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Abstract 

Background Changes in soil greenhouse gas (GHG) fluxes caused by nitrogen (N) addition are considered as the key 
factors contributing to global climate change (global warming and altered precipitation regimes), which in turn 
alters the feedback between N addition and soil GHG fluxes. However, the effects of N addition on soil GHG emis-
sions under climate change are highly variable and context-dependent, so that further syntheses are required. Here, 
a meta-analysis of the interactive effects of N addition and climate change (warming and altered precipitation) 
on the fluxes of three main soil GHGs [carbon dioxide  (CO2), methane  (CH4), and nitrous oxide  (N2O)] was conducted 
by synthesizing 2103 observations retrieved from 57 peer-reviewed articles on multiple terrestrial ecosystems globally.

Results The interactive effects of N addition and climate change on GHG fluxes were generally additive. The combi-
nation of N addition and warming or altered precipitation increased  N2O emissions significantly while it had mini-
mal effects on  CO2 emissions and  CH4 uptake, and the effects on  CH4 emissions could not be evaluated. Moreover, 
the magnitude of the combined effects did not differ significantly from the effects of N addition alone. Apparently, 
the combined effects on  CO2 and  CH4 varied among ecosystem types due to differences in soil moisture, which 
was in contrast to the soil  N2O emission responses. The soil GHG flux responses to combined N addition and climate 
change also varied among different climatic conditions and experimental methods.

Conclusion Overall, our findings indicate that the effects of N addition and climate change on soil GHG fluxes were 
relatively independent, i.e. combined effects of N addition and climate change were equal to or not significantly 
different from the sum of their respective individual effects. The effects of N addition on soil GHG fluxes influence 
the feedbacks between climate change and soil GHG fluxes.
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Background
Carbon dioxide  (CO2), methane  (CH4), and nitrous 
oxide  (N2O), as the three major greenhouse gases 
(GHGs) (World Meteorological Organization 2020), 
have been observed to increase over the past several 
decades, mainly originating from anthropogenic activi-
ties, including fossil fuel combustion, land use change, 
and chemical fertilizer application (IPCC 2013). 
Another consequence of the anthropogenic activities is 
increased nitrogen (N) loads in terrestrial ecosystems 
(Du et al. 2021; He et al. 2021). N addition can alter the 
biogeochemical processes of ecosystems and alter soil 
GHG fluxes (Li et al. 2020; Liu and Greaver 2009), fur-
ther contributing to changes in both temperature and 
the hydrological cycle (IPCC 2022). As two key factors 
regulating terrestrial ecosystem processes, temperature 
and precipitation influence soil microclimate, microbial 
activity, and soil substrate availability (Harte et al. 1995; 
Zhang et  al. 2019; Zhou et  al. 2018), thus potentially 
influencing the effects of N addition on soil GHG fluxes 
(Chen et  al. 2021). Therefore, understanding how cli-
mate change regulates the feedback between soil GHGs 
and N addition would improve our capacity to pre-
dict future soil GHG fluxes and such potential effects 
could be incorporated into predictive biogeochemical 
models.

Globally, researchers have experimentally examined the 
effects of N addition on soil  CO2,  CH4, and  N2O fluxes. 
The main underlying mechanisms by which N addition 
increases soil GHG fluxes are the regulation of plant 
growth and microbial activities directly associated with 
soil GHG production and consumption processes (Chen 
et  al. 2021; Niu et  al. 2010; Quinn Thomas et  al. 2010). 
In addition, projected shifts in temperature have been 
documented to enhance microbial activity thereby accel-
erating soil organic matter decomposition and stimulat-
ing soil GHG release (Liu et al. 2020; Zhang et al. 2020). 
Therefore, warming and N addition can interact to syn-
ergistically increase soil GHG fluxes (Chen et al. 2017a; 
Yang et al. 2022). However, warming can also negate the 
positive effects of N addition on soil GHGs as warming-
induced soil water deficits can suppress microbial activity 
and plant physiological activity (Zong et al. 2018; Cheng 
et al. 2022). In addition, the effects of N addition on soil 
GHG fluxes may be suppressed under decreased precipi-
tation due to reduced plant carbon (C) inputs and limited 
soluble C substrate availability (Fuchslueger et  al. 2014; 
Aronson et al. 2019). Conversely, higher soil water avail-
ability caused by increased precipitation can increase soil 
labile C availability and microbial activity (Zhou et  al. 
2016). The findings suggested that stimulated GHG emis-
sions by N addition may particularly occur under high 
precipitation regimes (Brown et al. 2012).

The effects of N addition in combination with warm-
ing or altered precipitation remain ambiguous due to 
differences in outcomes across ecosystem types, climatic 
conditions, and experimental methods (Deng et al. 2020; 
Gong and Wu 2021). Among individual studies, the soil 
 CH4 fluxes’ responses to N addition in combination 
with warming vary from potential increase to poten-
tial decrease (Chen et  al. 2017a, b; Wu et  al. 2020; Liu 
et al. 2015). The directions of soil  CH4 fluxes are highly 
dependent on ecosystem type and soil condition, as soil 
 CH4 is produced by methanogens in wet anaerobic soils 
and consumed by methanotrophs in drier aerobic soils 
(Le Mer and Roger 2001; Ni and Groffman 2018). In 
addition, the responses of  CO2 to N addition in com-
bination with climate change are dependent on eco-
system type (Lu et  al. 2011). The potential mechanisms 
that alter  CO2 emissions are (a) transfer of nutrients that 
stimulate microbial growth and respiration and (b) prim-
ing effects on SOM decomposition by microorganisms 
(Fontaine et  al. 2007; Janssens et  al. 2010; Oertel et  al. 
2016). For example, N addition in combination with cli-
mate change can have a greater impact on soil  CO2 flux 
in grasslands than in forests due to higher stimulation of 
autotrophic respiration in grasslands (Zhou et al. 2014). 
Climate condition is the another key determinant of dif-
ferences in reported effects in empirical studies. Previ-
ous studies have reported that N addition plus increased 
precipitation at a dry or mesic site could stimulate GHG 
emissions, as opposed to a wet site, where responses are 
neutral or even negative (Shi et al. 2021; Wu et al. 2020). 
The results may be because dry regions are more sensi-
tive to increased precipitation than moist regions. In 
addition, experimental methods such as the duration and 
magnitude of N addition, warming, and altered precipita-
tion can drive differences in responses (Sánchez-Martín 
et  al. 2017; Zhang et  al. 2008). No overall conclusions 
have been reached regarding the combined effects of N 
addition and warming or altered precipitation, limiting 
our mechanistic understanding of the responses of soil 
GHG fluxes to global changes. A meta-analysis across 
multiple ecosystem types with heterogeneous climatic 
conditions could facilitate adequate assessment of the 
effects of global change on GHG emissions at the global 
scale.

The aims of the present study were to (1) determine 
how warming and altered precipitation contribute to the 
effects of N addition on soil GHG emissions; (2) evalu-
ate the interactions between N addition and warming 
or altered precipitation; and (3) explore the major driv-
ers of the context-dependency observed in empirical 
studies. Accordingly, a meta-analysis of 2103 observa-
tions from published articles that reported both single-
driver (N addition, warming, increased precipitation, and 
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decreased precipitation) and corresponding two-driver 
effects on soil GHG fluxes was conducted. The observa-
tions were mainly collected from grassland and forest 
ecosystems in the Northern Hemisphere, particularly 
China. We hypothesized that (1) warming and increased 
precipitation will enhance the positive effect of N addi-
tion on soil GHG fluxes, while decreased precipitation 
will inhibit it and (2) these effects vary across different 
ecosystems and climatic conditions.

Materials and methods
Data compilation
Peer-reviewed articles published before September 2022 
were searched in Web of Science (http:// apps. webof 
knowl edge. com/) and China National Knowledge Infra-
structure (https:// www. cnki. net/) using the following 
search string: (“nitrogen addition” OR “nitrogen depo-
sition” OR “nitrogen fertilization”) AND (warming OR 
precipitation OR rainfall OR drought) AND (“greenhouse 
gas” OR  CO2 OR “carbon dioxide” OR  CH4 OR methane 
OR  N2O OR “nitrous oxide”). The inclusion criteria were 
as follows: (1) experiments were conducted in the field 
and the impacts of N addition and at least one of the cli-
mate change factors (warming, increased, or decreased 
precipitation) were recorded, including both their single-
driver and corresponding two-driver effects; (2) at least 
one variable among  CO2 emissions,  CH4 emissions,  CH4 
uptake, and  N2O emissions was measured; (3) except for 
climate change factors and N addition, the conditions of 
the control and treatment groups were the same; and (4) 
the means, standard deviations (or standard errors), and 
sample sizes of the variables were directly provided or 
could be calculated.

The experiments manipulating two or more treat-
ments, including different climate change factors or mag-
nitudes with the same control, were divided into different 
control–treatment pairs. If the individual and combined 
effects on GHGs in a particular study were observed sev-
eral times at different experimental stages, we used all 
observations to facilitate the evaluation of experimental 
duration effects. Data were directly extracted from the 
main text, table, or appendices, or from figures using 
Engauge Digitizer version 11.2 (Free Software Founda-
tion, Boston, MA, USA). The ecosystem types (desert, 
cropland, wetland, forest, and grassland), experimen-
tal methods (experimental magnitude and experimental 
duration), climate conditions [mean annual temperature 
(MAT) and mean annual precipitation (MAP)], and 
edaphic characteristics (pH, water content, C con-
tent, and N content) were extracted from the studies to 
assess the impacts of moderator variables. If the MAT or 
MAP of the experimental sites was not provided in the 

studies, we extracted them from the WorldClim database 
(https:// www. world clim. org/).

We calculated the De Martonne (1926) aridity index for 
each experimental site using the MAT and MAP data as 
follows:

A total of 2103 paired observations were collected 
from 57 articles.  CH4 emissions were not included owing 
to the small number of studies. In these articles, 2, 3, 6, 
9, and 37 studies were conducted in deserts, croplands, 
wetlands, forests, and grasslands, respectively, account-
ing for 4%, 5%, 10%, 16%, and 65% of the studies, respec-
tively (Additional file 1: Table S1). The form of N addition 
in 92% of the experiments was  NH4NO3 and 8% were 
urea,  CaNO3, and Ca(NO3)2. The latitude ranged from 
26.32°N to 48.25°N, the altitude from 20 to 4763 m, the 
MAT from –5.3 °C to 19.1 °C, and the MAP from 200 to 
1850 mm (Fig. 1).

Statistical analysis
Individual and combined effects
To quantify the individual and combined effects of N 
addition, warming, and altered precipitation on soil GHG 
fluxes, we calculated the response ratio ( lnRR ) as a proxy 
for effect size as follows:

where Xt and Xc are the mean values of the treatment 
and control groups, respectively. The variance ( v ) of each 
lnRR was calculated as follows:

where Xt , St , and nt represent the mean, standard devia-
tion, and sample size of the treatment group (t), respec-
tively; and Xc , Sc , and nc are the mean, standard deviation, 
and sample size of the control group (c), respectively.

To estimate the overall effect size ( lnRR++ ), we per-
formed linear mixed-effects models using the “lme4” 
package (Bates et  al. 2015) in R version 4.2.0 (R Core 
Team 2022) with the individual lnRR fitted as the 
response variable and the identity of the study and plots 
(nested inside study identity) as the random effect factors 
(Additional file 2). This approach explicitly accounts for 
the potential dependence of observations collected from 
a single study. To investigate whether the ecosystem type, 
climate (MAT and MAP), edaphic characteristics (mois-
ture, pH, C content, and N content), and experimental 

(1)Aridity index =
MAP

MAT+ 10

(2)lnRR = ln
Xt

Xc

(3)v =
S2t

ntX
2
t

+
S2c

ncX
2
c

http://apps.webofknowledge.com/
http://apps.webofknowledge.com/
https://www.cnki.net/
https://www.worldclim.org/
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methods (N addition rate, warming magnitude, and dura-
tion) influence the response of GHGs to N addition and 
the interaction with climate change, these factors were 
fitted as continuous or categorical fixed-effect factors. 
Data were subjected to z-score standardization prior to 
analysis to allow for comparisons (Ali and Faraj 2014). 
z-scores were determined by standardization by subtract-
ing the mean value from the raw data and dividing the 
resulting number by the standard deviation of the mean. 
The corresponding 95% confidence interval ( CI ) and per-
centage change (%) were calculated as follows:

The treatment effects were considered non-significant 
if the 95% CI of lnRR++ overlapped with zero. When the 
95% CI of lnRR++ did not overlap with zero, the effect 
was identified as positive if lnRR++ was greater than zero; 
otherwise, the effect was identified as negative if lnRR++ 
was less than zero.

(4)95%CIS = lnRR++ ± 1.96SlnRR++

(5)Percentage change =
(

elnRR++ − 1
)

× 100

Furthermore, publication bias was assessed to analyze 
whether the studies used in the present meta-analysis were 
representative or not using Egger’s regression tests (Egger 
et al. 1997). Funnel plots were generated using the response 
ratios ( lnRR ) and their standard errors. All results indicated 
that studies used in this meta-analysis were robust against 
publication bias (Additional file 1: Fig. S1).

Interactive effects
To further understand the interactive effects of two driv-
ers occurring simultaneously (combined effects), Hedges’ 
d was used to calculate interactive effect size ( dI ) as previ-
ously described (Gurevitch et al. 2000):

where Xc , XA , XB , and XAB , are the means of the vari-
ables in the control group, treatment groups A and B, and 
their combination (A + B), respectively.

The standard deviation ( s ), degrees of freedom ( m ), and 
correction term ( J (m) ) were estimated using Eqs. (7–9).

(6)dI =

(

XAB − XA

)

−
(

XB − Xc

)

s
J (m)

(7)
s =

√

(nc − 1)(sc)
2
+ (nA − 1)(sA)

2
+ (nB − 1)(sB)

2
+ (nAB − 1)(sAB)

2

nc + nA + nB + nAB − 4

Fig. 1 Global distribution of observations derived from 57 articles used in the meta-analysis. The different treatment types are indicated by symbol 
shape, and the ecosystem types are represented by color
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where nc , nA , nB , and nAB are the sample sizes and sc , sA , 
sB , and sAB are the standard deviations in the control and 
treatment groups of A, B, and their combination (A + B), 
respectively.

The variance ( v2 ) of dI was estimated as follows:

We performed linear mixed-effects models to calculate 
the weighted mean of dI ( d++ ) with dI as the response 
variable and study identity and plots (nested inside study 
identity) as the random effect factors. All the analyses 
were conducted in R version 4.2.0 (R Core Team 2022) 
using the ‘lme4’ package (Bates et al. 2015).

The interactions between treatments were classified 
into three types: additive, synergistic, and antagonis-
tic (Folt et al. 1999; Crain et al. 2008). Additive effects 
occurred when their combined effects were not sig-
nificantly different from the sum of their individual 
effects; synergistic interactions were observed when 
the combined effect was significantly greater than the 
sum of their individual effects and antagonistic interac-
tions when the combined effect was less than the sum 

(8)m = nc + nA + nB + nAB − 4

(9)J(m) = 1−
3

4m− 1

(10)

v2 =
1

4

[

1

nC
+

1

nA
+

1

nB
+

1

nAB
+

d2I

2(nC + nA + nB + nAB)

]

of their individual effects. In terms of Hedges’ d , inter-
actions were considered additive if the 95% CI of the 
weighted mean dI overlapped with zero. If the 95% CI 
did not overlap with zero, we determined the interac-
tion effect through their individual effects. If the indi-
vidual effects of the two drivers were both negative or 
one negative and one positive, interaction effect sizes 
less than zero were considered synergistic, and those 
greater than zero were antagonistic. In cases where the 
individual effects were both positive, interaction effect 
sizes greater than zero were synergistic, and those less 
than zero were antagonistic.

Results
Overall responses of soil GHG fluxes
Overall, soil  CO2 emissions did not respond signifi-
cantly to N addition alone, but it increased by an aver-
age of 17.2% and 21.7% under warming alone and 
warming plus N addition, respectively (Fig. 2a). N addi-
tion alone or in combination with warming or altered 
precipitation minimally affected soil  CH4 uptake, while 
warming alone significantly increased  CH4 uptake by 
an average of 28.2% (Fig.  2b). In contrast,  N2O emis-
sions increased significantly by 106.2%, 112.2%, 108.2%, 
and 105.2%  under N addition alone, warming plus N 
addition, increased precipitation plus N addition, and 
decreased precipitation plus N addition, respectively. 
However, individual climate change treatments did 
not affect soil  N2O emissions, except for decreased 
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(b)
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Fig. 2 Effects of N addition (N), warming (W), increased precipitation (IP), and decreased precipitation (DP) alone or N addition combined 
with warming (W + N), increased precipitation (IP + N), and decreased precipitation (DP + N), on soil  CO2 emissions (a),  CH4 uptake (b), and  N2O 
emissions (c). Data are means with 95% confidence intervals ( CI ). The number of observations is shown along the right axis. Blue, orange, and gray 
solid dots indicate significantly positive, significantly negative, and non-significant effects, respectively. The vertical dashed lines are zero lines
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precipitation, which significantly decreased  N2O emis-
sions by 40.6% (Fig. 2c).

Variation among ecosystem types
The effects of N addition alone on  CO2 emissions were 
independent of ecosystem type, whereas the effects of 

N addition plus warming or altered precipitation were 
different among ecosystem types, significantly affecting 
grasslands but not forests (Fig.  3a). The individual and 
combined effects of N addition and warming positively 
impacted soil  CH4 uptake in grasslands, but their effects 
were negative in croplands (Fig. 3b). The responses of soil 

Fig. 3 Influence of ecosystem type on the individual and combined effects of N addition (N), warming (W), increased precipitation (IP), 
and decreased precipitation (DP) on soil  CO2 emission (a),  CH4 uptake (b), and  N2O emission (c). The p values (p < 0.05) indicate the significance 
of the differences in the changes in GHG fluxes among ecosystems. Data are means with 95% confident intervals ( CI ). The numbers of observations 
are shown on the right. Blue, orange, and gray solid dots indicate significantly positive, significantly negative, and non-significant effects, 
respectively. The vertical dashed lines are zero lines
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 N2O emissions to various treatments were independent 
of ecosystem type (Fig.  3c). Based on the results of lin-
ear mixed-effects models, the most important regulator 
of the differences among ecosystem types was soil mois-
ture rather than soil pH, and initial soil C and N content 
(Table 1). Soil moisture had significantly negative effects 
on the lnRR of  CO2 emissions to N addition plus warm-
ing, increased precipitation alone, and N addition plus 
increased precipitation, and the lnRR of  CH4 uptake to 
warming alone and N addition plus warming.

Effects of climate and experimental methods
The lnRR of GHG fluxes to N addition plus warming or 
altered precipitation was significantly influenced by cli-
mate and experimental methods (Table 1). Aridity index 
was the most important driver of the combined effects 
of N addition and increased precipitation on soil  CH4 
uptake, showing significant negative effects. The lnRR of 
 CO2 and  N2O under warming plus N addition was posi-
tively affected by the magnitude of warming. Altered pre-
cipitation magnitude, N addition rate  (Additional file  1: 
Fig. S2), and experimental duration had non-significant 
effects on the lnRR of GHG fluxes.

Interactions between N addition and climate change
Across all two-driver pairs, the overall interactive effects 
of N addition and warming or altered precipitation on 
GHG fluxes were generally additive, except for the antag-
onistic interaction between decreased precipitation and 
N addition on  N2O emissions (Fig.  4). Additive interac-
tions accounted for a higher proportion than synergistic 
or antagonistic effects among individual pairwise obser-
vations, representing 26–54%, 60–75%, and 41–67% 
of the combined effects of warming plus N addition, 
increased precipitation plus N addition, and decreased 
precipitation plus N addition, respectively.

Discussion
Responses of soil  CO2 emissions
The combined effects of N addition and warming or 
increased precipitation raised  CO2 emissions more than 
N addition alone, partially supporting our first hypoth-
esis. Soil  CO2 emissions did not respond significantly 
to N addition alone, but it increased significantly under 
warming alone and increased precipitation alone. There-
fore, the increases in  CO2 emissions were mainly attrib-
uted to the effect of warming and increased precipitation, 
rather than N addition. These results suggested that tem-
perature and precipitation are key drivers regulating soil 
 CO2 emissions, which is consistent with the previous 
studies (Deng et  al. 2020; Yang et  al. 2022). Moreover, 
the overall interactions between N addition and warm-
ing or increased precipitation were additive, indicating 

that combined N addition and warming or increased pre-
cipitation on  CO2 emissions were not substantially dif-
ferent from the sum of their respective individual effects. 
Therefore, the effects of N addition and climate change 
factors on  CO2 emissions were relatively independent. 
The non-significant effects of N addition on  CO2 emis-
sions revealed in our meta-analysis may be attributed 
to the possibility that the level of N addition reached or 
exceeded the N critical load due to continuous N enrich-
ment (Zong et al. 2016; Bai et al. 2019). Various studies 
have suggested that N addition initially stimulated soil 
respiration but gradually suppressed  CO2 emissions (Xia 
et al. 2009; Yan et al. 2010). Moreover, Hui et al. (2020) 
have demonstrated that the absence of other nutrients, 
such as phosphorus, may suppress the effect of N addi-
tion. Therefore, the potential mechanisms by which N 
addition influenced ecosystem  CO2 emission and the 
long-term effects of continuous N enrichment should be 
further explored.

Consistent with our second hypothesis, the effects of 
N addition in combination with warming or increased 
precipitation were influenced by climatic condition. 
Aridity index primarily regulated  CO2 emissions under 
altered precipitation plus N addition (Table 1). Increased 
precipitation alleviated water shortages in arid areas 
and promoted soil respiration (Sierra et  al. 2017), while 
decreased precipitation exacerbated the dry condi-
tions, strongly affecting soil biotic processes by limiting 
water availability, leading to a decrease in  CO2 emis-
sions (de Dato et al. 2010). Differences in the soil mois-
ture may explain the various responses of  CO2 emissions 
to N addition plus increased precipitation between for-
ests and grasslands, as forests have higher soil moisture 
than grasslands (Additional file  1: Fig. S3). Moreover, 
the combined effect of N addition plus warming on soil 
 CO2 emissions was positively correlated with warming 
magnitude, indicating that these combined effects were 
stimulated by warming (Carey et al. 2016). Although cli-
matic condition has been observed to be a major factor 
influencing differences in the soil  CO2 emissions of for-
ests and grasslands, the lack of observations from other 
ecosystems still contributes to our poor understanding of 
soil  CO2 emissions among different ecosystems globally. 
Therefore, we propose more multifactorial experiments 
in various ecosystems in future work.

Responses of soil  CH4 uptake
In contrast to  CO2 emissions, the effects of N addition 
on soil  CH4 uptake remained unaltered when com-
bined with warming or altered precipitation. Addi-
tive interactions between N addition and warming or 
altered precipitation on soil  CH4 uptake appeared to 
be much more common compared with synergistic and 
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antagonistic interactions. Warming increased soil  CH4 
uptake significantly by increasing the biomass of meth-
ane-oxidizing and decreasing the biomass of metha-
nogenic microorganisms (Qi et  al. 2022). However, 
warming in combination with N addition suppressed 
this significantly positive effect, which may be related 
to the increase in soil acidity (Bowman et al. 2008; Jamil 
et al. 2022). Therefore, the response of soil  CH4 uptake 
to warming plus N addition was negatively related to 
the N addition rate.

We found that the response of soil  CH4 uptake to N 
addition combined with warming was negatively cor-
related with higher soil moisture content. Furthermore, 
the effect of N addition plus increased precipitation 
was negatively correlated with aridity index. These find-
ings may be related to the  CH4 production and con-
sumption processes of soil microorganisms. Soil  CH4 
is produced by methanogens in wet anaerobic soils and 
consumed by methanotrophs in drier aerobic soils (Fest 
et  al. 2017; Liu et  al. 2019); therefore, warming and 
increased precipitation could enhance the emissions of 
soil  CH4 by increasing the activities of methanogenic 
archaea and methanotrophic bacteria in humid areas 
(Aronson et al. 2013; Kammann et al. 2001; Zhao et al. 
2017). This could also explain the significant differences 
in soil  CH4 uptake between grasslands and croplands. 
Due to observational limitations, we could not ana-
lyze the effects of altered precipitation plus N addi-
tion on  CH4 uptake among different ecosystem types; 

more experiments conducted in various ecosystems are 
required to predict  CH4 emissions under future climate 
change scenarios.

Responses of soil  N2O emissions
The increases in  N2O emissions caused by N addition 
plus warming or altered precipitation did not differ from 
that of N addition alone, while warming and increased 
precipitation alone had non-significant effects. This 
implies that temperature and precipitation are not major 
factors affecting soil  N2O emissions (Yang et  al. 2021), 
which was inconsistent with the results of Zhang et  al. 
(2021) and Huang et al. (2014). N addition was an impor-
tant factor influencing soil  N2O emissions because soil 
 N2O released as an intermediate product when ammo-
nium  (NH4

+) is oxidized to nitrate  (NO3
–) by nitrifica-

tion, or during the reduction of  NO3
– or nitrite  (NO2

–) 
by denitrification (Snyder et  al. 2009; Hube et  al. 2017). 
Therefore, soil  N2O emissions are mainly limited by soil 
N availability (Gao et  al. 2015). Increased N supply can 
stimulate soil  N2O emissions directly by promoting the 
proliferation of microbial communities involved in nitri-
fication and denitrification (Pajares and Bohannan 2016). 
Similar findings were reported by Deng et al. (2020) and 
Du et  al. (2021), they found that N addition increased 
soil  N2O emissions by 164% and 91%, respectively, which 
were consistent with our result (+ 106%). In the present 
study, an overall antagonistic interaction between N addi-
tion and decreased precipitation on  N2O emissions was 

Fig. 4 Interactions of N addition (N), warming (W), increased precipitation (IP), and decreased precipitation (DP) on soil  CO2 emission (a),  CH4 
uptake (b), and  N2O emission (c) (left), and corresponding frequency distribution of interaction types across individual pairwise observations (right). 
Solid circles indicate means with ± 95% confidence intervals (CI). The number of observations is shown along the right axis. Interactive effects were 
additive (gray, where 95% CIs overlap zero); otherwise, effects were synergistic (blue) or antagonistic (orange)
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observed. In this case, the negative effects of decreased 
precipitation on  N2O emissions would be counteracted 
by N addition in the combined effects (Geng et al. 2017). 
However, overall interactions of N addition and warming 
or increased precipitation on  N2O emissions were gen-
erally additive, indicating that the effect of N addition, 
warming, and increased precipitation on  N2O emissions 
would not be changed in the combined effects. Although 
synergistic and antagonistic interactions were observed 
among the individual observations, additive interactions 
remained predominant. This finding may be attributed 
to the interactions between multiple region-dependent 
global change factors, where different climatic condi-
tions and ecosystem types generate various effects (Baah-
Acheamfour et al. 2016; Liu and Greaver 2009).

The responses of soil  N2O emissions to individual and 
combined effects of N addition, warming, and altered 
precipitation did not vary significantly among ecosystem 
types. These results indicated that ecosystem type had 
only a minor impact on soil  N2O emissions (Deng et al. 
2020; Li et al. 2020). In addition, the positive effects of N 
addition combined with warming or altered precipitation 
on soil  N2O emissions were hardly affected by climatic 
and experimental conditions. Soil  N2O is consistently 
released rapidly at the beginning of N addition, irrespec-
tive of the experimental duration (Li et al. 2022; Xu et al. 
2017; Song and Niu 2022). These observations suggested 
that N addition is the major driver of increased soil 
 N2O emissions and the feedbacks between them are not 
altered by climate change.

Main limitations and future perspectives
We found that soil GHG fluxes could be stimulated to 
some extent by multiple global change factors, includ-
ing N addition, warming, and altered precipitation. The 
responses of soil GHG fluxes to N addition were not 
significantly affected by warming or altered precipita-
tion, as illustrated by the additive interaction effects. 
Our study provides a comprehensive analysis of soil 
GHG fluxes by considering the effects of N addition 
under joint warming or altered precipitation in multi-
ple terrestrial ecosystems. Nevertheless, we acknowl-
edge some limitations of our study. First, the compiled 
data were mainly from studies in grassland of North-
ern Hemisphere, particularly China (Fig. 1), with other 
regions of the world being poorly represented, which 
possibly led to a misrepresentation of global change 
effects on soil GHG fluxes. In addition, multiple sub-
types existed in these broad categories of ecosystem 
types that could not be categorized due to the lim-
ited observations, which hampered our ability to draw 
robust and general conclusions on the effects of global 
change on soil GHG fluxes among different ecosystems. 

Second, our results showed that decreased precipi-
tation plus N addition did not affect soil  CH4 uptake, 
but increased  N2O emissions significantly. However, 
the sample size of the combined effects was insuffi-
cient and only represented grassland ecosystems, which 
may contribute to the uncertainty of our estimations. 
Third, in most experiments N addition was applied in 
the form of  NH4NO3, yet research has shown that the 
response of soil GHG fluxes to N addition is influenced 
significantly by N form (Du et  al. 2021). To improve 
our understanding of how GHG fluxes will respond to 
global climate change scenarios, future multi-factor 
experimental studies should focus on underrepresented 
regions, especially the effects of altered precipitation 
and N addition on soil  CH4 and  N2O.

Conclusion
This study examined the effects of N addition combined 
with warming and altered precipitation on GHG fluxes 
at a multi-continental scale. Warming and altered pre-
cipitation rarely influenced the effects of N addition on 
soil GHG fluxes, both in magnitude and direction. Their 
overall interactions on GHG fluxes were generally addi-
tive (i.e., not differing from the sum of their individual 
effects) rather than synergistic or antagonistic, suggest-
ing the relative independence of these factors. Soil  CO2 
emissions were mainly regulated by temperature and pre-
cipitation rather than by N addition, whereas  N2O emis-
sions were overall limited by N addition. The effects of N 
addition plus increased precipitation on soil  CO2 emis-
sions and the effects of N addition plus warming on soil 
 CH4 uptake showed contrasting results among different 
ecosystems, which were mainly related to soil moisture. 
In contrast, the soil  N2O emissions did not significantly 
differ among ecosystems. The individual and combined 
effects of these treatments on soil GHG fluxes were regu-
lated by climate and experimental methods. Overall, our 
results not only quantitatively synthesized the patterns of 
N addition and climate change on soil GHG fluxes, but 
also showed that the effects of N addition, warming, and 
altered precipitation were relatively independent. These 
findings advance current understanding of the response 
of soil GHG fluxes to N addition in combination with 
warming and altered precipitation and provide insights 
into C and N cycling under global climate change.

Abbreviations
GHG  Greenhouse gas
N  Nitrogen
CO2  Carbon dioxide
CH4  Methane
N2O  Nitrous oxide
SOM  Soil organic matter
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Additional file 1: Fig. S1. Assessments of publication bias. Funnel plots 
displaying the response ratio ( lnRR ) of  CO2 emission,  CH4 uptake, and 
 N2O emission and standard error for each data under N addition (N), 
warming (W), increased precipitation (IP), decreased precipitation (DP), 
and N addition in combined with warming (W+N), increased precipitation 
(IP+N), and decreased precipitation (DP+N). Results of publication bias 
tests using Egger’s regression are given at the top of each panel (z and P 
values). P values > 0.05 indicate the absence of publication bias. Fig. S2. 
Effects of N addition rate on the response of soil  CO2 emission (a),  CH4 
uptake (b), and  N2O emission (c) to N addition (N), warming plus N addi-
tion (W+N), increased precipitation plus N addition (IP+N), and decreased 
precipitation plus N addition (DP+N). Data are presented as means with 
95% confident intervals (CIs). Blue solid dots indicate significant positive 
effects, orange solid dots indicate significant negative effects, and gray 
solid dots indicate non-significant effects. The vertical dashed lines are 
zero lines. Fig. S3. Initial soil moisture in different ecosystems under 
combined effects of N addition and warming or altered precipitation 
on  CO2 emission (a) and  CH4 uptake (b). Mean (solid circles), median 
(horizontal line), interquartile range (box) and nonoutlier range (vertical 
line) are shown. Lowercase letters indicate differences among different 
ecosystems. Table S1. Overview of the experiments involving N addition, 
warming, and altered precipitation included in this meta-analysis as well 
as their interactions.
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