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Abstract 

Background  Given the ubiquitous nature of mycorrhizal symbioses, different symbiotic fungi have obvious dif-
ferences in structure and function, which may affect associated tree aboveground and belowground C allocation 
dynamics. However, the mechanisms underlying tree aboveground and belowground C allocation and its response to 
symbiotic mycorrhizal types and other factors (e.g., resource availability) remain poorly understood.

Results  We used forest inventory data to explore the potential mechanism of tree aboveground and belowground C 
allocation patterns in Northeast China. Our results showed that tree-fungal symbioses were related to the patterns of 
tree C allocation. The ratio of aboveground to belowground C pool was significantly higher in ectomycorrhizal (EM)-
associated trees than that in arbuscular mycorrhizal (AM)-associated trees. Symbiotic mycorrhizal types were associ-
ated with the responses of tree aboveground and belowground C allocation to different factors, such as mean annual 
precipitation (MAP) and mean annual temperature (MAT). Almost all factors significantly increased aboveground C 
allocation in AM-associated trees but significantly decreased it in EM-associated trees. Moreover, after controlling the 
other factors, the effects of climate factors (MAT and MAP) on the C allocation of AM- and EM-associated trees were 
similar. Increases in MAT and MAP significantly increased belowground and aboveground C allocation, respectively.

Conclusions  Our results demonstrate symbiotic mycorrhizal types play an important role in controlling tree above-
ground and belowground C allocation and dynamics.

Keywords  Symbiotic mycorrhizal type, Tree carbon allocation pattern, Forest carbon cycling, Plant-climate 
interaction, Temperate forest

Background
Tree aboveground and belowground carbon (C) alloca-
tion is an important issue in forest ecosystem C cycling 
and global C modeling (Chen et al. 2013; Rog et al. 2021). 
Tree C allocation depends partly on the capacity of 

different components such as shoot and root tissues to 
metabolize, incorporate, and store C (Poorter et al. 2012; 
Yu et  al. 2015). How the tree assimilated C is allocated 
and stored to above- and belowground components, 
affects the growth and nutrient absorption of trees and 
determines the residence time of C in ecosystems, which 
has a profound effect on the tree, soil and forest ecosys-
tem C pool and flux (Chen et al. 2013; Herrera‐Ramírez 
et  al. 2020). For example, changes in tree aboveground 
and belowground C allocation affect litter decomposition 
and tree–atmosphere C exchange, as well as affect model 
estimates of the global woody C pool (Litton et al. 2007; 
Ise et al. 2010). Despite a long history of research on how 
trees coordinate above- and belowground C allocation, 
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defining tree C allocation strategy is a complex process 
that remains not fully understood due to trees with dif-
ferent C allocation strategies co-occurring in the same 
ecosystem, which hampers the capacity to model forest 
ecosystem C cycling (Friedlingstein et al. 1999; Franklin 
et al. 2012; McMurtrie and Dewar 2013; Hartmann and 
Trumbore 2016; Dominguez et al. 2021).

Abiotic environmental factors (e.g., soil moisture and 
soil N availability) can affect the tree aboveground and 
belowground C allocation strategy (Poorter et  al. 2012). 
According to the ‘balanced growth hypothesis’ and the 
‘optimal partitioning theory’, trees allocate biomass in 
an optimal pattern that enhances the uptake of the most 
limiting factor (Gedroc et al. 1996; Shipley and Meziane 
2002). Thus, if the limiting factor for growth is below-
ground resources (e.g., nutrients, water), trees will allo-
cate relatively more C to roots; on the contrary, if the 
limiting factor is above ground (e.g., light), trees will allo-
cate relatively more C to shoots (Poorter et al. 2012). For 
example, nitrogen (N) deposition alleviates soil N-limita-
tion and can increase C allocation to aboveground parts 
(Li et  al. 2020; Eastman et  al. 2021). Climate changes 
also affect tree aboveground and belowground C allo-
cation dynamics. For example, decreased precipitation 
can increase belowground C allocation by reducing soil 
water availability, and elevated temperature can enhance 
aboveground C allocation due to the increase in plant 
respiration (Way and Oren 2010; Hagedorn et al. 2016). 
However, at the current stage, most of our understand-
ing of tree aboveground and belowground C allocation 
response to abiotic environmental factors is at the indi-
vidual site and is based on manipulative experiments 
(local scale, Petit et  al. 2011; Eastman et  al. 2021). Tree 
aboveground and belowground C allocation responses 
to abiotic environmental factors at a large spatial scale 
(regional pattern) remain poorly understood, which ham-
pers the prediction of future C sequestration by terres-
trial ecosystems.

Besides abiotic factors, biological factors (e.g., tree spe-
cies identity, tree-symbiotic mycorrhizae and species 
richness) can also affect the tree aboveground and below-
ground C allocation strategy (Poorter et  al. 2012; Has-
selquist et al. 2016). It has been estimated that about 85% 
of all terrestrial plant species form associations with sym-
biotic mycorrhizal fungi to acquire nutrients from the 
soil (van der Heijden et al. 2015; Brundrett and Tedersoo 
2018). Plant-fungal symbioses significantly regulate plant 
growth, shape the biogeochemistry of ecosystems, and 
modulate ecosystem C dynamics (Phillips et al. 2013; Ter-
rer et al. 2016), which may affect plant aboveground and 
belowground C allocation patterns and their responses 
to environmental factors. Two main mycorrhizal types 
within trees are arbuscular mycorrhizal (AM) and 

ectomycorrhizal (EM), which differ greatly in their envi-
ronmental preferences, forms, and functions (Větrovský 
et  al. 2019; Genre et  al. 2020). For example, EM fungi 
can produce a wide range of enzymes that release N 
and other nutrients from organic matter, whereas AM 
fungi lack these enzymes (Read and Perez-Moreno 2003; 
Averill et  al. 2014). Accordingly, EM-associated trees 
and AM-associated trees have different nutrient absorp-
tion and growth strategies (Phillips et al. 2013), suggest-
ing that different mycorrhizal-associated trees may also 
have diverse aboveground and belowground C alloca-
tion patterns. Despite our increasing understanding of 
symbiotic mycorrhizal fungal functions, the patterns of 
aboveground and belowground C allocation between 
various mycorrhizal-associated trees are still unclear. 
Furthermore, tree species richness has been shown to 
positively affect tree productivity, aboveground C pool, 
soil C stock, and ecosystem C pool through niche com-
plementarity, the insurance effect, and the selection 
effect (Reich et al. 2012; Poorter et al. 2015; Chen et al. 
2018; Huang et al. 2018; Liu et al. 2018). Although spe-
cies richness can increase the C pool of trees, it is unclear 
how the increased C of trees is distributed among differ-
ent organs. Understanding how symbiotic mycorrhizal 
fungi and tree species richness affects tree aboveground 
and belowground C allocation is crucial to investigate 
the mechanism of tree aboveground and belowground C 
allocation and its feedback from climate change.

To fill the above knowledge gaps, we examined the 
effects of biological and abiotic factors on tree above-
ground and belowground C allocation patterns based on 
data from 1910 field sites across large-scale ecological 
gradients in Northeast China obtained using standard-
ized sampling methods. Here, we aimed to address three 
main questions: (1) Are tree C allocation patterns regu-
lated by interactions between environmental and biologi-
cal factors instead of just environmental factors? (2) Do 
tree species with different symbiotic mycorrhizal types 
(AM and EM) have different C allocation patterns? (3) Do 
trees symbiotic with different mycorrhizal fungi have dif-
ferent responses in C allocation to changing environmen-
tal factors? Based on previous experimental study results 
that environmental factor had a significant effect on tree 
aboveground and belowground C allocation (Petit et  al. 
2011; Zhang et al. 2015; Eastman et al. 2021), we hypoth-
esized that tree aboveground and belowground C alloca-
tion was still related to biological and abiotic factors in a 
large-scale ecological gradient. Due to the different func-
tions and structure between AM and EM symbiotic myc-
orrhizae (Větrovský et  al. 2019; Genre et  al. 2020) and 
the large amount of enzymes produced by EM fungi that 
consume a lot of organic matter, we further hypothesized 
that the ratio of aboveground to belowground C pool 
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was significantly higher in ectomycorrhizal (EM)-asso-
ciated trees than that in arbuscular mycorrhizal (AM)-
associated trees, and aboveground and belowground 
C allocation strategies of trees symbiotic with different 
mycorrhizal fungi have distinct responses to environ-
mental factors.

Methods
This study included a network of 1910 plots (30 m × 30 m) 
across temperate forests of Northeast China with a wide 
latitudinal and longitudinal range (latitude 39°54′–
53°19′N, longitude 118°51′–133°52′E; Supporting Infor-
mation Fig.  1 and Additional file  1: Table  S1). In this 
study, all artificial forest sites were excluded. The climate 
of the study area was characterized as a temperate con-
tinental climate: average annual precipitation ranged 
from 110 mm to 1108 mm and average annual tempera-
ture varied from − 6.8 ℃ to 9.2 ℃ across the study plots. 
Elevation varied from 0 to 1936 m a.s.l. Annual nitrogen 
deposition ranged from 12.80 kg/ha to 16.80 kg/ha (Wen 
et  al. 2020). More background information is presented 
in Additional file 1: Table S1.

Tree C pool and C allocation patterns
For each plot, all trees with DBH (diameter at breast 
height = 1.3  m) ≥ 3  cm were identified, recorded, and 
measured (including DBH and height). The Flora of 
China (http://​foc.​eflora.​cn/) and Catalogue of Life China 

(Checklist 2015, http://​www.​sp2000.​org.​cn/) were used 
to determine the names of all species. All measurements 
were completed between 2011 and 2013 according to 
the sampling method outlined by the Technical Manual 
Writing Group of the Ecosystem Carbon Sequestration 
Project (2015). Meanwhile, the number of tree species 
was recorded within each plot and used as the measure 
of species richness. In total, more than 500,000 trees 
from 1910 plots were recorded and measured in the 
study. Each tree’s dry biomass was calculated using the 
relevant allometric equation with tree height and DBH 
as predictors (Ecosystem Carbon Sequestration Project 
2015; Tang et  al. 2018). For each part of the tree (stem, 
branch, leaf, and root) a specific allometric equation was 
used (Additional file  1: Table  S2). The aboveground C 
pool, belowground C pool and total tree C pool were the 
aboveground biomass, belowground biomass and total 
tree biomass multiplied by conversion coefficient (0.5), 
respectively. Tree species richness was assessed as the 
number of species per plot with at least one tree individ-
ual DBH ≥ 10 cm.

Estimation of AM‑ and EM‑associated tree C pool and C 
allocation patterns
The symbiotic mycorrhizal type of each tree was identi-
fied according to the global online database of plant myc-
orrhizal associations and the symbiotic fungi website 
(http://​mycor​rhizas.​info/​index.​html; Soudzilovskaia et al. 

Fig. 1  The map of sampling sites. A total of 1910 plots were included and collected

http://foc.eflora.cn/
http://www.sp2000.org.cn/
http://mycorrhizas.info/index.html
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2020; Bueno et  al. 2021). The plots together contained 
202 tree species, including 116 species of AM trees, 75 
species of EM tree species and 11 species (5.4% of all spe-
cies) with other mycorrhizal associations. These 11 spe-
cies were not included in our analyses because of the low 
overall contribution to the whole species collection. The 
C pools of AM-associated trees and EM-associated trees 
per plot were calculated by summing tree C pools with 
the same mycorrhizal type. The aboveground and below-
ground C pools of AM-associated trees and EM-associ-
ated trees per plot were determined by summing the tree 
aboveground and belowground C pools within the same 
mycorrhizal type. Species richness of the AM-associated 
trees or the EM-associated trees per plot was assessed as 
the number of the same mycorrhizal type species with at 
least one individual DBH ≥ 10 cm.

Climate and other environmental factors
The data for nitrogen deposition (ND) was collected from 
the Nationwide Nitrogen Deposition Monitoring Net-
work (NNDMN, Wen et al. 2020). Mean annual precipi-
tation (MAP) and mean annual temperature (MAT) were 
retrieved from a resolution of 30 arc seconds WorldClim 
database (Hijmans et al. 2005).

Statistical analyses
The Shapiro–Wilk test was performed to examine the 
statistical distribution of data normality before statisti-
cal analyses in this study. One-way ANOVA followed 
by the Fisher LSD (least-significant difference) was used 
to detect the significance of the differences in the ratios 
of the aboveground C pool to the belowground C pool 
between different mycorrhizal-related trees at p < 0.05. 
The partial correlations analysis method was performed 
to explore the relationship of aboveground-belowground 
C pool ratio with six factors (including MAP, MAT, ND, 
AM-associated tree species richness (AMSR), EM-asso-
ciated tree species richness (EMSR), species richness 
(SR) in the packages ‘Hmisc’ and ‘ppcor’ in R 4.0.0 (R 
Development Core, 2020). After that, we conducted the 
partial least squares path model (PLS-PM) to infer poten-
tial direct and indirect effects of climate factors (includ-
ing MAT and MAP), ND, and species richness (including 
TSR, AMSR, and EMSR) on the ratio of aboveground 
C storage to belowground C storage. We used the 95% 
bootstrap confidence interval to judge whether the esti-
mated path coefficients were significant. Path coefficient 
represents the direction and strength of the direct effect. 
The PLS-PM was performed using the package ‘plspm’ 
in R 4.0.0 (R Development Core, 2020). All figures were 
drawn using the package “ggplot2” and all statistical anal-
yses were conducted in the R 4.0.0.

Results
Tree C storage in Northeast China
In the study area, the average tree C pool, AM-associ-
ated tree C pool, and EM-associated tree C pool were 
64.26 ± 1.85, 8.52 ± 0.40, and 52.10 ± 1.76 Mg  C/ha, 
respectively (Additional file 1: Table S1). Total EM-associ-
ated tree C pool was higher than the AM-associated tree 
C pool. Likewise, the aboveground C pool (39.76 ± 1.47 
Mg C/ha) and belowground C pool (12.34 ± 0.39 Mg C/
ha) of EM-associated trees also were higher than that 
of AM-associated trees (the aboveground C pool was 
6.54 ± 0.30 Mg  C/ha and the belowground C pool was 
1.97 ± 0.09 Mg C/ha). The ratio of aboveground C storage 
to belowground C (RAB) storage was higher in EM-asso-
ciated trees than that in AM-associated trees at the plot 
level and individual level (Fig. 2; Additional file 1: Fig. S1), 
indicating that AM-associated trees allocated more C to 
belowground components.

Effects of different factors on tree C pool
The EM-RAB was negatively associated with the SR, 
AMSR, ND, MAT, and MAP (Fig. 3). The EM-RAB was 
significantly positively correlated with EMSR. After 
controlling the role of AMSR and SR, the positive rela-
tionship between EM-RAB and EMSR was strength-
ened (Fig.  3). Moreover, excluding the effect of MAT, 

Fig. 2  Ratio of aboveground C to belowground C of EM-associated 
trees and AM-associated trees in each plot. ***indicates a significant 
difference within the group (p < 0.001)
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EM-RAB was positively associated with ND and MAP 
(Fig. 3). The AM-RAB was significantly positively corre-
lated with MAT, MAP, SR, and AMSR, even after con-
trolling the role of other factors (Fig. 3). However, after 
controlling the roles of SR and AMSR, AM-RAB was 
significantly negatively associated with EMSR (Fig. 3).

Consistently, the structural equation models (SEM) 
analysis revealed that MAP and MAT had a significant 
positive effect on species richness, while the ND had a 
significant negative effect on species richness. Species 
richness and MAT exerted positive effects on AM-
RAB, while MAP and ND were less responsible for the 
variations of AM-associated tree C allocation (Fig.  4, 
Additional file 1: Table S3). MAT, ND, and species rich-
ness had a negative relationship with the EM-RAB but 
MAP had a positive effect on EM-RAB (Fig. 4).

Discussion
Hypothesizes were supported by our results. We found 
AM-associated trees invested relatively more C in below-
ground components and relatively less C in aboveground 

components than EM-associated trees (Fig.  2), indicat-
ing that tree C allocation pattern is related to changes in 
community mycorrhizal composition. These results also 
explicitly show that changes in tree symbiotic mycor-
rhizal types may be important drivers influencing tree C 
allocation strategies in natural ecosystems.

Based on the concept of functional equilibrium 
between the capture of above- and below-ground 
resources by shoots and roots, shoot C allocation 
increases when aboveground resources (e.g., light and 
CO2) become more limiting, whereas root C alloca-
tion increases when soil resources (e.g., nutrients and 
water) become more limiting (Hilbert and Reynolds 
1991; McMurtrie and Dewar 2013). Diverse symbiotic 
mycorrhizae strongly affected the capacity of associ-
ated tree roots to take up different nutrients, leading to 
the spatial and temporal changes in the main limiting 
factors for diverse associated trees and then causing the 
alteration of its aboveground and belowground C alloca-
tion pattern (Poorter et al. 2012; Hasselquist et al. 2016). 
In Northeast China, boreal and temperate forests are 

Fig. 3  Partial correlations between the ratio of AM-associated tree aboveground C storage to belowground C storage (A) and the ratio of 
EM-associated tree aboveground C storage to belowground C storage (B), and different factors in the partial Least Squares Path Modeling. The 
intensity of colors and numbers indicates the strength of the correlation. Significant levels are: *, p < 0.05; **, p < 0.01; ***, p < 0.001. MAP annual 
average precipitation, MAT annual average temperature, ND nitrogen deposition, AMSR AM-associated tree species richness, EMSR EM-associated 
tree species richness, SR total species richness
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typically associated with N limitations (Gao et al. 2020). 
Trees should allocate more C below ground to enhance 
N absorption and assimilation. However, AM fungi are 
unable to liberate their N and thus more reliant on the 
availability of soil mineral N than their EM counterparts 
(Terrer et al. 2016). EM-associated trees acquire substan-
tially more organic N from the soil than AM-associated 
trees (Read and Perez‐Moreno 2003; Averill et al. 2014), 
suggesting that AM-associated trees might be subject to 
relatively stronger N limitations in the study area. This 
might explain why AM-associated trees allocated rela-
tively more C to belowground components, resulting in 
a relatively lower ratio of aboveground C pool to below-
ground C pool.

We also found that biological and abiotic factors were 
correlated to tree aboveground and belowground C allo-
cation and correlations varied with mycorrhizal type, 
suggesting that mycorrhizal fungal types could influence 
tree abilities to adapt to future environmental change. 
Previous studies confirmed that AM fungi could alle-
viate the negative consequences of rainfall variability 
via increased water use efficiency (Mohan et  al. 2014; 
Delavaux et  al. 2017). Increased water uptake in AM-
associated trees can be accomplished by using AM fungal 

structure and function (Maurel et al. 2015; Bennett and 
Classen 2020). MAP ranged from 110 to 1108  mm in 
the study area, and the maximum annual precipitation 
should be still less than the maximum water demand 
of trees (Knapp et  al. 2017). Thus, MAP should have a 
positive relationship with tree growth and C accumula-
tion. Based on the optimal partitioning theory (Gedroc 
et al. 1996; Shipley and Meziane 2002), due to AM fungi 
improving tree water uptake, trees can allocate relatively 
more C to aboveground components rather than below-
ground components, which can explain why the AM-
RAB was positively associated with MAP. Meanwhile, 
AM fungi have a wider temperature tolerance, which can 
promote host root tolerance to warming (Antunes et al. 
2011). In high-latitude forest types, warming can pro-
mote tree growth (García‐Valdés et al. 2020). AM fungal 
temperature tolerance could promote host root nutrient 
absorption, thus AM-associated trees can allocate rela-
tively more C to aboveground components rather than 
belowground components with warming, which can 
explain why AM-RAB is positively associated with MAT. 
Nevertheless, EM fungi have a narrower climate niche 
than AM fungi, including lower temperature valence and 
narrower precipitation valence (Větrovský et  al. 2019). 
The narrower climate niche of EM fungi indicates that 
its associated trees might have to respond to climate 
change challenges by shifting their physiology (Větrovský 
et al. 2019), which might lead to a negative relationship 
between EM-RAB and MAT and MAP. However, due 
to the different adaptability of AM-associated trees and 
EM-associated trees to climate change, AM-associated 
trees may partially replace EM-associated trees in future 
climate change scenarios (e.g., warming, Jo et  al. 2019), 
which will lead to less aboveground C allocation, more 
belowground C allocation and change the C cycle of the 
entire forest ecosystem. Our results also showed that C 
allocation of AM-associated trees is more strongly tied to 
climate factors than C allocation of EM-associated trees, 
suggesting that C allocation in AM trees may be more 
affected by global change than EM trees (Jo et  al. 2019; 
Steidinger et al. 2019). Moreover, nitrogen (N) deposition 
is rapidly and profoundly altering and increasing soil N 
availability (IPCC 2013). It is generally believed that EM-
associated trees responded to N enrichment by decreas-
ing their investment in N-acquisition enzymes (Midgley 
and Phillips 2016). However, in fact, fungal biomass and 
functional responses to N inputs probably depend on 
ecosystem phosphorus status (Lilleskov et  al. 2019). 
According to ‘optimal partitioning theory’ (Gedroc et al. 
1996; Shipley and Meziane 2002), N deposition-induced 
P limitation may increase the belowground C allocation 
of EM-associated trees that enhances the uptake of the 

Fig. 4  Structure equation models (SEM) showing the effects of MAP, 
MAT, species richness (including AM-associated tree species richness, 
EM-associated tree species richness, and total species richness), 
and nitrogen deposition on the ratio of aboveground C storage to 
belowground C storage. A AM-RAB, the ratio of AM-associated tree 
aboveground C storage to belowground C storage; B EM-RAB, the 
ratio of EM-associated tree aboveground C storage to belowground 
C storage. The yellow line indicates a significant positive correlation, 
the blue line indicates a significant negative correlation, and the 
dotted line indicates a non-significant correlation. Arrow width is 
proportional to the strength of the relationship. Numbers adjacent to 
arrows denote standardized path coefficients. Significant levels are: *, 
p < 0.05; **, p < 0.01; ***, p < 0.001
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limiting factor, which can partly explain the negative rela-
tionship between N deposition and the ratio of above-
ground C to belowground C of EM trees. AM fungi can 
better access immobile soil phosphorus and transfer large 
quantities of phosphorus to the host than EM species 
(Soudzilovskaia et  al. 2019). Thus, AM symbiosis could 
better facilitate tree aboveground growth under N depo-
sition that increases soil N availability, which can partly 
explain the positive relationship between N deposition 
and the ratio of aboveground C to belowground C of AM 
trees. As mentioned above, an increase in MAT and MAP 
might increase AM-RAB and reduce EM-RAB. In gen-
eral, AM-associated trees or EM-associated trees above-
ground and belowground C allocation pattern responses 
to these abiotic factors were through the specific function 
of different symbiotic fungi. Further work is necessary to 
evaluate the immediacy of the different mutualistic tree 
symbiont’s C allocation patterns response to these abiotic 
factors.

We further found that the relationship between tree 
aboveground and belowground C allocation and species 
richness also varied with mycorrhizal association. Spe-
cies richness and AM-associated tree species richness 
strongly positively correlated with AM-RAB and nega-
tively correlated with EM-RAB, suggesting that increases 
in species richness and AM-associated tree species rich-
ness could promote AM-associated trees to allocate rela-
tively more C to aboveground parts and EM-associated 
trees to allocate relatively more C to belowground parts. 
Previous studies found that AM tree species showed a 
stronger conspecific inhibition effect than EM tree spe-
cies at multiple spatial scales (Bennett et al. 2017). Thus, 
an increase in AM-associated tree species richness with 
crown complementarity and crown plasticity increase 
might enhance AM-associated tree aboveground growth 
(Bachelot et  al. 2017; Kunz et  al. 2019), which might 
explain the positive relationship between AM-RAB and 
AM-associated tree species richness. In the same area, 
high AM-associated tree species richness enhances AM 
fungal diversity and belowground hyphal networks, pro-
viding AM species-specific benefits and suppressing 
superior competitors (e.g., EM-associated tree species) 
(Tedersoo et  al. 2020). To improve the competitiveness 
of soil resources, EM-associated trees might allocate 
relatively more C to the belowground parts with the 
increase in AM-associated tree species richness, which 
could partly explain the negative relationship between 
EM-RAB and AM-associated tree species richness. 
These results demonstrate that mycorrhizal-associated 
species richness can mediate shifts in tree aboveground 

and belowground C allocation patterns, while the rel-
evant mechanism is still unclear and needs to be further 
studied.

However, there are still several imperfections in this 
study. First, the belowground allocation from the allo-
metric equations is likely assessing coarse root biomass, 
not fine (absorptive) root biomass. Thus, it is uncertain 
if the relationships discussed between RAB and nutrient 
acquisition truly hold. Second, the use of a single set of 
allometric equations for each species at all sites where 
they occur also possibly confounds the effects of MAT 
and MAP. Since the same allometric equation is used 
for a species wherever it occurs, the results cannot show 
within-species effects. Third, a large number of previ-
ous studies have shown that N deposition affects plant C 
allocation (Schulte‐Uebbing and de Vries 2018), which is 
consistent with our findings. But, for many of the larger, 
older trees, much of the biomass that is currently con-
tributing to their RAB may have been formed when N 
deposition was much lower. To accurately estimate the 
effects of N deposition on tree RAB, it may be necessary 
to construct specific allometric equations for trees under 
different levels of N deposition (Ibanez et al. 2016).

Conclusions
To summarize, our results provide evidence that the 
tree aboveground and belowground C allocation pattern 
was correlated with mycorrhizal associations. AM fungi 
promoted the associated trees to invest relatively more 
C in belowground parts, while EM fungi had the oppo-
site effect, suggesting that variation in mycorrhizal fun-
gal type might cascade aboveground and belowground 
to alter tree-species-specific C allocation patterns and 
affect forest ecosystem C cycling. Meanwhile, environ-
mental factors were correlated with tree aboveground 
and belowground C allocation, and the correlations var-
ied with mycorrhizal type, suggesting that symbiotic 
mycorrhizal fungi could influence associated tree spe-
cies abilities to adapt to future environmental change. 
However, although we identified symbiotic mycorrhizal 
fungi-mediated tree C allocation patterns, the mecha-
nisms of mycorrhizal fungi causing different tree C allo-
cation remain poorly understood. Given our results and 
the important role of mycorrhizal fungi in forest ecosys-
tems, additional experimental and field studies targeting 
the factors that affect the exchange of nutrients and C in 
trees-mycorrhizal symbioses are needed to better under-
stand the mechanisms underlying trees C allocation and 
forest ecosystem C cycling.
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