t C ha−1) 
and prominently (47.20 ± 3.74 t C ha−1) lower than MC 
and SA forests, respectively. The total TC ranged from 
133.04 ± 11.70 t  C ha−1 (BP forest) to 228.73 ± 16.83 
t  C ha−1 (SA forest). Across the three forest types, TC 
stocks differ significantly (χ2 = 18.87; P = 0.000). The post 
hoc test revealed that BP–MC (P = 0.000) and BP–SA 
(P = 0.000) forest combinations as principal contributors 
to this variation (Fig. 2).

Biomass and carbon stock contribution by species
With regard to tree species in BP forest Pinus wallichi-
ana followed by Abies pindrow and Cedrus deodara are 
significant contributors sharing 65.74%, 17.60% and 
13.80% to tree biomass/carbon stocks (Table 1). By fam-
ily, Pinaceae, with four species, is dominant carbon sink, 
whereas the remaining two families contributed just 
0.24%. In MC and SA forests, Abies pindrow contrib-
uted the major share with 50.91% and 76.57% to the TC 
stocks, respectively. In both MC and SA forests, Pinaceae 
(99.36%; 98.48%) and Sapindaceae (0.28%; 0.87%) con-
stitute the important families from biomass and carbon 
perspective.

In all the three forest types, coniferous evergreen spe-
cies held the maximum share (99.33%) of biomass and 
carbon stocks: Abies pindrow (52.91%), Pinus wallichi-
ana (38.33%), Picea smithiana (5.76%), Cedrus deodara 
(2.16%), Taxus wallichiana (0.08%) and Juniperus semi-
globosa (0.07%). The lowermost carbon among broad-
leaved deciduous species corresponded to Robinia 
pseudoacacia (0.001 t  C ha−1), Aesculus indica (0.005 
t C ha−1) and Populus ciliate (0.03 t C ha−1). Among the 
conifers, species with less than ˂10 t  C ha−1 included 
Juniperus semiglobosa (0.13 t ha−1), Taxus wallichiana 
(0.0.15 t ha−1) and Cedrus deodara (3.92 t ha−1), whereas 
Abies pindrow, Pinus wallichiana and Picea smithiana on 
an average contributed 96.00, 69.56 and 10.45 t C ha−1.

Diameter class distribution
The distribution of carbon under various diameter classes 
varied significantly (F = 14.02; P = 0.000) among the three 
forest types. The percentage contribution of biomass/car-
bon stocks by diameter class represented a hump-shaped 

Fig. 2  Allocation of TC stocks by forest type (low-level blue pine, BP; 
mixed conifer, MC and sub-alpine, SA) in Kashmir Himalaya, India

https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=rfPermute
https://CRAN.R-project.org/package=rfPermute
https://CRAN.R-project.org/package=A3
https://CRAN.R-project.org/package=A3


Page 6 of 13Dar and Parthasarathy ﻿Ecological Processes           (2022) 11:58 

pattern with a maximal percentage contribution from 
mid-diameter class (70–100 cm) in all three forest types 
(BP = 48.76%; MC = 42.43% and SA = 36.48%) and also 
across the landscape (41.74%). The lowest (10–40  cm) 
diameter class contributed ˂10% to the total biomass 
and carbon stocks across the three forest types (Fig.  3). 
In contrast, large trees (≥ 70  cm) stocked 66.86%, with 

a maximum proportion corresponding to MC forest 
(52.80%). Across the three forest types, BP forest consti-
tutes the maximum biomass/carbon share in 10–40  cm 
(38.35%) and 70–100  cm (38.19%) diameter classes, 
whereas MC and SA forests represent the maximum pro-
portion in 40–70 cm (38.01%), and above 100 cm (100–
130  cm (46.90%), 130–160  cm (61.51%) and > 160  cm 
(58.63%)).

Drivers of TC stocks
Bivariate relationship between TC stocks and predictor 
variables
Certain structural attributes showed a high correlation 
with each other and with TC stocks. There is a positive 
correlation between mean DBH and basal area. These, 
in turn, presented high collinearity with TC stocks. 
Tree density exhibited a strong negative relationship 
with mean DBH, precipitation and temperature but not 
with basal area (Additional file  1: Fig. S1). Among the 
topographic variables, elevation depicted a significant 
correlation with basal area, disturbance, richness, and 
temperature besides TC stocks. However, aspect and 

Table 1  Species and family-based contribution to above-ground (AG), below-ground (BG), total and percentage (%) biomass and/or 
carbon in three forest types (low-level blue pine, BP; mixed conifer, MC and sub-alpine, SA) of Kashmir Himalaya, India

Species (family) AGB/AGC (t ha−1) BGB/BGC (t ha−1) Total biomass/carbon 
(t ha−1)

% 
Biomass/
carbon

BP forest

 Abies pindrow (Pinaceae) 39.54/18.59 10.28/4.83 49.83/23.42 17.60

 Cedrus deodara (Pinaceae) 29.61/13.92 7.70/3.62 37.31/17.53 13.18

 Juglans regia (Juglandaceae) 0.30/0.14 0.08/0.04 0.38/0.18 0.14

 Picea smithiana (Pinaceae) 7.28/3.42 1.89/0.89 9.18/4.31 3.24

 Pinus wallichiana (Pinaceae) 147.69/69.41 38.40/18.05 186.08/87.46 65.74

 Populus ciliate (Salicaceae) 0.23/0.11 0.06/0.03 0.29/0.13 0.10

MC forest

 Abies pindrow 155.86/73.25 40.52/19.05 196.38/92.30 50.91

 Acer caesium (Sapindaceae) 0.85/0.40 0.228/0.2285 1.07/0.50 0.28

 Aesculus indica (Sapindaceae) 0.01/0.01 0.003/0.001 0.02/0.01 0.00

 Corylus jacquemontii (Betulaceae) 0.22/0.10 0.063/0.0622 0.27/0.13 0.07

 Juglans regia 0.01/0.002 0.001/0.0006 0.01/0.003 0.002

 Juniperus semiglobosa (Cupressaceae) 0.42/0.20 0.113/0.1142 0.53/0.25 0.14

 Picea smithiana 25.16/11.83 6.54/3.07 31.70/14.90 8.22

 Pinus wallichiana 123.16/57.88 32.02/15.05 155.18/72.93 40.23

 Robinia pseudoacacia (Fabaceae) 0.003/0.001 0.0009/0.00003 0.004/0.002 0.001

 Taxus wallichiana (Taxaceae) 0.45/0.21 0.120/0.1245 0.56/0.27 0.15

SA forest

 Abies pindrow 295.76/139.01 76.90/36.14 372.66/175.15 76.57

 Acer caesium 3.35/1.58 0.87/0.41 4.23/1.99 0.87

 Betula utilis (Betulaceae) 2.50/1.18 0.65/0.31 3.15/1.48 0.65

 Picea smithiana 9.97/4.69 2.59/1.22 12.56/5.90 2.58

 Pinus wallichiana 74.65/35.09 19.41/9.12 94.06/44.21 19.33

Fig. 3  Contribution to biomass/carbon by diameter class across 
three forest types: low-level blue pine forest, BP; mixed-conifer forest, 
MC and sub-alpine, SA forest in Kashmir Himalaya, India
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slope did not show correlation with any variable. More-
over, a significant correlation is found between distur-
bance, and TC stocks, basal area, mean DBH, density, 
elevation and temperature. Tree species richness posi-
tively correlated with tree density and elevation, while it 
had a negative correlation with mean DBH and tempera-
ture (Additional file 1: Fig. S1).

Basal area and mean DBH proved to be the strong resil-
ient predictor for TC stocks across the forests (Fig.  4a 
and b). TC stocks also increased linearly with precipi-
tation (Fig.  4c). However, no relationship between TC 
stocks and aspect and slope was found (Additional file 1: 
Fig. S2). Similarly, temperature and tree species richness 
did not display any significant influence on TC stocks. TC 
stocks decreased along the disturbance complex gradient 
(Fig. 4d). Largest variation in the TC stocks is attributed 
to basal area (R2 = 0.93) since the influence of other pre-
dictor variables remained smaller (Fig. 4).

Random forest (RF) algorithm
RF model explained 86.2% (CV R2), variability of TC 
stocks across Kashmir Himalayan coniferous forests 
(Fig. 5). The analyses between TC stocks in sample plots 
and predictors (basal area, mean DBH, elevation, tree 
density, precipitation, temperature, tree species rich-
ness, forest type, aspect, slope and disturbance complex) 
proved that five variables (Fig. 5), out of a maximum of 
11, are the minimum number of attributes that provided 

the optimum predictive validity (P < 0.05). Basal area, 
mean DBH, and disturbance complex had the strongest 
effects on TC stocks, with relative importance values of 
30.15%, 17.96% and 10.64%, respectively, and collectively 
represent for over half (> 50%) of the relative influence in 
the RF model (Fig.  5). The importance of the predictor 
variables strongly decreases (60%) after the first variable, 
i.e., basal area. The followed variables with their respec-
tive Increment in Mean Square Error (% IncMSE) are: 
mean DBH (17.96%; P = 0.000) > disturbance (10.64%; 
P = 0.002) > precipitation (8.00%; P = 0.012) > elevation 
(7.34%; P = 0.039) (Additional file 1: Fig. S3). In contrast, 
the covariates temperature (6.12%; P = 0.073), density 
(3.48%; P = 0.234), forest type (P = 2.94%; P = 0.198), 
slope (1.48%; P = 0.269), tree species richness (0.65%; 
P = 0.348) and aspect (− 0.169; P = 0.433) are the least 
important (insignificant) variables to the modeled TC 
stocks.

Discussion
Patterns of tree carbon stocks
Carbon stocks and biomass are essential analytical 
aspects of forest ecosystems. Assessment of biomass 
demonstrates the extent of carbon a forest can hold and 
is an essential element for national development plan-
ning besides scientific analysis of carbon budget (Deva-
giri et  al. 2013; Naveenkumar et  al. 2017). The present 
work estimates the amount of biomass and carbon stored 

Fig. 4  Relationships of TC stocks with explanatory variables across three (low-level blue pine, BP; mixed conifer, MC and sub-alpine, SA) Kashmir 
Himalayan forests, India
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across three Kashmir Himalayan forests, India. The find-
ings indicate a relatively high TC stocks ranging from 
133.04 ± 11.70 t ha−1 (in BP forest) to 228.73 ± 16.83 
t ha−1 (in SA forest). However, this is not as much as 
carbon-rich mountain ash forests of southern Australia 
(2844 t  C ha−1; Keith et  al. 2009), Kauri coniferous for-
ests of New Zealand (982 t C ha−1; Silvester and Orchard 
1999), and temperate coniferous forests of North-West 
United States (774 t C ha−1; Smithwick et al. 2002). The 
estimates are higher than coniferous forests of India 
(51.39–68.81 t  C ha−1 in Northern Kashmir Hima-
laya (Wani et al. 2019) and Western Kashmir Himalaya, 
India (Wani et  al. 2015), mountain systems of Pakistan 
(85.04 ± 10.84–99.41 ± 15.59 t  C ha−1 in Khyber Pakh-
tunkhwa region; Ali et al. 2020) and coniferous forests of 
Mexico (41.3 ± 1.1 t  C ha−1; Arasa-Gisbert et  al. 2018). 
The heterogeneous drivers viz., vegetation structure, 
topography, climate and edaphic elements, stand age, for-
est type, adopted methodology, successional stage, previ-
ous tree felling, forest management history, and choice of 
regression equation used in biomass estimation may be 
attributed to this inconsistency (Peichl and Arain 2006; 
Jeyanny et  al. 2014; Chave et  al. 2014; Zhao et  al. 2014; 
Wani et  al. 2017). However, the projected carbon esti-
mates in the current study accord with Western Hima-
layan forests, India (Haq et al. 2021); Garhwal Himalaya, 
India (Sharma et al. 2010, 2018); Outer Himalaya, Paki-
stan (Amir et al. 2018); Western Himalayas, India (Singh 

and Verma 2018); Wanglang Nature Reserve, China 
(Zhang et  al. 2011) and dry coniferous forests of Cali-
fornia, United States of America (North et al. 2009). The 
greater carbon reserves in SA forest might be ascribed 
to many bigger trees besides less disturbance in the set-
up plots contributing considerable tree carbon stocks. 
The large-size individuals which formed the major 
share of biomass and carbon stocks is possibly due to 
their elevated heights and disseminated canopies, which 
empower them to exploit growth area not accessible to 
small-diameter lower-height individuals and diverse can-
opy niches.

Tree diameter-class distribution is recognized as 
an essential feature of forest structural heterogene-
ity besides forest dynamics and functioning (Lutz et  al. 
2013). The existing pattern of greater carbon proportion 
from larger diameter classes (≥ 70  cm) thereof, regard-
less of their lower number of individuals, has already 
been documented at a regional scale as well as across 
the globe from diverse forest types (Slik et al. 2013; Lutz 
et  al. 2018; McNicol et  al. 2018, Ali et  al. 2019). The 
observed differences in tree carbon portioning among 
diameter classes might be accounted to resource acces-
sibility and growth habitat. Overall, the analyzed forest 
types were mature, large-diameter class, old-growth with 
carbon stocks on the upper limit of the range observed 
for Indian forests (Chhabra et  al. 2002). Unlike earlier 
convictions (Odum 1969), old-growth trees continue 

Fig. 5  Random forest mean importance (% increase of mean square error (MSE)) of predictor variables studied as drivers of TC stock in Kashmir 
Himalayan forests, India. Significance threshold of covariates are as follows: *  < 0.05, **  < 0.01 and ***  < 0.001
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to accumulate an appreciable quantity of carbon (Luys-
saert et  al. 2008) which infers that Kashmir Himalayan 
forests have a strong competence for climate change 
mitigation. Furthermore, the increased carbon stor-
age across these forests underscores the significance of 
maintaining or expanding the conservation areas. Con-
servation implicates considering forests with high car-
bon stocks and their management to minimize pressure 
on forests by limiting biomass extraction. The Himala-
yan region, where green harvesting has been prohibited 
for the last three decades, might be a promising area for 
establishing the REDD+ idea of "Conservation of for-
est carbon stocks." Under REDD+, forest conservation 
as a mitigation strategy may also encourage biodiversity 
conservation (Gunilla et  al. 2013). Moreover, the third 
REDD+ option, sustainable forest management (SFM), 
helps to build forest carbon reserves and assures the 
ongoing flow of other ecosystem services. The majority of 
the Kashmir Himalayan forests are natural and are main-
tained according to competent management plans, which 
satisfy the criteria of SFM of REDD+ (Wani et al. 2016).

Stand structural attributes override TC stocks
Tree carbon stocks are bound to be controlled by the 
attributes of the species present in a given area (Dănescu 
et al. 2016; Zhang et al. 2012). Our findings revealed that 
TC stocks in Kashmir Himalayan forests are shaped by 
structural, climatic, disturbance, and topographic vari-
ables, implying that many ecological processes work 
simultaneously. Moreover, numerous other processes 
such as competition (Coomes and Allen 2007), species 
composition and age of the stand (Wani et al. 2019) are 
known to determine the forest carbon stocks. Ecosys-
tem production is larger in structurally diversified forests 
than in simpler ones (Ali 2019). Both regression and RF 
analyses demonstrated that the regression coefficients 
and importance of basal area and mean DBH are greater 
than other exogenous variables (climate, topography and 
disturbance complex), indicating that stand structure 
is the major factor in modulating TC stocks in Kashmir 
Himalayan forests (Figs.  4, 5). Due to complex stand 
structural features, greater light absorption and optimum 
utilization are believed to have resulted in these correla-
tions (Zhang and Chen 2015; Dănescu et  al. 2016). The 
results corroborate with other Himalayan forests (Banday 
et al. 2018; Khan et al. 2020; Kaushal and Baishya 2021; 
Gogoi et al. 2022) and elsewhere (Zhang and Chen 2015; 
Dănescu et  al. 2016; Xu et  al. 2018). Amir et  al. (2018) 
and Sullivan et  al. (2017), in congruence with our find-
ings, reported that tree density negatively correlates 
with mean DBH suggesting that higher stem density may 
result in intraspecific and interspecific competition for 
resources limiting tree growth rate.

The significance of topographic elements in shaping 
stand structure, species composition, and functionality 
is well established (Sanaei et al. 2020; Ullah et al. 2021). 
Variations in topography, in particular, might lead to 
inequality in resource allocation (Boerner 2006), which 
could affect species richness, forest canopy, tree density, 
and basal area, affecting above-ground biomass and, con-
sequently, carbon stock potential of the forest ecosystem 
(Jucker et al. 2018). In our study, where elevation extends 
from 1887 m to a high 3307 m, TC stocks which increased 
with elevation can be attributed to low disturbances and 
large-diameter trees at higher elevation. Furthermore, 
elevation can modify carbon stocks by adjusting mois-
ture, temperature, plant community type, and water 
accessibility, which can significantly impact carbon out-
put (Fisk et  al. 1998; Sanaei et  al. 2018). Similar results 
characterizing the positive association between elevation 
and carbon stocks are well-acknowledged from diverse 
forests of Loess Plateau, China (Liu and Nan 2018), Cen-
tral Highlands, Vietnam (Van Do et al. 2017) and North 
Kashmir Himalaya, India (Wani et  al. 2019). Nonethe-
less, contrasting outcomes were confirmed by Zhu et al. 
(2010) and Fehse et al. (2002). Determining the primary 
disturbances drivers that contributed to deforestation 
and degradation is critical, and concerted attempts to 
solve these challenges for effective implementation of 
REDD+ are required, particularly at disturbance-prone 
lower elevations. According to Sharma et al. (2011) and 
Moeslund et  al. (2013), aspect and slope considerably 
affected carbon storage and biomass. In contrast, we 
found no significant link between slope and aspect and 
TC stocks, presumably because their impact on carbon 
stocks is negligible over a large scale (Xu et al. 2017).

Our study also revealed that precipitation displays 
a positive effect on the increase of TC stocks (Fig.  4c), 
which is in line with Usoltsev et  al. (2022), implying an 
increase in net primary production (NPP) with precipita-
tion gradient. Similarly, Fang et  al. (2016) reported that 
precipitation is the most important climatic variable 
affecting TC stocks in Changbai Mountain and further 
concluded that precipitation is the principal element in 
forest production. By altering the decay rates of litter and 
organic matter content, climatic conditions can deter-
mine the accessibility of nutrients and photosynthesis. 
Nonetheless, Wang et  al. (2018) revealed that tempera-
ture and precipitation had contrasting impacts on car-
bon stocks in eastern Chinese forests. TC reserves are 
affected by disturbances, yet, the link between the two is 
not straightforward (Thornley and Cannell 2000). Lower 
disturbances are often characterized by late-successional 
vegetation coupled with larger tree height (Chave et  al. 
2009). As a result, harvesting voluminous trees dimin-
ishes the potential of forests to store carbon (Lindsell and 
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Klop 2013). Himalayan temperate forests mainly experi-
ence disruptions driven by biomass harvest, notably for 
timber and firewood, intensive grazing and many oth-
ers. These alterations prompt detrimental impacts on the 
structural attributes of plant communities (Vaidyanathan 
et al. 2010; Sapkota et al. 2018). Once the REDD + initia-
tives are implemented, these detrimental consequences 
may be rectified via REDD+ alternatives for deforestation 
and degradation. This demonstrates the region’s signifi-
cant potential for REDD+ initiatives, i.e., forest conserva-
tion, SFM, and enhancement of forest carbon stocks.

Conclusion and implications for climate change 
mitigation
In this study, the major focus is to determine the magni-
tude of carbon stocks and processes involved in temper-
ate Kashmir Himalayan forests. Many distinct questions 
are addressed, and the information gathered enabled the 
following conclusions:

•	 Kashmir Himalayan forests are significant carbon 
reserves as they store substantial amounts of carbon 
in trees, particularly in SA forest, as TC density was 
positively associated with elevation.

•	 As per the findings, mature old-growth forests com-
posed of Abies pindrow and Pinus wallichiana have 
a higher carbon storage capacity due to their pro-
longed turnover intervals and are thus suggested for 
the protection of tree species in undisturbed forests 
and carbon management in disturbed forest land-
scapes by afforestation.

•	 Carbon sequestration is a vital ecosystem service 
that results from interactions of ecological processes, 
including disturbance, climate, structural and topo-
graphic drivers.

•	 Structural attributes outperform the contribution 
of other drivers in interpreting the variation in TC 
stocks. Therefore, current research emphasizes the 
necessity of conserving large-diameter trees as well 
as managing and protecting old-growth forests, as 
corroborated by Lutz et  al. (2018) globally. Safe-
guarding old-growth forests will ensure higher car-
bon storage while promoting conservation efforts at 
all trophic levels.

•	 Disturbance complex gradient, which negatively 
affected the TC stocks, may be attributed to ille-
gal biomass harvesting of important timber species, 
notably Pinus wallichiana and Cedrus deodara.

Coniferous forests are the dominant forest type across 
Jammu and Kashmir Himalayan region; with FSI (2022), 
pure coniferous forests cover more than 70% of the total 
forest area of the entire Jammu and Kashmir. Therefore, 

knowledge of carbon storage in these coniferous forests 
will be of great importance for environmental manage-
ment initiatives to mitigate future climate change effects.

Our conclusions on the extent of TC stocks in Kashmir 
Himalayan forests are pertinent to UNFCCC efforts to 
minimize deforestation and forest degradation emissions. 
Such forests with great carbon sink due to prolonged car-
bon retention render them good climate change mitiga-
tion tools. Since the analysis focuses on collected data 
with enough samples taken from a large distributional 
range of BP, MC, and SA forests along an elevation gra-
dient, the conclusion is more realistic, hence an update 
of the tree carbon budget. These revised statistics can 
be used to analyze the role of forestry in reducing emis-
sions in the region. The forest carbon assessment would 
also boost the efficiency of incentive-based conservation 
schemes for combating climate, particularly the REDD+ 
initiative. Both the positive and negative aspects of 
REDD+ have promising importance in Kashmir Hima-
laya. The area is intended to gain most from negative 
REDD+ choices since it has primarily experienced forest 
loss in the past. Knowledge of tree species with regard to 
carbon stores and degrees of vulnerability in forest stands 
helps develop successful REDD+ measures to protect 
tree biodiversity and linked socioeconomic implications 
for the local population. The rigorous quantification of 
carbon would stimulate more robust community engage-
ment in forest-based mitigation efforts. Our knowledge 
on the forest types and factors that result in significant 
carbon accumulation may be designed to assist in high-
lighting conservation priorities. Protecting carbon-rich 
forests from anthropogenic disruptions minimize sub-
stantial CO2 emissions, and current losses are reduced 
by carbon sequestration. To forecast the implications 
of climate change on forest carbon stocks and optimize 
the function of forests for carbon reduction, a greater 
knowledge of the link between carbon stock, environ-
mental conditions, and forest structure is necessary. This 
involves enhancing carbon absorption, sustaining stand 
carbon reserves, and preventing carbon loss by strength-
ening their endurance.
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