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Soil fauna accelerated litter C and N release 
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Abstract 

Background Soil fauna is an important driver of carbon (C) and nitrogen (N) release from decomposing litter in for-
est ecosystems. However, its role in C and N cycling concerning climate and litter traits remains less known. In a 4-year 
field experiment, we evaluated the effects of soil fauna on litter C and N release across an elevation gradient (453, 945, 
3023, and 3582 m) and litter traits (coniferous vs. broadleaf ) in southwestern China.

Results Our results showed that N was retained by –0.4% to 31.5%, but C was immediately released during the early 
stage (156–516 days) of decomposition for most litter species. Soil fauna significantly increased the peak N content 
and N retention across litter species, but reduced the C/N ratio for certain species (i.e., Juniperus saltuaria, Betula 
albosinensis, Quercus acutissima, and Pinus massoniana litter), leading to more C and N being released from decom-
posing litter across the elevation gradient. Contributions of soil fauna to C and N release were 3.87–9.90% and 1.10–
8.71%, respectively, across litter species after 4 years of decomposition. Soil environment and initial litter quality 
factors caused by elevation directly affected litter C and N release. Changes in soil fauna resulting from elevation 
and fauna exclusion factors had a direct or indirect impact on C and N release during litter decomposition.

Conclusions Our findings suggest that soil fauna promote C and N release from decomposing litter in different 
magnitudes, mainly controlled by environmental conditions (i.e., temperature and moisture), litter quality (i.e., lignin 
and cellulose content, and lignin/cellulose), and its diversity across the elevation gradient.

Keywords Carbon remaining, Nitrogen remaining, Nitrogen retention, Soil fauna, Elevational gradient

Background
Carbon (C) and nutrients [i.e., nitrogen (N) and phos-
phorus (P)] released from decomposing litter are cru-
cial for maintaining soil fertility and nutrient cycling 
in terrestrial ecosystems (Moore et  al. 2006; Berg and 
McClaugherty 2014; Wang et  al. 2021). Releasing of 
these elements is primarily regulated by interactions 
among climate, substrate quality, and decompos-
ers (Aerts 1997; Bradford et  al. 2016; García-Palacios 
et al. 2016). Although climate and substrate quality are 
the predominant regulators of decomposition glob-
ally (Cornwell et al. 2008; Wall et al. 2008; Zhang et al. 
2008), several other factors, including the composition 

†Li Zhang and Jingru Liu have contributed equally to this work and joint first 
author.

*Correspondence:
Bo Tan
bobotan1984@163.com
1 Forestry Ecological Engineering in Upper Reaches of Yangtze River Key 
Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural 
University, Chengdu 611130, China
2 College of Natural Resources and Environment, Northwest A&F 
University, Yangling 712100, Shaanxi, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13717-023-00459-4&domain=pdf


Page 2 of 13Zhang et al. Ecological Processes           (2023) 12:47 

and diversity of decomposers, interactions among litter 
types and soil properties, may influence litter decom-
position locally to a lesser degree (Makkonen et  al. 
2012; Fujii et al. 2018; Liu et al. 2021). In addition, stud-
ies have shown that decomposition generally occurs 
more rapidly in the presence of soil fauna (González 
and Seastedt 2001; Tan et  al. 2021; Zhou et  al. 2020). 
Soil fauna plays functional roles in improving organic 
matter decomposition and nutrient cycling, directly 
by litter fragmentation and indirectly by regulating the 
effects of abiotic factors and litter quality on decompo-
sition processes via microorganism regulation (Hätten-
schwiler and Gasser 2005; García-Palacios et  al. 2013, 
2016; Frouz 2018; Tan et al. 2021). Therefore, the role of 
soil fauna in C and nutrient cycling is essential to better 
understand litter decomposition processes within and 
among ecosystems.

The functional roles of soil fauna in litter decomposi-
tion have been well-documented in a variety of climates 
(González and Seastedt 2001; Wall et  al. 2008; García-
Palacios et  al. 2016; Tan et  al. 2021). Moreover, the 
effects of simulated warming (Yin et  al. 2019; 2020), N 
deposition (Liu et  al. 2021), and biodiversity loss (Hät-
tenschwiler and Gasser 2005; Handa et al. 2014) on soil 
fauna and litter decomposition have been tested in differ-
ent ecosystems. The present consensus is that soil fauna 
generally accelerates litter mass loss and nutrient cycling, 
although soil fauna abundance, biomass, activity, and 
diversity vary significantly with climate conditions and 
litter quality (chemical and physical composition) (Pow-
ers et al. 2009; Makkonen et al. 2012; Handa et al. 2014; 
Mariana et  al. 2018). Furthermore, increasing evidence 
emphasizes the role of decomposers (microbe and fauna) 
in explaining part of the residual variance in litter decom-
position patterns beyond climate and litter quality (Wall 
et al. 2008; Powers et al. 2009; García-Palacios et al. 2013; 
Bradford et al. 2014; Zhou et al. 2020). For instance, the 
presence or absence of mesofauna has the largest impact 
on decomposition rates across a precipitation gradient in 
tropical forests compared to litter type, decomposition 
environment, and site treatments (Powers et  al. 2009). 
Across forested sites in temperate regions, local-scale 
factors, including fauna and fungi, can explain 73% of the 
variation in wood decomposition rates when disaggre-
gated data are instead considered (Bradford et al. 2014). 
To a certain extent, soil fauna is not always subordinate 
to climate and litter quality determining litter decom-
position rates at regional and local scales (Meyer III 
et al. 2011; Bradford et al. 2014, 2016). However, despite 
the established importance of soil fauna, distinguishing 
their roles in organic matter decomposition and nutri-
ent cycling in relation to climate and litter traits remains 
challenging in many ecosystems (Meyer III et  al. 2011; 

Makkonen et  al. 2012; Bradford et  al. 2016; Zhou et  al. 
2020).

Increasing elevation can shift biotic and abiotic con-
ditions across relatively small spatial scales due to vari-
ations in climate, vegetation, decomposition, and soil 
types along elevational gradients (Salinas et  al. 2011; 
Marian et al. 2018; Cao et al. 2021). Furthermore, eleva-
tion studies can reflect the spatiotemporal pattern of 
large-scale environmental conditions along climatic gra-
dients (Sang 2009), which is a useful method for assess-
ing and quantifying the effects of the multiple drivers of 
litter decomposition at both regional and local scales, 
such as environmental factors, litter quality, and decom-
posers (Fujii et al. 2018; Tan et al. 2020; 2021). Elevation-
related data have the potential to provide information 
on the response of soil ecological processes (i.e., N min-
eralization, enzyme biological degradation, and litter 
decomposition) to temperature (Tan et  al. 2019; Cao 
et al. 2021), although the covariance of temperature with 
other elevation-dependent variables needs caution in 
interpretation (Salinas et  al. 2011; Bothwell et  al. 2014). 
Moreover, reciprocal transplant experiments conducted 
across latitudinal and altitudinal gradients have the 
potential to differentiate between direct environmen-
tal factors and other site-specific factors, such as litter 
quality and decomposer community diversity (Cornwell 
et al. 2008; Wall et al. 2008; Salinas et al. 2011; Makkonen 
et  al. 2012). Nevertheless, it is still not well-understood 
whether the roles of soil fauna in C and nutrient cycling, 
in relation to climate and litter traits, vary across differ-
ent climate zones or vegetation types.

In this study, we aim to quantify how soil fauna affects 
litter C and N release interactively with climate and lit-
ter traits along an elevational gradient. We conducted a 
4-year field decomposition experiment using two domi-
nant tree species (coniferous vs. broadleaf ) per site across 
four elevations (453, 945, 3023, and 3582 m a.s.l.) in the 
transitional region between the eastern Tibetan Plateau 
and the Sichuan basin, southwestern China. Litterbags 
with different mesh sizes (3 mm vs. 0.04 mm) were used 
to include and exclude soil fauna. In addition, we focused 
on soil fauna, including macro-fauna (e.g., Coleoptera 
and Hymenoptera) and micro-fauna (e.g., Oribatida and 
Collembola), which are the predominant soil fauna along 
the elevational gradient (Tan et al. 2013). We test the fol-
lowing hypotheses: (1) due to the limitation of low tem-
perature on the abundance and activity of soil fauna at 
high elevations, the impact of soil fauna on litter C and 
N release will decrease at high elevations, and (2) dur-
ing the decomposition process, soil fauna may have a 
greater impact on C and N release from litter with low 
quality (e.g., high C/N and lignin/N) due to their feeding 
preferences.
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Methods
Study sites
We selected four forest habitats in the Minjiang River 
Basin in southwest China with similar slopes and aspects 
but with different climates, vegetations, soil conditions, 
and elevations (Tan et al. 2020, 2021). The first forest hab-
itat is in Gao County (453 m a.s.l.), which is a subtropical 
subhumid monsoon with an average annual precipitation 
of 1021 mm and an average annual temperature of 18.1 
ºC. The dominant tree species are pine (Pinus massoni-
ana) and camphor (Cinnamomum camphora). The sec-
ond forest habitat is in Dujiangyan (945 m a.s.l.), which 
is a subtropical humid monsoon with an average annual 
precipitation of 1243  mm and an average annual tem-
perature of 15.2 ºC. The dominant tree species are cedar 
(Cryptomeria fortune) and oak (Quercus acutissima). 
The third and fourth forest habitats (3023 m and 3582 m 
a.s.l.) are in the Long-Term Research Station of Alpine 
Forest Ecosystems, which are temperate mountain mon-
soon with an average annual precipitation of 850 mm and 
820 mm, respectively, and an average temperature of 3 ºC 
and 2.3 ºC, respectively. Fir (Abies faxoniana) and birch 
(Betula albosinensis) are the dominant tree species at 
3023  m a.s.l., and cypress (Sabina saltuaria) and dwarf 
willow (Salix paraplesia) are the dominant tree species at 
3582 m a.s.l. (Tan et al. 2020, 2021).

Experimental design
This study investigated the effect of soil fauna on the 
release of C and N during litter decomposition using lit-
terbags. The mesh of the lower part of the litterbag was 
0.04  mm, and the upper part was divided into two cat-
egories. Using 3.00  mm as the control group, allowing 
macro-, meso- and micro-fauna to enter, and 0.04 mm as 
the treatment group that excludes soil fauna (Kampichler 
and Bruckner 2009; Tan et al. 2019, 2020).

Litter traps (1  m × 1  m) were used to collect freshly 
fallen leaves from dominant canopy trees at each eleva-
tion from September to October 2011, including one 
broad-leaved species and one coniferous species. To 
reduce the impact of home-field advantage, litter spe-
cies with similar properties (i.e., C, N, and lignin con-
tent or C/N and lignin/N) were chosen for each litter 
type (broadleaf or coniferous) along the elevational gra-
dient (Ayres et  al. 2009; Tan et  al. 2021). A total of 240 
litterbags (11 sampling times × 5 plots × 2 mesh sizes × 2 
litterbags + 20 spare litterbags) of each litter type were 
transferred to the corresponding sites in late November 
2011. Within each plot, 96 litterbags (2 species × 2 mesh 
sizes × 2 litterbags × 11 sampling times + 8 spare litter-
bags) were placed on the forest floor (Tan et  al. 2020; 
2021).

Sampling and chemical analysis of litter
Litterbag sampling was carried out after 35, 156, 277, 
398, 516, 628, 746, 896, 1079, 1261, and 1444 days of field 
incubation during the 4-year decomposition (December 
2011 to October 2015). Eight litterbags were collected 
from each plot for each sampling time. The samples were 
placed in sealed soil fauna bags and sent to the laboratory 
in time. After removing roots, moss, fresh litter, soil, and 
tags adhering to the surface of the remaining litterbags, 
the wet weight of the remaining litter in each litterbag 
was first weighed, and then the soil fauna was extracted 
using the Tullgren funnel method (Macfadyen 1953; 
Tan et  al. 2019; 2020; 2021). After collecting soil fauna, 
dry the litter in an oven at 65 °C for 48 h to measure the 
remaining dry mass. The oven-dried litter was ground 
and used to determine C and N concentrations. Dichro-
mate oxidation–sulfate–ferrous titration and indophe-
nol–blue colorimetry were used to measure C and N 
concentrations of litter samples, respectively, following 
the methods described by Lu (1999).

Fig. 1 Carbon (C) remaining (± SE, n = 5) in decomposing litters 
at different elevations and decomposition stages. a Willow, b Cypress, 
c Birch, d Fir, e Oak, f Cedar, g Camphor, h Pine. Asterisks denote 
significant (P < 0.05) differences between control (3 mm) and fauna 
exclusion treatments (0.04 mm) on each sampling date
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Data calculation and statistical analysis
Peak N content and critical C/N ratio were calculated 
at the time when litter net N loss started (Moore et  al. 
2006). N retention refers to the amount of N remaining 
at the peak N content relative to the original level (100%) 
(Ni et al. 2018). The mass remaining (Rm) of C and N dur-
ing each specific period of the 4-year study, and the con-
tribution of soil fauna to C and N release of litters after 4 
years of decomposition (Cfau) were calculated as follows:

Rmt(%) = MtCt/M0C0 × 100%

Cfau(%) = (100− Rmt3.00)− (100 − Rmt0.04)/100− Rmt3.00

M0 in the formula represents the initial dry mass (g) of 
litter; Mt represents the dry mass of the remaining litter 
(g) after retrieval at time t; C0 represents the initial C and 
N concentrations; Ct represents the concentrations of C 
and N at time t; t is the incubation days of litterbags in 
the field.

Structural equation models (SEMs) were run using the 
‘piecewiseSEM’ package (Lefcheck 2016) with the inclu-
sion of the elevation gradient to disentangle the potential 
pathways by which elevation influences the soil fauna-
driven litter C and N releases. Fisher’s C > 0.05 indicates 
that the model under test is adequately fitted. Based on 
the explanatory power of independent variables to the 

Table 1 Results of univariate ANOVA for the effects of elevation and litter type on the fauna effects of the C and N release of litters 
after 4 years of decomposition

ns P > 0.05, *P < 0.05, **P < 0.01

Factors C release N release

d.f. F P d.f. F P

Elevation 3 4.721 0.008** 3 2.846 0.053 ns

Litter type 1 1.096 0.303 ns 1 0.160 0.692 ns

Elevation × Litter type 3 17.933  < 0.001** 3 3.268 0.034*

Fig. 2 Contribution of soil fauna to litter C (a) and N (b) release at different elevations after 4 years of decomposition (± SE, n = 5). Different 
lowercase letters denote statistically significant (P < 0.05) differences between different species
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dependent variables, the best model was determined 
by highly fitting by deleting the nonsignificant relation-
ships in the model. Among them, initial litter quality 
included C/N, C/P, N/P, and lignin/N. Environmental fac-
tors included temperature and moisture across the eleva-
tional gradient. The soil fauna community represented 
the diversity of soil fauna colonizing litter during decom-
position. In addition, based on the significant changes in 
litter chemistry during decomposition (Wickings et  al. 
2012), we divided it into litter structural C and nutrients, 
including cellulose, lignin contents, and lignin/cellulose, 
as well as N, P, and N/P contents, respectively.

A general linear model (GLM) with repeated measures 
was used to test the individual effect of soil fauna treat-
ment, elevation, litter type, and decomposition time on C 
and N release. Univariate analysis of variance (ANOVA) 
was used to test the impact of elevation and litter type 
on the contribution of soil fauna to litter C and N release 
after 4 years of decomposition. For each sampling time, 
a Student’s independent sample t test was used for 

comparison of the effects of soil fauna treatment. All 
the differences analyzed were significant at the level of 
P < 0.05. ANOVAs were performed using SPSS 20.0 (IBM 
SPP Statistics Inc., Chicago, IL, USA).

Results
C remaining
The C content and C remaining varied significantly 
among litter types and elevations (Additional file  1: 
Table  S1). Regardless of litter species and elevation, the 
C content remained relatively stable around the initial C 
content over the 4-year decomposition period, with soil 
fauna occasionally increasing or decreasing the C con-
tent across litter species at specific sampling times (Addi-
tional file 1: Fig. S1). At the end of the experiment, the C 
remaining in the control and fauna exclusion treatment 
decreased over time, ranging from 27.15% to 38.38% and 
31.29% to 41.71%, respectively (Fig. 1). Soil fauna signifi-
cantly decreased the C remaining in the control treat-
ments across elevations after a rapid decrease during the 
first 35–398 days for all litter species. In both treatments, 
C remaining in coniferous litter increased with elevation 
(Fig. 1b, d, f and h). Furthermore, after decomposition for 
4 years, soil fauna contributions to C release were signifi-
cantly influenced by elevation and its interaction with lit-
ter type at the end of the experiment (Table 1), with its 
contribution ranging from 3.87% to 9.90% among litter 
species (Fig. 2a). Soil fauna contributions to C release of 
litter at different elevations were different, with higher 
contribution to coniferous litter at 3023 and 945 m, and 
higher contribution to broadleaf litter at 3582 m and 
453 m (Fig. 2a).  

N remaining
The N content and N remaining as decomposition 
proceeded were significantly affected by the fauna 
treatment, litter type, and elevation (Additional file  1: 
Table  S1). After a rapid leaching stage at 35–277 days 
of decomposition, the N content in the control and 
fauna exclusion treatments increased by 3.8–73.6% 
and 1.5–49.8%, respectively (Additional file 1: Fig. S2), 
resulting in remaining N increase at elevations 453 m, 
945  m, and 3023  m (Fig.  3). However, the remain-
ing N at these elevations consistently decreased after 
398 days of decomposition (Fig.  3c–h). At elevation 
3582 m, the remaining N in the two treatments contin-
ued to decrease for the broadleaf litter (willow) at the 
beginning of the litterbag incubation, but it showed a 
steady increase for the coniferous litter (cypress) after 
the leaching stage (Fig. 3a, b). At the end of the decom-
position, the remaining N in both treatments ranged 
from 19.8% to 54.0% (control) and 19.8% to 55.6% 
(fauna exclusion) across the litter types and elevations, 

Fig. 3 Nitrogen (N) remaining (± SE, n = 5) in decomposing litters 
at different elevations and decomposition stages. a Willow, b Cypress, 
c Birch, d Fir, e Oak, f Cedar, g Camphor, h Pine. Asterisks denote 
significant (P < 0.05) differences between control (3 mm) and fauna 
exclusion treatments (0.04 mm) on each sampling date
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respectively. In addition, after 4  years of decomposi-
tion, the remaining N in cypress, cedar, and pine lit-
ter was significantly lower in the controls than in the 
fauna exclusion treatments. However, the elevation and 
litter type did not affect the contributions of soil fauna 
to the N release at the end of the experiment (Table 1). 
Soil fauna contributions to N release varied between 
1.10% and 8.71% among litter species after 4 years of 
decomposition (Fig.  2b). Soil fauna contributions to 
the N release for coniferous litter were higher at 945 
and 453 m, whereas the contributions to the N release 
for broadleaf litter were higher at 3582 m and 3023 m 
(Fig. 2b).

The peak N content in the control and fauna exclu-
sion treatments ranged from 16.5 to 22.8 g/kg and 15.5 
to 22.6 g/kg across litter species, respectively (Fig. 4a). 
The critical C/N ratios in the two treatments were 
26.3 to 32.8 and 29.2 to 31.6, respectively (Fig.  4b). 
Compared to the controls, the fauna exclusion treat-
ment significantly reduced the peak N content for all 
litter species, and the N retention except willow and 
fir litter (Fig. 4a, c). In addition, fauna exclusion treat-
ment significantly increased the critical C/N ratios of 
cypress, birch, oak, and pine (Fig. 4b). After 4 years of 

decomposition, N release was correlated with the peak 
N content and initial N content, but not with the criti-
cal C/N ratio in both the controls and fauna exclusion 
treatments (Fig. 5a–c). However, N release was related 
to the initial C/N ratio in only the controls (P = 0.040), 
but not in the fauna exclusion treatments (P = 0.204; 
Fig. 5d). Regardless of the peak N content, the relation-
ship between remaining N and remaining C was nega-
tive across litter species in both treatments (Additional 
file 1: Fig. S3).

C/N ratios
The C/N ratio of litter species was significantly affected 
by the fauna treatment, litter type, elevation, and 
decomposition time (Additional file 1: Table S1, Fig. 6). 
The C/N ratios of litter species were decreased by soil 
fauna during most of the decomposition time (Fig.  6). 
The litter C/N ratio at different elevations showed dif-
ferences with decomposition time (Fig. 6). At elevations 
of 3582 m and 3023 m, the C/N ratio increased during 
the first 156 days of decomposition, followed by a sig-
nificant decrease, and then gradually increased again 
after 398–516 days of decomposition (Fig.  6a–d). The 
trend was opposite at elevations of 945  m and 453  m, 

Fig. 4 Critical nitrogen (N) thresholds. a Peak N content, b Critical C/N ratio, c N retention. Values are means (± SE) of the 5 replicates for the eight 
foliar litters in control (3 mm) and fauna exclusion treatments (0.04 mm). Asterisks denote significant (P < 0.05) differences between control (3 mm) 
and fauna exclusion treatments (0.04 mm). *P < 0.05, **P < 0.01



Page 7 of 13Zhang et al. Ecological Processes           (2023) 12:47  

where the C/N ratio reached its lowest point during 
the first 156 days of decomposition and then gradually 
increased (Fig.  6e–h). At the end of the experiment, 
the C/N ratios in the controls and fauna exclusion 
treatments ranged from 23.4 to 57.5 and 25.4 to 59.0, 
respectively (Fig. 6).

Factors influencing C and N remaining
The structural equation models indicated that environ-
mental factors, litter chemical composition changes, and 
soil fauna diversity were the most significant drivers of 
litter C and N remaining during decomposition (Fig. 7). 
The decrease in soil temperature and moisture with 
increasing elevation may weaken the release of soil C and 
N, leading to an increase in soil C and N remaining. In 
addition, there is a direct positive correlation between 
the litter’s initial quality change caused by elevation and 
C and N remaining (Fig. 7a, b). Litter structural C qual-
ity (lignin and cellulose content, and lignin/cellulose) 
and litter nutrients (N, P, and N/P) showed direct nega-
tive correlations with litter C and N remaining (Fig.  7), 
while soil fauna had significant negative effects on litter 

C remaining (Fig. 7a). Moreover, soil fauna may indirectly 
affect N remaining by affecting the litter structural C 
(Fig. 7b).

Discussion
Litter is the primary source of soil organic matter, and 
the C and N released in its decomposition is essential 
for soil fertility and nutrient cycling in forest ecosystems 
(Bradford et  al. 2016; Wang et  al. 2021). Decomposi-
tion in most ecosystems largely results from the activi-
ties of microorganisms and fauna, which break down 
non-living organic matter to obtain energy and mat-
ter (Bradford et  al. 2002; Handa et  al. 2014). Soil fauna 
strongly regulates the effects of abiotic factors and lit-
ter traits on decomposition processes (Frouz 2018). 
Many studies have widely demonstrated that soil fauna 
accelerates litter mass loss and nutrient cycling globally 
and regionally (Wall et  al. 2008; Yang and Chen 2009; 
García-Palacios et al. 2013; Yin et al. 2023). In our study, 
different leaf litter types and elevations resulted in the 
immediate release of C but retention of N during the 

Fig. 5 Remaining nitrogen (N) vs. a peak N content (n = 40), b initial N content (n = 40), c critical C/N ratio (n = 40), and d initial C/N ratio (n = 40). 
Values are means (± SE, n = 5) for the eight foliar litters in control (3 mm) and fauna exclusion treatments (0.04 mm). Pearson’s r and P values 
from linear regressions are shown in each panel
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early stage of decomposition. This is consistent with the 
results of existing decomposition study (Ni et  al. 2018). 
As soil organisms use C in the litter as an energy source 
(González and Seastedt 2001), this results in the direct 
release of C. In addition, soil fauna participates in feed-
ing, producing feces, and directly assimilating C sources, 
which optimizes the enzymatic degradation environment 
of microorganisms (Joly et al. 2020; Liu et al. 2023). Ulti-
mately, these soil biological factors collectively acceler-
ate the litter C release. However, soil organisms typically 
prefer high-quality litter with a low C/N ratio or litter 
with an initial quality close to their own C/N ratio. In this 
study, the initial C/N ratio of all litter was greater than 
the critical C/N ratio for N retention and release (25:1) 
(Chapin et  al. 2002), which requires microorganisms to 
obtain N from the environment to meet their metabolic 
activities (Berg and McClaugherty 2014). Therefore, lit-
ter often undergoes an N-enrichment process in the early 
decomposition stages before gradually degrading.

Soil fauna influences the dynamics of litter decompo-
sition and element release, including C and N (García-
Palacios et  al. 2013; Yang et  al. 2022; Yin et  al. 2023). 
Studies have shown that the effects of soil fauna on ele-
ment release can vary in different environments (Frouz 
2018; Long et  al. 2019) and may be influenced by tem-
perature, moisture, and elevation (Xu et  al. 2020). Pre-
vious research has indicated that natural environmental 
gradients exist at different elevations in our study area 
(Tan et al. 2021). As elevation increases, soil temperature 
and biological activity gradually decrease (Zhang et  al. 
2018), which can weaken C and N release during litter 
decomposition (Peng et  al. 2019). However, our study 
found that the influence of soil fauna on litter C and N 
release did not decrease with increasing elevation. The 
release of C and N from different types of litter also var-
ies, which contradicts our initial hypothesis. The highest 
contributions of soil fauna to C and N release for broad-
leaved litter were both observed at an elevation of 3582 
m, while their highest contributions to coniferous litter C 
and N releases were observed at elevations of 945 m and 
3023 m, respectively. Several possible explanations for 
this inconsistency are presented below. First, the abun-
dance and diversity of soil fauna and their effects on lit-
ter decomposition rates did not decrease significantly 
along the elevation gradient (Tan et al. 2021). In addition, 
the C concentrations of all litters fluctuated minimally 
throughout the decomposition process (Additional file 1: 
Fig. S1). This may have resulted in a consistent litter mass 
loss and C release pattern. Moreover, differences in the 
initial substrate quality characteristics of different tree 
species (Peng et al. 2019; Tan et al. 2020) and the increase 
of N concentration in the early stages of litter decom-
position (Fig.  3) may weaken the effect of elevation to 
some extent. Second, litter quality plays a crucial role in 
mediating the fauna’s role in litter decomposition at the 
regional scale (Yang et  al. 2022). High-quality broad-
leaved litter is more easily consumed by soil fauna and 
degraded (Peng et al. 2019; Xu et al. 2020). Willow has a 
low initial C/N ratio and high N content (Tan et al. 2021), 
which can cause soil fauna to contribute more to litter. In 
addition, the lower initial lignin and lignin/N of cedar are 
more conducive to soil fauna contribution. Third, thicker 
litter accumulation and richer soil organic matter in 
high-elevation areas can provide ample habitat and food 
resources for soil fauna, which may increase the impact 
of fauna on litter decomposition. Finally, soil fauna con-
tribution to mass loss in the decomposition process may 
also be affected by the interaction between litter quality 
and climate at different sites (Table 1).

Studies have found that initial litter quality determines 
the extent of the impact of soil fauna on C and N release 

Fig. 6 C/N ratio (± SE, n = 5) in decomposing litters at different 
elevations and decomposition stages. a Willow, b Cypress, c Birch, 
d Fir, e Oak, f Cedar, g Camphor, h Pine. Asterisks denote significant 
(P < 0.05) differences between control (3 mm) and fauna exclusion 
treatments (0.04 mm) on each sampling date
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Fig. 7 Structural equation models (SEMs) show the potential pathways by which elevation changes may affect the soil fauna-driven litter remaining 
C (a) and N (b). The C and N remaining model (AIC 62.65) with Fisher’s C = 4.65, P value = 0.59, d.f. = 6. Numbers along the arrows are standardized 
path coefficients. The variance explained (R2) is shown in each panel. Solid red arrows represent significant positive relationships and blue arrows 
represent significant negative relationships. *P < 0.05; **P < 0.01; ***P < 0.001. Dashed arrows represent non-significant relationships
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(Peng et  al. 2019). The difference in initial litter quality 
often leads to variations in the contribution of soil fauna 
to litter decomposition across different litter species (Xu 
et al. 2020; Yin et al. 2022). Inconsistent with the second 
hypothesis, although soil fauna has a higher impact on 
the release of C and N from low-quality litter in general, 
the results are opposite at the elevation of 3582 m. More-
over, the interaction effects of elevation and litter type 
significantly affected litter C and N release, although the 
litter type had a minor effect on these processes. This is 
consistent with previous studies that the contribution of 
soil fauna to litter nutrient release is influenced by spe-
cies, but this effect varies across different ecosystems 
(Yang and Chen 2009; Peng et  al. 2019). On one hand, 
high-quality litter contains more dissolved nutrients, 
leading to direct fixation and utilization by microorgan-
isms (Zhang et al. 2021), weakening the role of soil fauna 
in decomposition. Conversely, low-quality litter tends to 
contain more recalcitrant components and requires more 
physical fragmentation by soil fauna before being settled 
by microorganisms (González and Seastedt 2001; Perez 
et al. 2013), which may lead to its higher contribution. At 
the same time, the feeding and intestinal degradation of 
soil fauna can often reduce the substrate quality of litter 
(e.g., reduce the C/N ratio and lignin/N ratio), making 
it easier to be degraded by microorganisms (Aerts 1997; 
Yang and Chen 2009; Tan et al. 2020), which will increase 
the contribution of soil fauna. This was also verified in 
this study. In most sampling periods, soil fauna decreased 
the litter C/N ratio. The opposite result obtained at 
3582 m may be because low-quality litter in alpine areas 
can delay the development and reproduction of soil fauna 
(Steinwandter et al. 2019), while high-quality litter has a 
higher fauna density (Tan et al. 2021), thus increasing the 
decomposition of litter (Mueller et al. 2016).

Soil fauna effects on C and N release were controlled 
by environmental conditions, litter qualities, and biodi-
versity across elevation gradients (Peng et al. 2019). The 
initial N content of litter largely determines whether 
N is released or retained during decomposition (Man-
zoni et al. 2010). Soil fauna can affect nutrient release by 
changing the litter N and C/N ratio with different sub-
strate qualities. Interestingly, our research also confirmed 
this effect. The presence of soil fauna increased peak N 
content and N retention across litter species (Fig.  4). 
Presumably, the decomposable components in the early 
stage of litter decomposition are more easily colonized by 
different soil fauna communities (Fujii et al. 2018). As soil 
fauna reproduce, more energy is obtained from the soil, 
which increases the peak N content and N retention of 
litter. However, as decomposition progresses and the con-
tent of refractory substances in litter increases the impact 
of soil fauna on mass loss may be reduced (Marian et al. 

2018). Nevertheless, the increased soil fauna can also 
lead to soil N mineralization and nitrification (Bardgett 
and Chan 1999; David 2014; Wang et al. 2019), producing 
more ammonium and nitrate leaching (Zhang et al. 2016; 
Wang et  al. 2019). The critical C/N ratio of litter is an 
essential indicator of the beginning of net nutrient release 
(Manzoni et al. 2010). Our research found that soil fauna 
reduced the critical C/N ratio of some species (Fig.  4), 
which may lead to releasing more N during decomposi-
tion from the litter (Zechmeister-Boltenstern et al. 2015). 
In addition, the structural equation model shows that the 
chemical characteristics of litter (e.g., lignin, cellulose, 
and N content) can affect the C and N release of litter 
by affecting the diversity of soil fauna (Fig. 7). This may 
be because of the relatively simple structure of cellulose 
can be more easily decomposed by soil fauna (He et  al. 
2015; Xu et al. 2020). After decomposition, the microbial 
community and extracellular enzyme activity in the litter 
residue can also change, which may affect the release of C 
and N in the later stage of decomposition.

Conclusion
This study tested the effects of soil fauna on C and N 
release during litter decomposition in southwestern 
China. Our results suggested that during the initial stage 
of decomposition, C was rapidly released from litter spe-
cies, while N was retained. The net N release began when 
the critical C/N ratio of litters reached 26.3 to 32.8. The 
presence of soil fauna increased the peak N content and 
N retention across litter species, but reduced the C/N 
ratio for certain species, resulting in greater release of 
litter C and N across the  elevation gradient. Moreover, 
after 4 years of decomposition, soil fauna showed a trend 
of stimulating the C and N release of plant litter. The dif-
ferences in the soil environment, initial litter quality, and 
soil fauna caused by elevation had a direct or indirect 
impact on C and N release during litter decomposition. 
These findings suggest that soil fauna can accelerate the 
release of C and N during litter decomposition in dif-
ferent magnitudes, through the synergistic regulation of 
environmental conditions, litter quality, and soil fauna 
diversity across the elevation gradient.
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Additional file 1: Table S1. Results of the repeated measures ANOVA 
for the effects of the fauna treatment (F), elevation (E), litter type (L), and 
decomposition time (DT) on the content and remaining carbon (C) and 
nitrogen (N) as well as the ratio of C to N. Fig. S1. Carbon (C) content 
of the foliar litter (±SE, n = 5) at different elevations and decomposition 
stages. The asterisk (*) denotes the statistically significant (P < 0.05) differ-
ences in the C content between the controls (3 mm) and fauna exclusion 
treatments (0.04 mm) on each sampling date within each elevation. Fig. 
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S2. Nitrogen (N) content of the foliar litter (±SE, n = 5) at different eleva-
tions and decomposition stages. The asterisk (*) denotes the statistically 
significant (P < 0.05) differences in the N content between the controls (3 
mm) and fauna exclusion treatments (0.04 mm) on each sampling date 
within each elevation. Fig. S3. Remaining carbon (C) vs. remaining nitro-
gen (N). a Before the peak N content (n = 225). b At the peak N content (n 
= 40). c After the peak N content (n = 205). d After 4 years of decomposi-
tion (n = 35). Values are means (± SE, n = 5) for the eight foliar litters in 
control (3 mm) and fauna exclusion treatments (0.04 mm). Pearson’s r and 
P values from linear regressions are shown in each panel.
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