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Abstract 

Background Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. 
A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation 
effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollu-
tion in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We 
also explained the mechanisms involved in the remediation effects.

Results The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption 
process of rBC + Sep for  Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased 
by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 
958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Follow-
ing passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable 
and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–
0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment 
increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05).

Conclusions The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contami-
nated soil can effectively reduce the Cd concentration of soil and maize.
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Introduction
Soil cadmium (Cd) pollution has become an important 
problem affecting human health and environmental 
safety in China and many other  patrs of the world (Fan 
et  al. 2020).  According to the National Soil Pollution 
Status Survey Bulletin, in 2014, 7.0% of soils in China 
exceeded the standard for Cd pollution (Zhao et al. 2015). 
Statistics indicate that approximately 10 million  ha of 
land in China is contaminated by heavy metals and over 
12 million tons of grains are contaminated by heavy met-
als each year (Zhou et al. 2014; Sun et al. 2017). Cd is a 
toxic heavy metal that is silver-white in color and has a 
long half-life, making it difficult to reduce in the environ-
ment and easy to migrate and transform. The entry of Cd 
into the food chain poses a threat to human health (Fan 
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et al. 2020). Therefore, the remediation of Cd pollution in 
soil environments is urgent.

In recent years, in-situ passivation remediation has 
emerged as a promising technique for treating contami-
nated soils because of its high efficiency and low cost. 
Commonly used passivators include clay minerals and 
biochar. Biochar is a carbon-rich material produced 
from biomass under high-temperature and oxygen-
limited conditions. The porous structure and oxygen-
rich functional groups on the surface of biochar enable 
the adsorption and passivation of heavy metals through 
mechanisms such as surface complexation, ion exchange, 
electrostatic adsorption, and coprecipitation (Ahmad 
et  al.  2014; Xiao et  al.  2018; Cheng et  al.  2020). Addi-
tionally, biochar can be produced from a wide range of 
raw materials, providing a waste-to-resource solution 
and enhancing crop yield. Clay minerals possess large 
pore volumes and specific surface areas and are effective 
in passivating heavy metal-contaminated soils through 
adsorption, ion exchange, and co-precipitation, as well 
as in reducing Cd absorption in crops (Covelo et al. 2007; 
Song et al. 2011). Both biochar and clay minerals possess 
excellent adsorption capabilities owing to their unique 
surface structures, making them highly desirable passi-
vators for the study of soil heavy metal pollution. Zhang 
et  al. (2018) found that a montmorillonite and wheat 
straw biochar composite was effective in adsorbing nor-
floxacin from solution through electrostatic interactions, 
hydrogen bonding, and pore filling. Xie (2020) investi-
gated the adsorption of  Pb2+ in weakly alkaline soil using 
a montmorillonite and rice husk biochar (rBC) composite 
and found that the primary mechanism was chemisorp-
tion, with physical adsorption also playing a role. As dif-
ferent passivators exhibit varying degrees of adsorption 
capacity for heavy metals, the selection of an appropriate 
passivator has become a key factor in the success of in-
situ passivation and remediation.

Sepiolite (Sep) is a natural clay mineral that possesses 
a unique fibrous porous structure and large surface area, 
which enables it to adsorb both organic and inorganic 
ions with good potential for heavy metal adsorption 
(Abad-Valle et  al.  2016). As the pH increases, surface 
complexation and isomorphous substitution coexist, 
enhancing its ability to adsorb and passivation heavy 
metals (Basta and McGowen  2004; Liang et  al.  2014). 
However, studies have shown that when Sep is applied 
as a single passivation agent, its effect on Cd passivation 
decreases over time (Zhang et al. 2023).

This study aimed to examine the combined use of rBC 
and Sep for the prevention and control of Cd pollution 
in soil. To achieve this, we studied the passivation effects 
and mechanisms of different compound ratios of rBC 
and Sep on Cd in a weakly alkaline agricultural soil using 

three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 
218) as test crops. The results of this study can be used 
to inform environmental management for Cd and other 
heavy metal pollution.

Materials and methods
Experimental site
The experimental site was located in a Cd-polluted farm-
land in Nansunzhuang, Dongli District, Tianjin City 
(39°09′N, 117°31′E), China, which belongs to the Haihe 
River Basin and has a temperate semi-humid continen-
tal monsoon climate. The average annual precipitation 
is 643.8 mm, the frost-free period is 237 d, and the aver-
age annual temperature is 13.5 ºC. The soil is classified 
as fluvo-aquic soil with a pH of 8.33, electric conductiv-
ity (EC) of 256.3 µS·cm−1, and soil dissolved organic car-
bon (DOC) of 93.96 mg·kg−1. The soil Cd, Pb, As, and Cr 
concentrations are 1.30, 29.79, 17.41, and 36.67 mg·kg−1, 
respectively.

Material preparation and characterization
The rice husk was air-dried, sieved to remove gravel and 
debris, and ground using a high-speed universal grinder. 
The biochar was produced by pyrolyzing the rice husk at 
600 ºC for 2 h under anaerobic conditions using a contin-
uous carbonization machine. After the pyrolysis, the bio-
char was cooled to room temperature and stored in bags. 
The basic chemical properties of the passivation agents 
are listed in Table 1. The surface morphologies and struc-
tural characteristics of the samples were analyzed using 
a scanning electron microscope (SEM; Hitachi SU3500) 
equipped with an energy-dispersive spectrometer and a 
transmission electron microscope (EDS; JEOL JEM2010). 
The phase compositions and crystal structures of the 
samples were obtained using X-ray diffraction (XRD; 
Rigaku D/Max 2500) in the scanning range of 10–90°. 
Fourier transform infrared spectrophotometer (FTIR; 
Nicolet 380) was used to determine changes in functional 
groups, with a measured wavenumber range of 400–4000 
 cm−1 and a resolution of 1  cm−1.

Table 1 Basic chemical properties of amendments

Not detected (Nd)

Chemical properties Rice husk biochar Sepiolite

pH 9.76 8.95

C (%) 42.07 6.33

N (%) 0.55 Nd

H (%) 3.86 0.26

O (%) 23.27 18.44

Cd (mg·kg–1) Nd Nd
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Batch adsorption experiment
A total of 1 g of rBC, 1 g of Sep, and a mixture of 0.5 g of 
rBC and 0.5 g of Sep (rBC + Sep) were separately placed 
into 500 mL of Cd nitrate solution with an initial concen-
tration of 100 mg·L−1 of  Cd2+. The solutions were stirred 
constantly for 24 h at 25 ºC and 300 rpm using a mag-
netic stirrer. Samples were taken at various time intervals 
(1, 3, 5, 10, 15, 20, 30, 40, 60, 120, 180, 240, 300, 360, 480, 
600, 720, and 1440 min) and the  Cd2+ concentration was 
measured using inductively coupled plasma mass spec-
trometry (ICP-MS; iCAP Q, USA) after passing through 
0.45-μm filter.

For a series of concentrations of  Cd2+ (30, 60, 90, 120, 
150, and 200 mg·L−1), 0.1 g of the adsorbent was added 
and the optimal adsorption time was determined by 
shaking the solution at 180 rpm and 25 ºC. The super-
natant was filtered through a 0.45-μm filter and the 
 Cd2+ concentration was determined using ICP-MS.

Field experiment
In May 2020, a field experiment was conducted to reme-
diate the soil pollution. The experiment consisted of eight 
treatments, including a control treatment with no appli-
cation of a remediation agent (CK) and treatments with 
the application of 0.1% and 0.2% rBC (A1, A2), 0.2% and 
0.5% Sep (S1, S2), 0.1% rBC and 0.2% Sep (A1S1), 0.2% 
rBC and 0.2% Sep (A2S1), and 0.2% rBC and 0.5% Sep 
(A2S2). Each treatment was replicated three times in a 
single plot area of 20  m2. Three cultivars of maize (Zea 
mays L.) were planted in each treatment: Zhengdan 958 
(common cultivar), Liyu 16 (low-accumulation cultivar), 
and Sanbei 218 (low-accumulation cultivar), which were 
provided by the Tianjin Luhe Seed Co. The remediation 
agent was applied evenly to the topsoil (0–20 cm) of each 
plot using a tillage machine and mixed uniformly. After a 
20-day equilibrium period, maize was planted and man-
aged under normal production conditions, including 
regular weeding, insecticide application, and watering. 
Maize samples were harvested, dried, and sieved in Sep-
tember 2020. The Cd concentrations of the roots, stems, 
leaves, and grains of maize were measured. Soil samples 
were collected from the experimental plots, excluding 
residues such as gravel, plant roots, and stems. After 
grinding and air-drying, the samples were passed through 
20-, 50-, and 100-mesh nylon sieves to determine the 
available Cd concentration and fraction of the soil.

Analysis and determination
Soil sample analysis
The total Cd concentration in the soil was deter-
mined using  HNO3-HF and the Cd concentration in 
the digestion solution was determined using ICP-MS 

(Ultimate 3000-i CAP QC). The available Cd in the soil 
was extracted using the chelating agent diethylenetri-
aminepentaacetic acid (DTPA) at a solid-to-liquid ratio 
of 1:5, and the Cd concentration in the supernatant was 
determined using ICP-MS after extraction. Quality 
assurance and control were performed using duplicate 
samples with three replicates, blanks, and standard refer-
ence materials (NIST 2586).

The speciation of Cd in the soil was determined using 
the Tessier sequential extraction method considering five 
forms: exchangeable, carbonate-bound, Fe/Mn oxide-
bound, organic-bound, and residual. Exchangeable Cd 
was extracted using  MgCl2·6H2O, with a solid-to-liquid 
ratio of 8:1; carbonate-bound Cd was extracted using 
NaOAc, with a solid-to-liquid ratio of 8:1; Fe/Mn oxides-
bound Cd was extracted using  NH2OH·HCl, with a solid-
to-liquid ratio of 20:1; organic-bound Cd was extracted 
using  HNO3 and  H2O2, with a solid-to-liquid ratio of 8:1; 
and residual Cd was calculated by subtracting the sum of 
Cd concentration in the first fourth steps from the total 
soil Cd concentration.

Soil pH was measured using the glass electrode 
method using a pH meter (HJ 615-2011) (1:2.5 w/v). The 
sample EC was measured using a conductivity meter 
(Five Easy Plus; Mettler Toledo) (1:5 w/v). Soil dis-
solved  organic  carbon concentration was determined 
using the potassium dichromate oxidation method 
(Wang et  al. 2018). Catalase activity was determined by 
potassium permanganate titration (Bandara et al. 2017). 
Urease activity was determined using indophenol blue 
colorimetry and that of alkaline phosphatasewas deter-
mined using disodium phenyl phosphate colorimetry 
(Meena et al. 2016).

Determination of Cd concentration in maize
The Cd concentrations of the roots, stems, leaves, and 
grains of maize were determined using the  HNO3 diges-
tion method. Wheat flour (GBW08503c) was used for 
quality control and the Cd concentrations in the digested 
solution were measured using ICP-MS.

Data analysis
All treatments were independently repeated three times 
and correlation analysis and graphing were performed 
using SPSS 17.0 and Origin 2018, respectively.

The  Cd2+  adsorption capacity (q) was calculated as 
follows:

where m is the amount of adsorbent material (g); V is 
the total volume of the solution (L); and C0  and Ct  are 

(1)q =
(C0 − Ct)× V

m
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the mass concentration of  Cd2+  in the solution (mg·L−1) 
before adsorption and at adsorption time t, respectively.

The pseudo-first-order kinetic Eq. (2) and pseudo-sec-
ond-order kinetic Eq. (3) were used to fit the adsorption 
kinetics of  Cd2+ on different adsorption materials.

where K1 is the rate constant  (min−1) of the pseudo-first-
order kinetic model; t is the adsorption time (min); K2 is 
the rate constant of pseudo-second-order kinetic model 
(g·mg−1·min−1); and  qe  and  qt  are the  Cd2+  adsorp-
tion capacity (mg·g−1) at adsorption equilibrium and  t, 
respectively.

The Langmuir and Freundlich models were used for the 
non-linear fitting of the adsorption isotherm and were 
calculated using Eqs. (4) and (5), respectively:

where  qe  is the equilibrium adsorption capac-
ity (mg·g−1),  Ce  is the equilibrium concentration 
(mg·L−1),  qm  is the saturated adsorption capacity 
(mg·g−1), KL (L·mg−1) and KF (mg·g−1·L·mg−1)1/n are Lang-
muir adsorption constants and Freundlich adsorption 
constants, respectively, and n is a constant that indicates 
the adsorption strength and varies with the inhomogene-
ity of the material.

(2)qt = qe(1−e−K1t)

(3)qt =
K2q

2
e t

1+ K2qet

(4)qe =
qmKLCe

1+ KLCe

(5)qe = KFC
1
n
e

The accumulation and transport of Cd in maize grains 
were calculated using the bioconcentration factor (BCF) 
(Eq. (6)) and translocation factor (TF) (Eq. (7)). The 
translocation factor refers to the transport of heavy met-
als within the plants. The larger the bioconcentration 
factor, the faster the plant absorbs heavy metals, and the 
larger the transport coefficient, the stronger the ability 
of plants to transport heavy metals from roots to shoots 
(Wang et al. 2019).

where Cgrain, Croot, and Csoil (mg·kg−1) are the Cd concen-
trations of maize grains, roots, and soil, respectively.

Results and discussion
Performance of Cd adsorption by rBC, Sep, and rBC + Sep
The fitting curves of the adsorption kinetic models for 
 Cd2+  by rBC, Sep, and rBC + Sep are shown in Fig.  1a. 
The adsorption capacity of the different adsorption mate-
rials for  Cd2+ showed a rapidly increasing pattern (0–120 
min) and reached adsorption equilibrium after 120 
min. This could be attributed to the presence of abun-
dant adsorption sites on the adsorbent during the ini-
tial stage. As the adsorption time increased, the gradual 
saturation of the available adsorption sites resulted in a 
decrease in the adsorption rate (Mane and Babu  2013). 
As shown in Table  2, the pseudo-second-order kinetic 
fitting R2 values of the three adsorbents were 0.92, 0.93, 
and 0.97, respectively, which were higher than those of 

(6)BCF =
Cgrain

Csoil

(7)TF =
Cgrain

Croot
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Fig. 1 Adsorption kinetics a and adsorption isotherm b of  Cd2+ on rBC, Sep, and rBC + Sep
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the pseudo-first-order kinetics. The pseudo-second-
order kinetic model better fitted the adsorption process 
of  Cd2+ by rBC, Sep, and rBC + Sep, indicating that the 
adsorption process of  Cd2+ was mainly chemical.

Langmuir and Freundlich models were used to fit the 
adsorption isotherm data of  Cd2+  onto the adsorbent 
(Fig. 1b), and the fitting parameters are shown in Table 3. 
The results revealed that the Langmuir isotherm model 
provided a better fit for the adsorption of  Cd2+ (R2> 0.97). 
This suggests that the adsorption of  Cd2+  by rBC and 
Sep primarily involved a uniform adsorption process in 
a monolayer, which is consistent with the findings of Foo 
and Hameed (2010). The theoretical maximum adsorp-
tion amount of rBC, Sep, rBC + Sep for  Cd2+  predicted 
by the Langmuir model was in the order of rBC + Sep 
(43.53 mg·g−1) > rBC (27.88 mg·g−1) > Sep (17.77 mg·g−1), 
which agreed with the results of the adsorption kinetics 
experiment.

Adsorption mechanisms of rBC, Sep, and rBC + Sep on Cd
The surface structure and elemental concentration of the 
biochar were characterized using SEM–EDS. Figure 2a–c 
show the rBC and Sep materials before  Cd2+  adsorp-
tion and Fig. 2d–f show the rBC and Sep materials after 
 Cd2+ adsorption. rBC before adsorption shows a layered 
and overlapping shape, with a loose texture and many 
wrinkles, whereas Sep exhibits a smooth, straight fiber 
structure. After adsorption,  Cd2+ appeared uniformly on 
the surface of the adsorbent, indicating that  Cd2+  was 
successfully adsorbed. From a structural perspective, the 
successful adsorption of  Cd2+  may be due to the abun-
dant pores and internal cavity structures on the surface 

of rBC as well as the large smooth surface of Sep. The 
EDS spectrum analysis revealed that Sep contains a large 
amount of metal elements and it is tentatively speculated 
that  Cd2+  may undergo a chemical reaction with cer-
tain metal elements in Sep to form precipitates (Zhang 
et al. 2019).

The FTIR spectra of rBC, Sep, and rBC + Sep is shown 
in Fig. 3. A peak at 3427  cm−1 was observed in rBC, Sep, 
and rBC + Sep, which corresponded to the stretching 
vibration of -OH and adsorption (Chang et  al.  2019; Li 
et  al.  2015). The two weak absorption peaks observed 
at approximately 2916 and 2848  cm−1  were attributed 
to the stretching vibrations of -CH2  and -CH3, respec-
tively. The absorption peak at 1432  cm−1  was assigned 
to the stretching vibration of -CH2. The vibration peak 
of rBC + Sep shifted to around 1594  cm−1, correspond-
ing to the C = C vibration peak. The characteristic peak 
at 1018  cm−1  was assigned to the stretching vibration 
of -C-O. Compared to rBC, Sep exhibited a sharper and 
larger absorption peak at 1201  cm−1, corresponding to 
the stretching vibration of the C-O bond. The absorption 
peaks at 875 and 667  cm−1 indicated the presence of sin-
gle and polycyclic compounds. The peak at 464  cm−1 was 
attributed to the bending vibration of the Si-O-Si bond.

Upon the adsorption of  Cd2+, the characteristic peaks 
representing -OH in the biochar decreased from approxi-
mately 3427 to 3388  cm−1, indicating a possible reaction 
between  Cd2+ and -OH on the biochar surface, leading to 
the corresponding carbonate or hydroxide precipitation 
(Xu et  al.  2013). Furthermore, an enhancement of the 
broad peak at 1018  cm−1 was observed upon the adsorp-
tion of  Cd2+ following the Sep treatment, suggesting the 

Table 2 Adsorption kinetic parameters of  Cd2+ on rBC, Sep, and rBC + Sep

Adsorption capacity of  Cd2+ at adsorption equilibrium (qe; mg·g−1), Rate constant of the pseudo-first-order kinetic model (K1;  min−1), Rate constant of the quasi-
second-order kinetic model (K2; g·mg−1·min−1)

Samples Quasi-first-order kinetic model Quasi-second-order kinetic model

qe (mg·g–1) K1  (min–1) R2 qe (mg·g–1) K2 (g·mg−1·min–1) R2

rBC 14.05 0.27 0.74 14.65 0.029 0.92

Sep 8.85 0.12 0.80 9.28 0.019 0.93

rBC + Sep 34.17 0.10 0.94 35.92 0.004 0.97

Table 3 Isotherm parameters for  Cd2+adsorption on rBC, Sep, and rBC + Sep

Saturated adsorption capacity (Qm; mg·g−1), Langmuir adsorption constant (KL; L·mg−1), Freundlich adsorption constant [KF; mg·g−1·(L·mg−1)1/n], Constant of 
adsorption strength (n)

Samples Langmuir model Freundlich model

Qm (mg·g–1) KL (L·mg–1) R2 KF [mg·g−1(L·mg−1)1/n] n R2

rBC 34.86 0.02 0.96 4.15 0.37 0.96

Sep 28.40 0.01 0.98 6.90 0.56 0.96

rBC + Sep 52.56 0.02 0.97 5.26 0.40 0.94
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potential involvement of Si-O-Si groups on the surface of 
the Sep in the adsorption of  Cd2+.

The XRD analysis of rBC, Sep, and their compos-
ite materials revealed a broad diffraction peak of rBC 

at approximately 2θ= 25°, which is a characteristic peak 
of graphite structure (Fig.  4). The peaks of rBC-Cd at 
2θ= 23.5°, 30.3°, 36.4°, 43.8°, 49.9°, and 58.2° correspond 
to crystal planes (012), (104), (110), (202), (116), and (122) 

Fig. 2 SEM–EDS image of rBC, Sep, and rBC + Sep before a–c and after d–f Cd2+ adsorption
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of  CdCO3, respectively, suggesting that precipitation 
is the adsorption mechanism of  Cd2+  on rBC (Fig.  4a). 
The XRD pattern of Sep showed diffraction peaks at 
2θ= 23.0°, 29.4°, 47.5°, and 48.5°, corresponding to crys-
tal planes (012), (104), (018), and (116) of  CaCO3, respec-
tively. Compared with that of Sep, the XRD pattern of 
Sep-Cd showed a new peak at 2θ= 31.7° (Fig. 4b), which 
was attributed to the crystal plane (-111) of Cd(OH)2, 
indicating that the precipitation of O–H groups and 
 Cd2+  may be one of the mechanisms through which 
Sep adsorbs  Cd2+  (Xu et  al.  2009). After the adsorption 
of  Cd2+  by the composite material of rBC and Sep, the 
XRD pattern of the composite material showed the char-
acteristic peaks of  CdCO3  and Cd(OH)2. Specifically, in 
the rBC + Sep-Cd material, there were peaks at 2θ= 23.5°, 
36.4°, 47.5°, and 48.5°, corresponding to crystal planes 
(012), (110), (018), and (116) of  CdCO3, respectively, and 
a peak at 2θ= 31.7°, corresponding to the crystal plane 

(-111) of Cd(OH)2. This indicated that carbonate pre-
cipitation occurred during the adsorption of  Cd2+  by 
rBC + Sep (Fig. 4c).

Effects of rBC, Sep, and rBC + Sep on available Cd 
concentration and Cd fractions in soil
As shown in Fig.  5, the application of rBC, Sep, and 
rBC + Sep resulted in a decrease in the soil available Cd 
concentration with an increase in the amount of adsor-
bent applied compared to the CK treatment. Therefore, 
passivating agents play a crucial role in reducing the soil 
Cd concentration. In the single material adsorption, the 
available Cd concentration of soil treated with A2 and 
S2 decreased by 25.88% and 34.54%, respectively, com-
pared with CK. In the combined treatment, the available 
Cd concentration in the soil treated with A2S2 was the 
lowest, showing a 38.24% reduction compared with CK 
(p< 0.05).
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For the distribution of heavy metal forms, exchange-
able and carbonate-bound states are considered to be 
biologically available, whereas residual states are consid-
ered to be the most stable and least biologically available 
form (Lock et al. 2003). In soil without the application of 
passivating agents, the predominant forms of Cd were 
the Fe/Mn oxide-bound state (35.24%) and the exchange-
able state (28.30%), with the residual state accounting 
for only 6.45% and possessing some potential biologi-
cal availability (Fig.  6), consistent with the findings of 
Zhang et al. (2020). The application of passivating agents 
decreased the proportion of exchangeable Cd in the soil 
to varying degrees, with the decreasing range increasing 
with the amount of passivating agent applied, ranging 
from 24.33 to 34.73%. Compared to CK, the exchange-
able Cd decreased by 26.60% and 28.97%, respectively, 
when rBC was applied alone. This is because rBC has a 
porous carbon framework structure with clear and dis-
tinct pore profiles that can more effectively adsorb and 
retain heavy metals in the soil, thereby reducing their 
biological availability (Beesley et  al.  2011). Compared 
to the application of rBC alone, S2 achieved the largest 
decrease in exchangeable Cd at 34.73%. Thawornchaisit 
and Polprasert (2009) found that different passivating 
agents had different effects on soil remediation efficiency, 
which is consistent with the results of this study. Further-
more, the proportion of carbonate-bound Cd decreased 
to varying degrees. The proportion of carbonate-bound 
Cd accounted for 25.44% without passivation treatment 
but decreased by 19.82% to 23.53% following passivation 
treatment. The reduction was smaller when rBC and Sep 

were applied separately, decreasing by 0.02–0.06 units. 
When 0.2% rBC and 0.5% Sep were applied simultane-
ously, the proportion of carbonate-bound Cd decreased 
to 19.96%. After passivation treatment, the available Cd 
concentration in the soil decreased, gradually transform-
ing from exchangeable and carbonate-bound forms to 
Fe/Mn oxides and residual forms, resulting in reduced 
mobility and bioavailability (Seshadri et  al.  2017). This 
finding was consistent with the results of the present 
study. In this study, the Fe/Mn oxide-bound Cd increased 
to varying degrees (3.89% to 10.71%) following passiva-
tion treatment. The proportion of Fe/Mn oxide-bound 
Cd in the CK treatment was 35.24%, and the differences 
under different application rates were not significant 
(p> 0.05). The passivation treatment effectively increased 
the proportion of residual Cd. The passivation treat-
ment effectively increased the proportion of residual Cd 
by 115.45–294.20%. Uchimiya et  al. (2010) also showed 
that the input of biochar promoted the transformation 
of exchangeable Cd into residual forms, possibly because 
residual heavy metals are generally composed of primary 
and secondary silicates, sulfides, and other stable second-
ary minerals. In addition, biochar input increases soil pH 
and available silicon concentration, leading to the forma-
tion of new, structurally stable silicate precipitates with 
soil heavy metal ions and silicate ions, thereby increas-
ing the proportion of residual forms (Neumann and 
zur Nieden 2001).

Effects of rBC, Sep, and rBC + Sep on Cd concentration 
in maize
Figure  7  depicts the impact of rBC and Sep treatments 
on Cd accumulation in various parts of the three maize 
cultivars. The Cd accumulation pattern was in the order 
of roots > leaves > stems > grains. Following the appli-
cation of the passivation agents to the soil, a signifi-
cant reduction in Cd concentration was observed in all 
parts of the maize plants. The range of Cd reduction 
in the roots of Liyu 16 varied from 9.66 to 32.77%. The 
decrease in Liyu 16 was the largest, although it was not 
statistically different from that in the two other cultivars 
(p> 0.05). However, a significant reduction in Cd concen-
tration was observed in the roots of Zhengdan 958 and 
Sanbei 218 (p< 0.05). Under 0.2% rBC + 0.5% Sep, the 
maximum reductions in Cd concentration were 40.04% 
and 46.07% in the roots of Zhengdan 958 and Sanbei 218, 
respectively. A significant reduction in Cd content was 
also observed in the stems of all three maize cultivars 
(p< 0.05), with the reduction increasing with increasing 
passivation concentration. The reduction in Cd concen-
tration in the stems of Liyu 16, Zhengdan 958, and San-
bei 218 ranged from 10.27–40.47%, 3.12–36.53%, and 
6.60–53.60%, respectively. In the leaves of Zhengdan 958, 

CK A1 A2 S1 S2 A1S1 A2S1 A2S2
0

20

40

60

80

100

Treatment

F1 F2 F3 F4 F5

C
d 

fr
ac

tio
ns

 (%
)

Fig. 6 Soil Cd fractions under different treatments. Exchangeable 
(F1), Carbonate-bound (F2), Fe/Mn oxides-bound (F3), Organic (F4), 
Residual (F5)



Page 9 of 13Zhang et al. Ecological Processes            (2024) 13:3  

A2S2 treatment decreased Cd concentration by 16.05%, 
which was an insignificant reduction in Cd concentration 
(p> 0.05) compared with CK treatment. However, a sig-
nificant reduction in Cd concentration was observed in 
the leaves of Liyu 16 and Sanbei 218 (p< 0.05), with maxi-
mum reductions of 32.62% and 42.10%, respectively.

In this experiment, the accumulation of Cd in grains of 
the  three cultivars of maize in the CK exceeded the Cd 
limit of ≤ 0.1 mg·kg−1  set by the China’s  National Food 
Safety Standard – Maximum Levels for Contaminants in 
Foods (GB2762-2022). Following the application of passi-
vation agents, a significant reduction in Cd concentration 
was observed in the grains of all three maize cultivars 
(p< 0.05), with reductions of 13.80% to 31.40% observed 
in the grains of Zhengdan 958. Under A2S2 treatment, 
the Cd concentration in the grains of Liyu 16, Zhengdan 
958 and Sanbei 218 decreased by 47.85%, 45.61% and 
46.15%, respectively, indicating that the application of 
0.2% rBC + 0.5% Sep passivation material had the great-
est inhibitory effect on Cd in the grains of Liyu 16, which 
may be attributed to the different genotypes and toler-
ance mechanisms of the same plant species. Further stud-
ies are needed to elucidate the underlying mechanism 

(Bhargava et al. 2012). The Cd concentration in the grain 
of the low-accumulating cultivar Liyu 16 was lower than 
0.1 mg·kg−1  (except for S1 treatment) after treatment, 
which met the standard. However, under A1, S1, S2, 
and A1S1 treatments of the common cultivar Zhengdan 
958 and the S1 treatment of the low-accumulating cul-
tivar Sanbei 218, the Cd concentration in the grain was 
above 0.1 mg·kg−1. Among them, the most effective treat-
ment for reducing Cd concentration in grains was A2S2 
treatment, which showed reductions of 47.85%, 45.61%, 
and 46.15% compared to CK. The combined treatment 
of rBC + Sep effectively reduced the Cd concentra-
tion in grains, which met the requirements of the above 
standards.

Effects of rBC, Sep, and rBC + Sep on transport ability of Cd 
in maize
We evaluated the ability of plants to accumulate and 
transport the Cd using bioconcentration and transloca-
tion factors (Cui et  al.  2017). The Cd bioconcentration 
factors of the two low-accumulating maize cultivars, 
Liyu 16 and Sanbei 218, were significantly lower than 
that of the common cultivar Zhengdan 958 (Fig.  8a). 
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This finding was consistent with that of Wu et al. (2005), 
who found differences in Cd absorption, transport, and 
accumulation among different wheat genotypes. This 
phenomenon may be attributed to the genetic regula-
tion of Cd accumulation in crops, which is closely associ-
ated with the ability of different cellular organelles in the 
roots, stems, and leaves to fix, store, and tolerate Cd, as 
well as the influence of genes involved in Cd regulation 
(Yue et al. 2018; Feng et al. 2020). Moreover, after apply-
ing the passivator, the Cd bioconcentration factor in the 
grains of the three maize cultivars significantly decreased 
(p< 0.05). In Liyu 16, the bioconcentration factor of Cd 
in grains decreased by 2.89–20.37% compared to the 
CK. The Cd bioconcentration factor in Zhengdan 958 
ranged from 0.07 to 0.13, with a mean of 0.09. In Sanbei 
218, under the A2S2 treatment, the Cd bioconcentration 
factor decreased significantly by 17.71% compared with 
CK (p< 0.05). Variance in heavy metal uptake and adap-
tation capabilities among different maize cultivars may 
be attributed to various factors, including differential 
gene expressions within the crop and disparities in the 
application of passivating agents (Feng et  al.  2020; Guo 
et al. 2018).

A higher translocation factor indicates a stronger abil-
ity of the heavy metal to transfer from the roots to the 
aboveground parts (Sun et al. 2008). Zhi et al. (2014) sug-
gested that the criteria for screening low-accumulating 
crop cultivars must satisfy both the bioconcentration and 
translocation factors of the cultivar of less than 1. In this 
study, the Cd translocation factor of the three maize cul-
tivars from roots to the grains was less than 1 (Fig. 8b), 
indicating that Cd mainly accumulated in the roots of 
maize. In Liyu 16, the Cd translocation factor from roots 
to grains ranged from 0.24 to 0.35, with a mean of 0.29. 
In Zhengdan 958, the Cd translocation factor ranged 

from 0.19 to 0.35, with a mean of 0.30. In Sanbei 218, the 
Cd translocation factor ranged from 0.21 to 0.27, with a 
mean of 0.25. These findings indicated that the Cd trans-
ferred from the soil to the grains was very low and most 
of the Cd was intercepted by the roots, stems, and leaves. 
Due to the decrease of Cd concentration in different 
parts of maize under the treatment of adding passivating 
agent, it is feasible to use passivating agent to repair Cd-
contaminated farmlands.

Influence of soil chemical properties and enzyme activities 
under different treatments
As shown in Table4, the application of rBC + Sep resulted 
in a moderate increase in soil pH compared to CK but the 
differences were insignificant (p> 0.05). The magnitude of 
the increase generally increased with the application of 
passivating agents, with a pH increasing by 0.17 under 
A2S2 treatment. Compared with CK, except for S1 treat-
ment, soil electrical conductivity under each treatment 
increased to varying degrees but the differences were 
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Table 4 Effects of different treatments on basic properties of soil

Electric conductivity (EC; µS·cm−1), Dissolved organic carbon (DOC; mg·kg−1), 
Data are shown as mean ± standard deviation (n = 3), Different letters in columns 
indicate significant differences (p< 0.05)

Treatment pH EC (µS·cm–1) DOC (mg·kg–1)

CK 8.34 ± 0.12b 265.9 ± 63.3a 93.96 ± 18.00b

A1 8.34 ± 0.15b 272.5 ± 58.3a 100.45 ± 10.94ab

A2 8.35 ± 0.12b 293.7 ± 63.9a 111.73 ± 26.51a

S1 8.53 ± 0.08a 260.3 ± 57.0a 105.99 ± 22.44ab

S2 8.43 ± 0.17ab 316.4 ± 96.8a 106.58 ± 14.96ab

A1S1 8.47 ± 0.21ab 305.4 ± 59.9a 104.76 ± 18.04ab

A2S1 8.38 ± 0.19ab 332.6 ± 101.5a 101.92 ± 12.12ab

A2S2 8.50 ± 0.14ab 278.7 ± 73.5a 107.38 ± 12.08ab
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insignificant (p> 0.05). When the application rates of rBC 
and Sep were 0.2% and 0.2%, the electrical conductivity 
increased by 25.10%. Except for under A2, soil dissolved 
organic carbon concentration showed no significant dif-
ference compared to CK (except for S1,  p> 0.05), with 
increases of 6.91–14.28%.

Soil enzyme activity, as an organic component of the 
soil, is involved in the transformation of substances and 
energy in the soil, thereby affecting soil metabolism 
(Jimenez et al. 2002). Soil enzymes are sensitive to heavy 
metals (Zhang et al. 2015) and their activity is affected to 
varying degrees when exposed to heavy metal stress. In 
this study, after the application of different rates of rBC 
and Sep, the activities of urease, alkaline phosphatase, 
and catalase in the soil increased to varying degrees com-
pared to CK. Urease activity exhibited an initial increase 
and subsequent decrease when rBC and Sep were applied 
in combination. When the Sep application rate was 0.2% 
and the rBC application rate was 0.2%, the activity of 
soil urease was higher than that at an application rate 
of 0.1% for Sep. However, when the Sep application rate 
increased to 0.5%, the activity of urease decreased. Under 
A2S1, the activity of soil urease increased significantly 
by 46.86% (p< 0.05) compared to CK (Fig.  9a). Under 
A2S1 and A2S2, the activity of soil alkaline phosphatase 
increased significantly by 3.99 and 3.68 units, respectively 
(p< 0.05) (Fig. 9b). Application of various concentrations 
of passivators induced an increase in catalase activity by 
6.16–11.20%. Notably, the highest catalase activity was 
achieved when a rate of 0.5% Sep was applied, exhibiting 
a significant difference compared to that of CK (p< 0.05) 
(Fig. 9c).

Conclusion
Pseudo-second-order kinetic and Langmuir models 
could well explain the adsorption process of Cd by rBC, 
Sep, and rBC + Sep, indicating that the adsorption of 

 Cd2+  was mainly chemical. The combined application 
of rBC and Sep significantly reduced the concentration 
of DTPA-Cd in the soil, which tended to change from a 
more active exchangeable and carbonate-bound state to 
a more stable residual and Fe/Mn oxidation-bound state. 
In addition, Cd concentrations in roots, stems, leaves 
and grains of Liyu  16, Sanbei  218 and Zhengdan  958 
were decreased under different passivator treatments. 
The application of single and composite materials can 
increase soil enzyme activity, as well as soil pH and elec-
trical conductivity, but the differences for the latter two 
were not significant. Therefore, it is recommended to 
apply 0.2% rBC + 0.5% Sep combined material in weakly 
alkaline Cd-contaminated soil.
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