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Abstract 

Background The nationally determined contribution (NDC) presented by Argentina within the framework 
of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Conven‑
tion on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, 
as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats 
to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have 
not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under cli‑
mate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm 
of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate 
SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due 
to threats from high inter‑annual climate variability.

Methods We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests 
in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covari‑
ates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google 
Earth Engine cloud‑based computing platform for subsequent modelling. To determine the biodiversity threats 
from high inter‑annual climate variability, we employed the spatial–temporal satellite‑derived indices based 
on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery.

Results SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property 
across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C 
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Introduction
Soil organic carbon (SOC) is the main terrestrial 
C reservoir and contains three times more C than 
the atmosphere and twice the amount stored in the 
vegetation (Friedlingsten et  al. 2019; Mayer et  al. 2020). 
Increasing C storage in forest ecosystems is widely 
recognized as having high climate mitigation potential 
as well as environmental and socio-economic benefits 
(Lewis et  al. 2019; Duarte-Guardia et  al. 2020). Also, 
SOC correlates positively with several soil functions (soil 
fertility, infiltration, structural stability, porosity) and 
biodiversity (e.g. plants, insects, birds, and other living 
things) that support ecosystem services to societies (Mori 
et al. 2017; Trivedi et al. 2018; Duarte-Guardia et al. 2019; 
Canedoli et al. 2020; Magnano et al. 2023).

SOC stocks vary as a function of C inputs and outputs 
resulting from ecosystem factors such as climate, soil, 
and vegetation, land use change and the mechanisms 
controlling C residence times (Jobbágy and Jackson 2000; 
Don et  al. 2011; Stockmann et  al. 2013; Villarino et  al. 
2017; Berhongaray and Alvarez 2019; Duarte-Guardia 
et  al. 2020). Different statistical techniques have been 
applied in the mapping of SOC stocks, including multiple 
linear regression, linear mixed models, geographically 
weighted regression, regression-kriging and methods 
from the machine learning field to map SOC stocks 
(Vågen and Winowiecki 2013). In Argentina, different 
simulation models have been used to estimate and 
project SOC changes. For example, Villarino et  al. 
(2014) used the IPCC (Intergovernmental Panel on 
Climate Change) empiric Tier 1 and Tier 2 approaches 
to estimate historical SOC stocks and flows in the Pampa 
Region and Piñeiro et  al. (2006) applied the Century 
model to simulate historical SOC changes in temperate 
grasslands. However, there are no antecedents of SOC 
stocks estimation of native forests in Argentina at the 
country level due to the lack of field measurements over 
large forested areas including SOC, bulk density and rock 
fragment content, and because high spatial variability 

of SOC requires a very high sampling density to get 
accurate estimates.

The Working Group I contribution to the IPCC Sixth 
Assessment Report stated that unless there are deep 
reductions in global greenhouse gas (GHG) emissions, 
the goal of limiting warming well below 2 °C and close to 
1.5  °C will be out of reach (IPCC 2021). In this context, 
Argentina has reaffirmed its commitment to the Paris 
Agreement, extending the country’s goal regarding 
the reduction of GHG by 2030 and announcing a long-
term, low-emission development strategy to achieve 
carbon-neutral development by 2050. Also, the nationally 
determined contribution (NDC) presented by Argentina 
within the framework of the Paris Agreement is aligned 
with the decisions made in the context of the United 
Nations Framework Convention on Climate Change 
(UNFCCC) on the reduction of emissions derived from 
deforestation and forest degradation, as well as forest 
carbon conservation (REDD+). The Forest Reference 
Emission Levels (FREL) is one of the pillars of the 
REDD+ process, which defines a baseline to evaluate 
the performance of a country in the implementation 
of REDD+ activities in terms of reducing GHG in the 
forestry sector. Despite its importance, the SOC stock 
of native forests has not been incorporated into the 
FREL calculations. For this, it is necessary to generate 
accurate estimates of SOC stocks and changes for the 
major land-use and management conditions. Thus, in the 
context of international policy agendas on GHG emission 
mitigation, it becomes relevant to develop reliable tools 
for SOC stock monitoring at a national scale (Lal 2011).

SOC is the basis for sustain net primary production, 
which in fact is one of the key functional dimensions 
of ecosystems to maintain biodiversity. Furthermore, 
biodiversity is strongly influenced by climatic and 
environmental variables (Read et  al. 2020; Rosas et  al. 
2023), but also by many other site characteristics, where 
soils are pointed as a key factor (Khaziev 2011). Recently, 
a close relationship between SOC stocks and biodiversity 

with a probability of 90%) for a total area of 460,790  km2, where Chaco forests represented 58.4% of total SOC stored, 
followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function 
of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation 
and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temper‑
ature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum 
temperature). Biodiversity was influenced by the SOC levels and the forest regions.

Conclusions In the framework of the Kyoto Protocol and REDD+, information derived in the present work 
from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina 
to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce 
the impact of biodiversity loss.

Keywords Soil organic carbon, Biodiversity, Native forest, Climate change mitigation, Modelling, Resilience
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was informed (Peri et al. 2019). In other words, changes 
in abiotic factors as temperature, or radiation, can alter 
the biogeochemical cycles inducing losses or gains in 
forest SOC and consequent alteration of NPP, directly 
affecting biodiversity (Ma et  al. 2013; Sardans and 
Peñuelas 2013; De Frenne et al. 2021; Mina et al. 2021). 
When the species are not able to adjust to these changes, 
populations can decline over time due to temporal 
mismatches (e.g. food and reproduction) (Socolar et  al. 
2017; Silveira et  al. 2021). High spatial variability in 
phenology (proxy: vegetation greenness) and climate 
(proxy: soil surface temperature) can reduce the 
biodiversity loss threat by increasing ecosystem resilience 
when high inter-annual variability occurs (Nystrom and 
Folke 2001; Peaucelle et al. 2019). High spatial variability 
can be related to higher food resources, habitat diversity 
and climatic refugia, enhancing species survival (Thuiller 
et al. 2005; Oliver et al. 2010). Inter-annual variability in 
the vegetation greenness and seasonality of temperature 
were previously calculated for Argentina (Silveira et  al. 
2021) using temperature infrared data (Hengl et al. 2012) 
and time series of satellite-based vegetation indices, as 
the Enhanced Vegetation Index (EVI) (Hu et al. 2019).

The objectives in this study were: (i) to model SOC 
stocks to 30  cm of native forests at a national scale 
using climatic, topographic and vegetation as predictor 
variables, and (ii) to relate SOC stocks with spatio-
temporal satellite-derived indices related to vegetation 
greenness and climate to determine biodiversity 
conservation concerns due to threats from high inter-
annual climate variability. We hypothesized that SOC is 
related to environmental gradients, which together with 
other factors (e.g. abiotic and biotic) define the potential 
biodiversity of one particular forest ecosystem. This 
work aims to assist the Government of Argentina in the 
quantification of SOC content of the country’s native 
forests to have information in relation to the mitigation 
measures in the National Forest and Climate Change 
Action Plan.

Methods
Study area and SOC database
The Argentinian territory covers 2.78 million  km2 
area from 21° 46ʹ to 55° 03ʹ S latitude and from 53° 38ʹ 
to 73° 34ʹ W longitude that determines a wide range of 
ecosystems, where native forest is grouped in six forest 
regions: Monte forests, Espinal forests, Parque Chaqueño 
forests, Yungas rainforests, Paranaense rainforests, and 
Patagonian forests (Tierra del Fuego forests and Andean 
Patagonian forests) (Appendix 1). Within these regions 
we masked the native forest lands by using the map 
of the National Native Forest Inventory (SAyDS 2005) 
and its update (SAyDS 2019). On this map, we used the 

current definition of the native forest implemented by 
the Argentine Government within the framework of 
Law 26,331/07, which regulates the implementation of 
institutional policies: “all natural forest ecosystems in 
different stages of development, of primary or secondary 
origin, with a tree cover greater than or equal to 20% and 
a minimum tree height of 3  m, including palm groves” 
(SAyDS 2019). The study area was the total native forest 
that covers an area of 0.468 million  km2.

We used 1040 forest soil  samples (0–30  cm depth) 
taken from 2015 to 2021. The mean soil sampling 
density was 2.37 samples per 1000  km2 (Appendix 1). 
We extracted soil samples (n = 3–9 in randomly selected 
areas) using a hand soil sampler including the first 30 cm 
depth below litter layer. The soil sampler has a known 
volume, making it possible to calculate soil bulk density 
(SBD). The calculations were conducted with air-dried 
samples, with any particles > 2  mm removed previously 
by sieving (roots, stones, coarse woody debris). The SOC 
stock (kg  m−2) was calculated according to the equation:

where C is the concentration of SOC (kg 100  kg−1); BD is 
bulk density (kg  m−3), 0.3 is the thickness of the layer (m), 
CF is the fraction of coarse fragments in the soil sample 
and 0.01 is a scale factor.

Environmental predictors for SOC estimation
We selected 52 potential predictive environmental 
covariates, which represent key factors for the spatial 
distribution of SOC content such as climate, topography, 
soil and vegetation (McBratney et  al. 2003) (Appendix 
2). All covariate maps were generated or uploaded to the 
Google Earth Engine cloud-based computing platform 
for subsequent modelling. The original covariates’ spatial 
resolution was adjusted to a common resolution of 200 m 
and then masked the native forest lands of Argentina.

Climatic variables
We included climatic variables (more specifically 
precipitation and temperature) because climate 
influences the SOC stock through the control of soil 
processes such as weathering of parent materials, 
erosion rate and mineralization/humification of organic 
matter, but also because it affects the net primary 
productivity (NPP) that is essential in SOC accumulation 
(Gaitán et  al. 2019). Data on the mean (1970–2000) 
annual precipitation and monthly mean, minimum 
and maximum temperature were obtained from the 
Worldclim global database. Derived from these monthly 
temperature and precipitation data, we used a group of 
17 maps of bioclimatic variables (Hijmans et  al. 2005). 

SOC stock = C × BD × 0.3× (1− CF) × 0.01,
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Additionally, we included the mean annual (2001–2021) 
of day and night land surface temperatures, which 
were obtained from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) MOD11A1 V6 product.

Topographic variables
Topography has the potential to control the spatial 
patterns of soil properties such as SOC and, therefore, 
models that take topographic variables into account can 
provide better estimates of SOC stocks (McBratney et al. 
2003). This is because topography, through its influence 
on gravity, solar insolation and micro-climate, determines 
the water, solute, and sediment fluxes throughout the 
landscape. A set of 13 morphometric maps (Appendix 2) 
was generated using the Terrain Analysis in Google Earth 
Engine (TAGEE, Safanelli et  al. 2020). This algorithm 
uses the digital elevation model (DEM) derived from a 
radar image from the Shuttle Radar Topography Mission 
(SRTM, Farr et al. 2007) with a 30 m spatial resolution.

Soil variables
Clay has been shown to actively protect organic matter 
from decomposition by adsorption and aggregation, 
slowing turnover and increasing SOC residence times 
(Paul 1984; Schimel et  al. 1985). We also included 
pH because it controls microbial mechanisms of 
carbon accumulation (Malik et  al. 2018). On the other 
hand, soil water erosion influences SOC in two ways: 
redistribution of C within the watershed, and loss of C 
to the atmosphere (Polyakov and Lal 2004). Therefore, 
in this study, we used national maps of soil clay content, 
pH (0–30 cm depth) and an Universal Soil Loss Equation 
(USLE)-derived map of soil loss rate by water erosion 
(Gaitán et al. 2017) (Appendix 2).

Vegetation variables
We selected vegetation indices (VIs), based on satellite 
observations, that are mathematical transformations of 
reflectance measurements in different spectral bands, 
especially the visible (usually red) and near-infrared 
bands, that are widely used to obtain information about 
vegetation characteristics (Jackson and Huete 1991; 
Bannari et al. 1995). In this study, we used 10 different VIs 
and the Blue, Red and NIR bands (Appendix 2) derived 
from the atmospherically corrected surface reflectance 
data produced by the collection 2, Tier 1 of the Landsat 8 
OLI sensor, available in the GEE platform (GEE collection 
snippet: ee. ImageCollection of ‘LANDSAT/LC08/
C02/T1_L2’). To calculate the VIs, we used the CFmask 
algorithm to mask the cloud and shadow produced, as 
well as a per-pixel saturation mask (Zhu and Woodcock 
2012) and used the mean of the 2015–2021 period of the 
bands’ surface reflectance.

Random forest (RF) modelling for SOC map
Lamichhane et  al. (2019) review 120 studies designed 
to correlate environmental variables with SOC stock 
by applying different digital soil mapping techniques. 
Among those methods, Random Forest (RF, Breiman 
2001) algorithm performed better than other methods 
in most comparative studies. Therefore, in our study 
the RF algorithm was selected to predict and map the 
SOC stocks in the native forest of Argentina. This algo-
rithm builds a set of regression trees. Each tree pre-
dicts the result in each pixel, while the final prediction 
is obtained by averaging these values (Breiman 2001). 
Each tree is built from a bootstrap sample of the origi-
nal data set which allows for robust error estimation 
with the remaining test set, the so-called Out-Of-Bag 
(OOB) sample. The excluded OOB samples are pre-
dicted from the bootstrap samples and by contrasting 
predicted versus observed values different metrics can 
be calculated to assess the performance of the mod-
els. For each tree, only a subset of the predictor vari-
ables is used, which allows estimation of the variable 
importance measured by the mean decrease in predic-
tion accuracy before and after permuting a variable. 
Of our 52 potential covariates, in preliminary simple 
correlation analyses, several showed a low correlation 
with stock SOC and a high correlation with each other. 
Therefore, due to random choices of subsets of variables 
being made at each split, many noise variables unrelated 
to the SOC stock may impact model’s performance 
(Bahl et al. 2019). In addition, the presence of correlated 
predictors impacts RF’s ability to identify the strong-
est predictors by decreasing the estimated importance 
scores of correlated variables (Gregorutti et  al. 2017). 
To overcome this problem, we applied the Random-For-
est-Recursive Feature Elimination (RF-RFE) algorithm 
(Gregorutti et  al. 2017). The RF-RFE selects the subset 
of covariates that is most predictive for SOC stock by 
a backward selection algorithm that iteratively elimi-
nates the weakest explanatory variable from the initial 
52-covariates model. The performance of the models 
was evaluated using tenfold cross-validation. For doing 
this, the SOC dataset was randomly split into ten sets 
in which 70% of the data were used for calibration of 
models and 30% for validation. At each step of the RF-
RFE algorithm, we calculate the mean of tenfold cross-
validation root-mean-square error (RMSE) and plotted 
it versus the number of remaining covariates (Appendix 
3). Based on this analysis, we finally selected 10 covari-
ates for modelling and mapping SOC stocks (Appendix 
2). To evaluate the performance of the final SOC stock 
model, three indices were calculated and averaged using 
tenfold cross-validation: root-mean-square deviation 
(RMSE), mean absolute error (MAE) and the coefficient 
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of determination (R2). Additionally, we computed the 
lower (Q5) and upper (Q95) percentiles for each pixel, 
resulting in maps of SOC stocks for lower and upper 
percentiles. The uncertainty was estimated as the differ-
ence between the 5th and 95th percentiles (e.g. 90% pre-
diction interval) as proposed by Heuvelink (2014).

SOC and biodiversity conservation concern
To determine the biodiversity threats from high inter-
annual climate variability, we employed the spatio-tem-
poral remotely sensed indices determined by Silveira 
et  al. (2021) for the whole of Argentina based on EVI 
and land surface temperature (LST) images from Land-
sat imagery. We used the final products (GRIDS at 
250-m resolution): (i) inter-annual variability in phenol-
ogy based on land surface temperature (IAV-LST); (ii) 
spatial variability based on land surface temperature 
(SV-LST); (iii) inter-annual variability in phenology 
based on vegetation greenness (IAV-PHE); and (iv) spa-
tial variability based on vegetation greenness (SV-PHE). 
Silveira et al. (2021) assumed that: (i) high inter-annual 
variability in the seasonality of land surface tempera-
ture and phenology of vegetation greenness threatens 
biodiversity. This high variability can exceed the rate at 
which organisms are able to adapt, disrupting the syn-
chrony of ecological interactions, and thus, the survival 
of the species. (ii) High spatial variability in land surface 
temperature and vegetation greenness enhances resil-
ience to high inter-annual variability. Spatial variability 
provides a higher variety of resources in close proxim-
ity by increasing suitable conditions during times of 
climate extremes. Biodiversity conservation concerns 
due to threats from high inter-annual climate variability 
were considered: (i) low concern when IAV is low and 
SV is high (L); (ii) medium concern when both IAV and 
SV are high, or both IAV and SV are low (M); and (iii) 
great concern when IAV is high and SV is low (H). With 
these layers, we calculated 3 indices to synthesize the 
biodiversity conservation concerns due to threats from 
high inter-annual climate variability: (i) I-LST = inte-
gration between IAV-LST and SV-LST, where IAV and 
LST were classified in high (value = 1 for the area with 
50% higher values) and low values (value = −  1 for the 
area with 50% lower values) for each forest region, and 
then calculated the index as I-LST = (IAV-LST  −  SV-
LST)/2; (ii) I-PHE = integration between IAV-PHE and 
SV-PHE, where IAV and LST were classified in high 
(value = 1 for the area with 50% higher values) and low 
values (value = − 1 for the area with 50% lower values) 
for each forest region, and then calculated the index 
as I-PHE = (IAV-PHE  −  SV-PHE)/2; and finally (iii) 

I-GLO = global integration between I-LST and I-PHE, 
where I-GLO = (I-LST + I-PHE)/2.

We used a mask of native forests and forest regions to 
generate the final GRIDS: (i) a mask of native forests pro-
posed by Silveira et  al. (2022), which included forested 
areas taller than 5 m in height and 10% in canopy cover, 
as was defined by Global Forest Change (GFC) data 
set (Hansen et  al. 2013). (ii) Forest cover classified into 
an adaptation of the proposed forest regions (Peri et  al. 
2021a), including Tierra del Fuego forests (TDF), Andean 
Patagonian forests (APF), Monte forests (MON), Espinal 
forests (ESP), Parque Chaqueño forests (PCH), Yungas 
rainforests (YUN), and Paranaense rainforests (PAR) (see 
Appendix 1).

For data extraction, we used the hexagonal binning 
technique, a spatial methodology that offers the advantage 
of integrating different pixels (e.g. averaging values for 
each pixel) within polygonal regions to effectively capture 
spatial patterns (Battersby et  al. 2017). We implemented 
a hexagonal binning process that involved one spatial 
matrix dividing the territory of Argentina into hexagonal 
areas of 5000 ha each (Rosas et al. 2023). Then, the aver-
age values of each hexagonal grid were computed. We 
excluded hexagons that presented less than 10% of native 
forest cover (e.g. < 500 ha in each hexagon).

Data analyses
Our final database included 21,420 hexagons classified 
in: (i) forest regions (TDF = 417 hexagons, APF = 1,487 
hexagons, MON = 347 hexagons, ESP = 3,347 hexa-
gons, PCH = 13,487 hexagons, YUN = 1,440 hexagons, 
and PAR = 895 hexagons); (ii) four SOC levels (L = low, 
M = medium, MH = medium high, H = high) represent-
ing quartiles calculated for each forest region; (iii) seven 
grids related to LST and PHE, and the derived indices. 
Data were compared through: (i) two-way analysis of 
variance (ANOVA) with SOC levels and forest regions 
as fixed factors, analysing IAV-LST, SV-LST, I-LST, IAV-
PHE, SV-PHE, I-PHE, I-GLO; and (ii) simple ANOVAs 
comparing different SOC levels for the same variables, 
conducted at each forest region individually. We used 
the Fisher test (F) for the ANOVAs, and the means were 
compared through the Tukey test at p < 0.05. Finally, we 
determined one homogeneity index (HI) for each region 
based on the internal deviation of each SOC level with 
respect to the average value for each biodiversity con-
servation concern variable (IAV-LST, SV-LST, IAV-PHE, 
SV-PHE). The final index was the average of the four vari-
ables presented as the percent deviation of the absolutes 
obtained values.
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Results
SOC stock in native forests
The values of SOC stocks (to 30 cm depth) at the stand 
level ranged from 2.18 to 17.35 kg   m−2 (Fig. 1) and var-
ied considerably across forest regions: Patagonian for-
ests (14.45 ± 2.32 mean value in kg  m−2 ± standard error), 
Espinal forests (5.21 ± 2.52), Monte forests (2.95 ± 0.68), 
Parque Chaqueño forests (5.16 ± 1.41), Paranaense rain-
forests (9.73 ± 1.15), and Yungas rainforests (7.67 ± 1.44) 
(Table 1). Total SOC stock of native forests in Argentina 
was 2.81 Pg C for a surface of 460,790  km2, where Parque 
Chaqueño forests represented 58.4% of the total SOC 
stored, followed by Patagonian forests (16.7%) and Espi-
nal forests (10%). The estimated uncertainty was 0.10 Pg 
C (lower limit 5%) and 0.13 Pg C (upper limit 95%).

The RF model explained 69% of the variance in SOC 
stock (RMSE = 33.99; MAE = 23.07; R2 = 0.69). The 10 
most important variables for predicting SOC stocks 
across all cases were as follows: day land surface tempera-
ture, temperature seasonality (standard deviation × 100), 
surface reflectance of blue band, mean annual precipita-
tion, maximum temperature of warmest month, monthly 
maximum temperature, precipitation of warmest quarter, 
night land surface temperature, soil water erosion rate, 
and monthly minimum temperature (Fig.  2). Thus, cli-
mate variables alone explained most of the variation in 
SOC stocks.

SOC and biodiversity conservation concern
Biodiversity conservation concern was influenced by the 
interactions between SOC levels and the forest regions 
(Table  2). Great SOC contents were related to high 
values of IAV-LST and SV-LST and resulting in higher 
I-LST. While high IAV showed a higher biodiversity 
conservation concern, high SV is associated with higher 
landscape resilience. However, when both variables were 
combined, I-LST indicated that high SOC values had 
higher biodiversity conservation concern. High SOC 
contents were also related to higher values of IAV-PHE 
and SV-PHE, and high I-PHE values occurred in the 
lowest SOC contents. Both IAV and SV presented the 
same trend (high biodiversity conservation concern and 
high landscape resilience). However, when both variables 
were combined, I-PHE indicated that high SOC values 
showed, in average a low biodiversity conservation 
concern for PHE. Both indices combined into a single 
one (I-GLO) did not present significant differences, but 
had high values (high biodiversity conservation concern 
and low landscape resilience) associated with high SOC 
values.

The forest regions presented significant differences 
in the studied variables (IAV-LST, SV-LST, IAV-PHE, 
SV-PHE), but not in the indices (Table  2). The lowest 

values of IAV-LST were found in the driest forest 
areas (MON and ESP) (lowest threat for biodiversity 
conservation concern), while the highest values were 
found in rainforests (YUN and PAR) (highest threat for 
biodiversity conservation concern). The lowest values of 
SV-LST were found in the central area of Argentina (ESP 
and PCH) (lower landscape resilience), while the highest 
values were found in Patagonian forests (APF) (higher 
landscape resilience). The lowest values of IAV-PHE 
were found in the rainforests (YUN and PAR) (lowest 
threat for biodiversity conservation concern), while the 
highest values were found in the most austral forests 
of Argentina (TDF) (highest threat for biodiversity 
conservation concern). Finally, the lowest values of 
SV-PHE were found in the driest forest (MON and ESP) 
and central area of Argentina (PCH) (lower landscape 
resilience), while the highest values were found in 
Patagonia and Tierra del Fuego temperate forests (APF 
and TDF) (higher landscape resilience). These results 
indicated that the trends for biodiversity conservation 
concerns varied depending on the studied indicator (LST 
or PHE). Driest areas (MON, ESP and PCH) showed 
different trends compared to rainforests (YUN and PAR) 
when inter-annual variability was considered (LST and 
PHE). However, the spatial variability of both variables 
(LST and PHE) had similar trends, where the driest areas 
(MON, ESP and PCH) presented low landscape resilience 
compared to southern forests (APF and TDF), which 
presented the maximum values.

It is important to consider that these analyses showed 
significant interactions for all the studied factors 
(Table 2), depending on forest region particularities (see 
Fig. 3, Appendices 4 and 5). Patagonian forests (TDF and 
APF) presented high IAV values (high threat for bio-
diversity conservation concern) at high SOC contents 
and high SV (enhanced landscape resilience) at middle-
high SOC contents. Dry and central forests of Argentina 
(MON, ESP and PCH) presented contrasting response in 
IAV. Generally, higher IAV values (high threat for biodi-
versity conservation concern) were found at higher SOC 
contents, except for MON where IAV-LST was associ-
ated with low SOC contents and for PCH where IAV-LST 
was related to middle-high SOC contents. These forests 
had a similar pattern in SV, where high values (enhanced 
landscape resilience) were related to high SOC values. 
Rainforests (YUN and PAR) showed different patterns 
than other regions: (i) high IAV-LST were related to high 
SOC contents, but high IAV-PHE was related to low SOC 
contest, and (ii) high SV was related to high SOC values 
in YUN and low SOC values in PAR. These relation-
ships can also be observed in the maps of Appendix 4, 
where the different forest regions presented a significant 
landscape variation for the studied variables (SOC and 
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Fig. 1 Soil organic carbon stock (30 cm depth) in native forests of Argentina



Page 8 of 22Peri et al. Ecological Processes            (2024) 13:1 

biodiversity conservation concern), but general trends 
can be observed according to the different particularities 
described before.

Discussion
The estimation of forest carbon storage at large scales has 
attracted considerable interests from diverse actors to 
mitigate climate change and conserve biodiversity (Vågen 
and Winowiecki 2013; Friedlingsten et al. 2019; Peri et al. 
2019; Dante-Guardia et al. 2020). To our knowledge, this 
work is the first to quantify the SOC stocks in native for-
ests of Argentina at a national scale and to analyse their 
relationships with multiple predictor variables. Thus, the 

model for SOC (0–30  cm depth) prediction accounted 
for 69% of the variation of this soil property across the 
whole native forest areas in Argentina with values rang-
ing from 2.18 to 17.35 kg  m−2. The SOC stock was mainly 
a function of climatic variables related mainly to precipi-
tation (mean annual precipitation and precipitation of 
the warmest quarter) and temperature (diurnal land sur-
face temperature, seasonality of temperature, maximum 
temperature of the warmest month, monthly maximum 
temperature, nocturnal land surface temperature and 
monthly minimum temperature), reflecting the influence 
of climate on the ecosystem’s forests.

Table 1 Mean (kg  m−2) soil carbon contents (SOC) at 30 cm depth and total SOC stocks (Pg C) calculated for the forest regions in 
Argentina (PF = Patagonian forests including Tierra del Fuego and Andean Patagonian forests, ESP = Espinal forests, MON = Monte 
forests, PCH = Parque Chaqueño forests, PAR = Paranaense rainforests, YUN = Yungas rainforests)

AREA = native forest cover  (km2), MLL = lower limit (5%) of the mean SOC contents, M = mean SOC contents, MUL = upper limit (5%) of the mean SOC contents, 
TLL = lower limit (5%) of the total SOC stocks, T = total SOC stocks, and TUL = upper limit (5%) of the total SOC stocks

Forest regions AREA MLL M MUL TLL T TUL

PF 32,410 13.97 ± 2.30 14.45 ± 2.32 14.97 ± 2.38 0.45 0.47 0.49

ESP 54,060 5.05 ± 2.00 5.21 ± 2.52 5.39 ± 2.09 0.27 0.28 0.29

MON 7,790 2.83 ± 0.65 2.95 ± 0.68 3.11 ± 0.73 0.02 0.02 0.02

PCH 319,410 4.98 ± 1.38 5.16 ± 1.41 5.41 ± 1.49 1.59 1.64 1.73

PAR 11,710 9.43 ± 1.10 9.73 ± 1.15 10.08 ± 1.17 0.11 0.11 0.12

YUN 35,410 7.35 ± 1.39 7.67 ± 1.44 8.05 ± 1.47 0.26 0.27 0.29

Total 460,790 5.88 ± 2.86 6.10 ± 2.94 6.37 ± 3.05 2.71 2.81 2.94

Fig. 2 Covariates importance of the top ten variables for soil organic carbon (SOC) stock (0–30 cm depth) prediction based on the Random Forest 
model. Acronyms are defined in Appendix 2
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Temperature influenced SOC by increasing the quan-
tity at lower temperatures (Patagonian forests with 
14.45 kg  m−2) compared to the average SOC stock for the 
entire country (mean of 6.10 kg   m−2) and northern for-
est regions. Some models and observations suggest that 
forests may behave as a C source in response to increased 
decomposition of soil organic matter resulting from tem-
perature increases (Davidson et al. 2000). Thus, the tem-
perature sensitivity of decomposing organic matter in soil 
partly determines how much carbon will be transferred 
to the atmosphere because of global warming. This is 
consistent with Li et al. (2020) who reported that soil res-
piration rates were correlated strongly to air and soil tem-
peratures by evaluating seasonal dynamics in contrasting 
forests across climate gradients. The negative effect of 
temperature on SOC observed is supported by studies 
in other types of ecosystems showing soil organic matter 

contents decrease with increasing temperature (He et al. 
2014) due to increased mineralization rates (Kirschbaum 
1995).

Rainfall and other related rainfall variables (seasonal-
ity) also influenced SOC by increasing the quantity of 
precipitation. It has been demonstrated that increased 
variability in rainfall and soil water content significantly 
affected SOC in forests (Duarte-Guardia et al. 2019). This 
relationship could be explained by the increase in pri-
mary productivity due to higher soil moisture and higher 
precipitation values and lower soil temperatures at ele-
vated water supply that enhanced SOC storage (Chapin 
et al. 2002; Adhikari et al. 2014). However, SOC is prob-
ably controlled by the complex interaction of environ-
mental and biotic factors. At the national scale, in this 
study, patterns of SOC were positively associated with 
mean annual precipitation and negatively correlated with 

Table 2 Multiple analyses of variance of biodiversity conservation concern, considering levels of soil organic carbon contents (SOC, 
L = low, M = medium, MH = medium high, H = high) at the different forest regions (TDF = Tierra del Fuego forests, APF = Andean 
Patagonian forests, MON = Monte forests, ESP = Espinal forests, PCH = Parque Chaqueño forests, YUN = Yungas rainforests, 
PAR = Paranaense rainforests) as main factors

IAV-LST = inter-annual variability in phenology based on land surface temperature, SV-LST = spatial variability based on land surface temperature, I-LST = integration 
between IAV-LST and SV-LST, IAV-PHE = inter-annual variability in phenology based on vegetation greenness, SV-PHE = spatial variability based on vegetation 
greenness, I-PHE = integration between IAV-PHE and SV-PHE, I-GLO = global integration between I-LST and I-PHE

F = Fisher test value, p = probability. Different letters showed differences among levels using the Tukey test at p < 0.05

Variable SOC level IAV-LST SV-LST I-LST IAV-PHE SV-PHE I-PHE I-GLO

SOC (A) L 13.09a 8.55ab − 0.166a 17.95a 0.043a 0.127c − 0.019

M 15.50b 8.93b − 0.015b 18.32a 0.047b − 0.011b − 0.013

MH 17.00c 8.31a 0.077c 19.47b 0.049c − 0.071a 0.017

H 16.92c 9.00b 0.107c 19.94b 0.050c − 0.061ab 0.008

F
(p)

153.94
(< 0.001)

5.00
(0.002)

41.73
(< 0.001)

45.33
(< 0.001)

85.42
(< 0.001)

39.76
(< 0.001)

1.68
(0.169)

Region (B) TDF 14.86d 6.93b 0.006 18.93d 0.058e − 0.006  < 0.001

APF 12.05c 19.22d 0.002 17.13c 0.070f − 0.006 − 0.002

MON 6.64a 7.07b 0.001 26.12e 0.032a 0.005 0.003

ESP 10.48b 5.75a − 0.003 25.44e 0.036b 0.006 0.001

PCH 18.38e 5.89a − 0.009 16.78c 0.034a − 0.003 − 0.006

YUN 22.95f 6.98b − 0.001 12.51a 0.052d − 0.007 − 0.004

PAR 24.03 g 9.05c 0.007 15.52b 0.047c − 0.016 − 0.004

F
(p)

1694.24
(< 0.001)

1329.70
(< 0.001)

0.16
(0.987)

1578.50
(< 0.001)

2191.02
(< 0.001)

0.25
(0.959)

0.11
(0.995)

A × B F
(p)

85.71
(< 0.001)

19.49
(< 0.001)

41.83
(< 0.001)

74.63
(< 0.001)

50.05
(< 0.001)

52.62
(< 0.001)

25.26
(< 0.001)

(See figure on next page.)
Fig. 3 Simple analyses of variance for biodiversity conservation concern considering different levels of soil organic carbon contents 
(colour intensity showed higher contents) as main factor for each forest region (TDF = Tierra del Fuego forests, APF = Andean Patagonian 
forests, MON = Monte forests, ESP = Espinal forests, PCH = Parque Chaqueño forests, YUN = Yungas rainforests, PAR = Paranaense rainforests). 
IAV‑LST = inter‑annual variability in phenology based on land surface temperature, SV‑LST = spatial variability based on land surface temperature, 
IAV‑PHE = inter‑annual variability in phenology based on vegetation greenness, SV‑PHE = spatial variability based on vegetation greenness, 
HI = Homogeneity index of the different variables for each forest region. F = Fisher test value of the different variables for each forest region. Different 
letters showed differences among levels of soil organic carbon contents using Tukey test at p < 0.05
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Fig. 3 (See legend on previous page.)
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mean annual temperature across a diverse range of soils 
and forest types. This has also been documented in grass-
lands in North America (Burke et  al. 1989) and global 
dry-lands (Gaitán et al. 2019).

The surface reflectance of the blue band (0.43–0.45 μm) 
used to improve sensitivity to chlorophyll represents 
a proxy of vegetation type through estimations of 
vegetation canopy moisture and greenness indices 
(Rahaman et al. 2017). Thus, SOC may vary in different 
native forest types across the country as a result of the 
modification of both carbon inputs (e.g. net carbon gain 
by plants) and losses (e.g. microbial decomposition), as 
was reported previously for different vegetation types 
(Post et  al. 1982; Yang et  al. 2007). Rasse et  al. (2005) 
found that vegetation with higher plant diversity leads 
to greater ANPP and belowground biomass, which 
enhances belowground carbon inputs and, thereby, 
SOC storage. In contrast, Chen et  al. (2018) reported 
that the negative effect of ANPP on SOC in forests and 
shrublands indicates that the carbon losses associated 
with microbial respiration may offset the positive effect of 
belowground biomass on SOC storage. Also, SOC values 
related to variability in vegetation characteristics may be 
influenced by topography. For example, in Argentinean 
Nothofagus forests, evergreen species (e.g. less variability 
in primary productivity) are more common in lowlands, 
near lakes, and locations with alluvial soils, while upland 
forests are generally deciduous (e.g. more variability in 
primary productivity (Peri et al. 2021a). This is consistent 
with Martínez Pastur et al. (2022) who reported that SOC 
values were highest in valleys of the Andes Mountains 
and southern Tierra del Fuego, ranging from 5.35 to 
27.78 kg C  m−2 for the whole Patagonia region.

Soil erosion rate influence negatively SOC. Erosion 
influences the vertical and horizontal distribution pat-
terns of SOC in two ways: redistribution of C within the 
watershed and loss of C to the atmosphere by dispers-
ing the soil, altering microbiological activity and induc-
ing mineralization (Polyakov and Lal 2004; Fiener et  al. 
2015). The extent of ecosystems’ capacities to reduce 
erosion depends on many factors related to environmen-
tal conditions (amount of precipitation, wind velocity, 
soil properties, slope, and vegetation characteristics) and 
pressures (forest management practices and overgrazing). 
In Patagonia, Peri et al. (2021b) determined a SOC loss by 
erosion from 85.3 to 250.1 kg C  ha−1  year−1. While topsoil 
formation takes thousands of years, erosion can disinte-
grate all the organic matter and nutrients in the topsoil in 
a few years, dramatically reducing soil productivity. This 
would also explain the higher SOC recorded in the valley 
or lowland forests than on the slopes of the Andes Moun-
tains and in southern Tierra del Fuego.

Furthermore, forest ecosystems contain a large number 
of terrestrial carbon stocks globally, with more than half 
allocated in soils (Liu et al. 2018; Li et al. 2019; Martínez 
Pastur et  al. 2022; Mayer et  al. 2020). It was proposed 
that SOC stocks and biodiversity were closely related 
(Peri et  al. 2019). However, other studies did not find a 
clear relationship between them (Canedoli et  al. 2020). 
Ecosystem services in natural ecosystems are under-
pinned by biophysical structures and processes (de Groot 
et  al. 2010), and driven by biodiversity (Balvanera et  al. 
2006) with positive effects (e.g. regulating and support-
ing services) (Brockerhoff et al. 2017). Biodiversity is also 
important because contributes to soil formation, thereby 
contributing to enhance SOC contents (Canedoli et  al. 
2020). Many studies showed a positive effect of species 
and functional richness on SOC stocks (Saha et al. 2009; 
Dawud et  al. 2016; Liu et  al. 2018; Li et  al. 2019; Mag-
nano et  al. 2023), e.g. higher plant diversity promotes 
higher litter accumulation in natural ecosystems (Stein-
beiss et al. 2008; Lange et al. 2015). These plant–soil rela-
tionships play an important role in soil C accumulation, 
where high plant richness results in large litter biomass 
(Steinbeiss et al. 2008; Leff et al. 2012; Liu et al. 2018; Li 
et al. 2019). A recent study reported using a prioritization 
analysis that sites that maximize protection of carbon 
stocks (living aboveground and belowground biomass, 
litter, dead wood, and active SOC) had high values for 
biodiversity conservation (all threatened terrestrial mam-
mals, birds, reptiles, and amphibians, with high threat 
status and endemism), and potential sources of clean 
water. By conserving 30% of the territory, it is possible to 
achieve 80% of the conservation targets for biodiversity 
and water provisioning, and 50% of the conservation tar-
gets for carbon stocks (Frank et al. 2023).

Climate change constitutes one of the greatest threats to 
forest biodiversity and ecosystem services, where model 
predictions warn about significant impacts for the next 
decades (Sala 2000; Seidl et  al. 2014; Thom et  al. 2019). 
It was found that climate change impacts will be spatially 
heterogeneous and nonlinear due to differences in cli-
mate, edaphic conditions, and competitive interactions 
among other factors (Frey et  al. 2016; Creutzburg et  al. 
2017; Thom et al. 2019). Defining this spatial heterogene-
ity can assist land managers and policymakers to prior-
itize areas where a reallocation of resources for climate 
adaptation could be concentrated (Seddon et  al. 2016; 
Thom et  al. 2017). Identifying spatial–temporal patterns 
of land surface temperature and vegetation greenness at 
the landscape level is important for decision-making in 
forest management and biodiversity conservation (Sil-
veira et al. 2021), e.g. identification of areas to implement 
multi-objective adaptive management (e.g. land-sharing 
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strategies) or areas to priories protection efforts (e.g. crea-
tion of new natural reserves) (Peri et al. 2022; Rosas et al. 
2022, 2023). Forests with high seasonality of temperature 
or inter-annual variability in the phenology may require 
management actions that improve spatial variability to 
enhance resilience to biodiversity loss from high inter-
annual variability (Silveira et al. 2021). In contrast, areas 
where spatial variability is higher, are more adequate for 
protection because this is where species can persist if 
inter-annual variability increases due to climate change 
(Martínez Pastur et al. 2020a; Trew and Maclean 2021; Ye 
et al. 2023).

In our analyses, we found significant differences among 
levels of SOC and forest regions in Argentina, both for 
inter-annual and spatial variability. Similarly, Silveira 
et  al. (2021) found differences for different eco-regions 
in Argentina and suggest that species living in different 
areas face dissimilar threats from variability in tempera-
ture seasonality and associated changes in the ecosystem 
phenology. As we found for the different SOC contents 
and forest regions, they also highlighted the weakly cor-
relation between land surface temperature and phe-
nology. This suggests the importance of mapping both 
variables when assessing the threats from phenological 
and seasonal variations (e.g. areas with high inter-annual 
variability had a strong threat, and low spatial variability 
meant that resilience is low). If we agree that high SOC 
content is a good proxy for biodiversity (e.g. Peri et  al. 
2019), the results are consistent with many other find-
ings for forests around the world (Fischer et  al. 2006; 
Mori et al. 2013; Schmitt et al. 2020; Messier et al. 2022). 
However, our landscape analyses showed contradictory 
results. Inter-annual variability in phenology based on 
land surface temperature followed the described trend 
(e.g. rainforests presented higher biodiversity conser-
vation concern than dry forests), while the inter-annual 
variability in phenology based on vegetation greenness 
showed the contrary. Besides, high resilience was found 
in the Patagonian forests indicating more stable eco-
system functioning due to climate stability at low tem-
perature regions (Forest et al. 2015; Payette and Frégeau 
2019; Barbé et al. 2020). These mismatches in the general 
trends and the different forests regions can be explained 
due to the different ecosystem functionality across 
Argentina (Silveira et al. 2022), forest structure and com-
position (Silveira et al. 2023), and human-derived drivers 
of land use change (Martinuzzi et al. 2021), that greatly 
influenced native forests.

Argentina implemented a specific national legislation 
to protect native forests (law 26,331/07) to promote sus-
tainable uses and more effective conservation strategies 
(Martinuzzi et  al. 2018; Martínez Pastur et  al. 2020b). 

Unfortunately, the resulting land use planning incorpo-
rates little biodiversity explicitly information (Guida-
Johnson and Zuleta 2013; Lorenzo et  al. 2018; Silveira 
et al. 2022). However, these plans are updated every five 
years, thus, better knowledge about SOC contents (Mar-
tínez Pastur et al. 2022), as well as patterns of inter-annual 
and spatial variability of vegetation greenness and land 
surface temperature, can assist to identify those areas 
where many species may have difficulty to persist under 
more extreme climate events (Silveira et al. 2021). Under 
the negative effects of climate change on native forests, 
these tools can be used to identify vulnerable areas where 
the slow adaptation process implies that adaptive for-
est management strategies require long lead-in times 
(Maciver and Wheaton 2005; Thom et al. 2019). We need 
to promote in situ biodiversity persistence to avoid nega-
tive impacts on future provisioning ecosystem services 
(Bellard et al. 2012; Thom et al. 2017; D’Orangeville et al. 
2018).

Conclusions
In the context of climate change mitigation, managing 
forest ecosystems to conserve existing carbon stocks in 
soils and to remove carbon from the atmosphere by add-
ing to stocks is an important issue. In the framework of 
the Kyoto Protocol and REDD+ that aim to conserve 
ecosystems and their carbon stocks and achieve land 
degradation neutrality, information derived in the pre-
sent work from the estimate of SOC in the native forests 
can be incorporated into the annual National Inventory 
Report of Argentina. As Argentina strives to find meas-
ures to achieve vital climate targets, this work indicates 
the importance of considering forest soils in improved 
management practices to increase climate change mitiga-
tion under forest management practices. Increasing forest 
soils’ capacity to store carbon and reduce net GHG emis-
sions is crucial for the Argentinean’s target to achieve car-
bon neutrality by 2050.

The inclusion of SOC as biodiversity surrogates allowed 
to improve conservation planning through positive cor-
relation with remotely sensed data indices that capture 
the inter-annual and spatial variability of vegetation 
greenness and land surface temperature. These indices 
analysed together can be used to identify areas of high 
biodiversity threat and resilience to phenological and sea-
sonal variability. Thus, results highlight the importance of 
long-term monitoring to know the processes that deter-
mine the magnitude of SOC variation to forecast how it 
may operate as climate and land use change in the future 
and to assist forest management proposals to strengthen 
the resilience of native forests in order to minimize biodi-
versity loss.
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Appendix 1
Distribution of the 1040 soil samples used to model SOC stock (kg  m−2) to 30 cm depth for the six forest regions in 
Argentina
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Appendix 2
Predictive environmental covariates used for modelling 
the SOC stock in forest native of Argentina. Bold shows 
the 10 covariates selected for the final model after apply-
ing the Random-Forest-Recursive Feature Elimination 
algorithm

Variable 
type

Variable Description Unit Temporal 
resolution

Original 
spatial 
resolution 
(m)

References

Climate Prec Annual 
mean pre-
cipitation

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Tmin Monthly 
minimum 
temperature

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Tavg Monthly 
mean tem‑
perature

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Tmax Monthly 
maximum 
temperature

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio02 Mean diurnal 
range (mean 
of monthly 
(max temp—
min temp))

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio03 Isothermality 
(bio02/bio07)

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio04 Temperature 
seasonality 
(standard 
deviation * 
100)

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio05 Max tem-
perature of 
warmest 
month

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio06 Min tempera‑
ture of coldest 
month

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio07 Temperature 
annual range 
(Bio05‑Bio06)

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio08 Mean 
temperature 
of wettest 
quarter

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio09 Mean temper‑
ature of driest 
quarter

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio10 Mean 
temperature 
of warmest 
quarter

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio11 Mean 
temperature 
of coldest 
quarter

°C Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio13 Precipitation 
of wettest 
month

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio14 Precipita‑
tion of driest 
month

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio15 Precipitation 
seasonality

Coef. of vari‑
ation

Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Variable 
type

Variable Description Unit Temporal 
resolution

Original 
spatial 
resolution 
(m)

References

Bio16 Precipitation 
of wettest 
quarter

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio17 Precipita‑
tion of driest 
quarter

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio18 Precipitation 
of warmest 
quarter

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

Bio19 Precipitation 
of coldest 
quarter

mm Mean 
1970–2000

1000 Hijmans 
et al. (2005)

LST_day Day land 
surface tem-
perature

mm Mean 
2001–2021

1000 Wan et al. 
(2015)

LST_
night

Night land 
surface tem-
perature

mm Mean 
2001–2021

1000 Wan et al. 
(2015)

Topogra‑
phy

Elevation Height of ter‑
rain above sea 
level

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Slope Slope gradi‑
ent

Degree Undeter‑
mined

30 Safanelli 
et al. (2020)

Aspect Compass 
direction

Degree Undeter‑
mined

30 Safanelli 
et al. (2020)

Hillshade Brightness 
of the illumi‑
nated terrain

Dimension‑
less

Undeter‑
mined

30 Safanelli 
et al. (2020)

Northness Degree 
of orientation 
to North

Dimension‑
less

Undeter‑
mined

30 Safanelli 
et al. (2020)

Eastness Degree 
of orientation 
to East

Dimension‑
less

Undeter‑
mined

30 Safanelli 
et al. (2020)

Horizontal 
curvature

Curvature 
tangent 
to the con‑
tour line

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Vertical 
curvature

Curvature 
tangent 
to the slope 
line

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Mean 
curvature

Half‑sum 
of the two 
orthogonal 
curvatures

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Minimal 
curvature

Lowest value 
of curvature

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Maximal 
curvature

Highest value 
of curvature

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Gaussian 
curvature

Product 
of maximal 
and minimal 
curvatures

m Undeter‑
mined

30 Safanelli 
et al. (2020)

Shape 
Index

Con‑
tinuous form 
of the Gauss‑
ian landform 
classification

Dimension‑
less

Undeter‑
mined

30 Safanelli 
et al. (2020)

Soil Clay_0_30 Soil clay 
content 
(0–30 cm)

% Undeter‑
mined

Schulz 
et al. (2022)

pH_0_30 Soil pH 
(0–30 cm)

Dimension‑
less

Undeter‑
mined

Rodríguez 
et al. (2020)



Page 15 of 22Peri et al. Ecological Processes            (2024) 13:1  

Variable 
type

Variable Description Unit Temporal 
resolution

Original 
spatial 
resolution 
(m)

References

Erosion Soil water 
erosion rate

Mg 
ha−1 year−1

Undeter-
mined

200 Gaitán 
et al. (2017)

Remote 
sensing 
data

NDVI Normalized 
Difference 
Vegetation 
Index

Dimension‑
less

Mean 
2015–2021

30 Rouse et al. 
(1973)

EVI Enhanced 
Vegetation 
Index

Dimension‑
less

Mean 
2015–2021

30 Huete et al. 
(2002)

GLI Green Leaf 
Index

Dimension‑
less

Mean 
2015–2021

30 Louhaichi 
et al. (2001)

SAVI Soil Adjusted 
Vegetation 
Index

Dimension‑
less

Mean 
2015–2021

30 Huete 
(1988)

GCI Green Chloro‑
phyll Index

Dimension‑
less

Mean 
2015–2021

30 Gitelson 
et al. (2005)

RGR Red green 
ratio

Dimension‑
less

Mean 
2015–2021

30 Sims 
and Gamon 
(2002)

SIPI Structure 
Insensitive 
Pigment 
Index

Dimension‑
less

Mean 
2015–2021

30 Peñuelas 
et al. (1999)

Variable 
type

Variable Description Unit Temporal 
resolution

Original 
spatial 
resolution 
(m)

References

ARVI Atmospheri‑
cally Resistant 
Vegetation 
Index

Dimension‑
less

Mean 
2015–2021

30 Kaufman 
and Tanre 
(1992)

RVI Ratio Vegeta‑
tion Index

Dimension‑
less

Mean 
2015–2021

30 Jordan 
(1969)

DVI Difference 
Vegetation 
Index

Dimension‑
less

Mean 
2015–2021

30 Tucker 
(1979)

Blue 
Band

Surface 
reflectance 
of blue band

Dimension‑
less

Mean 
2015–2021

30 LANDSAT/
LC08/C02/
T1_L2

Red Band Surface reflec‑
tance of red 
band

Dimension‑
less

Mean 
2015–2021

30 LANDSAT/
LC08/C02/
T1_L2

NIR Band Surface 
reflectance 
of near infra‑
red band

Dimension‑
less

Mean 
2015–2021

30 LANDSAT/
LC08/C02/
T1_L2

Appendix 3
Root mean squared error (RMSE) for different numbers of covariates included in the Random Forest (RF) model 
obtained with Recursive Feature Elimination algorithm. The filled circle refers to the optimal number of covariates 
select for the final modelling
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Appendix 4
Forest regions of Argentina and hexagon binning distri-
bution (TDF = Tierra del Fuego forests, APF = Andean 
Patagonian forests, MON = Monte forests, ESP = Espinal 
forests, PCH = Parque Chaqueño forests, YUN = Yun-
gas rainforests, PAR = Paranaense rainforests) for dif-
ferent levels of soil organic carbon contents (SOC, 
L = low, M = medium, MH = medium high, H = high) and 

biodiversity conservation concern indices (I-LST = inte-
gration between inter-annual variability in phenology 
based on land surface temperature and spatial variability 
based on land surface temperature, I-PHE = integration 
between inter-annual variability in phenology based on 
vegetation greenness and spatial variability based on veg-
etation greenness, I-GLO = global integration between 
I-LST and I-PHE)
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Appendix 5
Simple analyses of variance of biodiversity conservation concern considering different levels of soil organic carbon 
contents (SOC, L = low, M = medium, MH = medium high, H = high) as main factor for the different forest regions 
(TDF = Tierra del Fuego forests, APF = Andean Patagonian forests, MON = Monte forests, ESP = Espinal forests, 
PCH = Parque Chaqueño forests, YUN = Yungas rainforests, PAR = Paranaense rainforests)

Regions SOC level IAV-LST SV-LST I-LST IAV-PHE SV-PHE I-PHE I-GLO

TDF L 13.71a 6.67a − 0.018ab 18.30 0.051a 0.327b 0.154c

M 15.30b 7.26b − 0.106a 18.34 0.063c − 0.145a − 0.126a

MH 15.44b 7.10b 0.009ab 19.27 0.061bc − 0.188a − 0.059ab

H 14.98b 6.68a 0.141b 19.83 0.058b − 0.018a 0.061bc

F
(p)

12.14
(< 0.001)

15.48
(< 0.001)

3.28
(0.021)

1.62
(0.184)

20.28
(< 0.001)

12.92
(< 0.001)

8.41
(< 0.001)

APF L 10.98a 16.48a − 0.054a 17.00a 0.068a 0.040bc − 0.006ab

M 12.16b 20.60b − 0.033ab 16.99a 0.074c − 0.128a − 0.080a

MH 12.72b 18.78ab 0.091b 16.48a 0.071b − 0.102ab − 0.005ab

H 12.34b 21.02b 0.005ab 18.03b 0.068a 0.163c 0.084b

F
(p)

22.06
(< 0.001)

6.69
(< 0.001)

2.91
(0.033)

5.53
(0.001)

28.50
(< 0.001)

12.24
(< 0.001)

5.58
(< 0.001)

MON L 6.86b 7.72 0.040ab 21.15a 0.031ab − 0.220a − 0.090a

M 6.91b 6.59 0.144b 26.82b 0.029a 0.200c 0.172b

MH 6.21a 6.23 − 0.094a 29.40b 0.031ab 0.152bc 0.029ab

H 6.57ab 7.75 − 0.083ab 27.12b 0.036b − 0.111ab − 0.097a

F
(p)

3.49
(0.016)

3.06
(0.028)

3.02
(0.030)

16.30
(< 0.001)

3.01
(0.030)

6.68
(< 0.001)

4.61
(0.004)

ESP L 7.55a 5.11a − 0.201b 23.79b 0.028a 0.207c 0.003b

M 8.03b 5.54b − 0.286a 21.84a 0.030b − 0.020b − 0.153a

MH 12.62c 5.88c 0.230c 26.34c 0.041c − 0.028b 0.101c

H 13.71d 6.48d 0.245c 29.80d 0.046d − 0.134a 0.055bc

F
(p)

2056.47
(< 0.001)

239.57
(< 0.001)

178.92
(< 0.001)

220.93
(< 0.001)

355.32
(< 0.001)

70.62
(< 0.001)

53.12
(< 0.001)

PCH L 13.03a 5.24a − 0.115b 13.73a 0.026a − 0.049a − 0.082b

M 20.93c 5.46a 0.151c 15.60b 0.033b − 0.070a 0.040c

MH 21.23c 5.75b 0.149c 18.70c 0.036c 0.121c 0.135d

H 18.33b 7.12c − 0.221a 19.09d 0.040d − 0.014b − 0.118a

F
(p)

1101.34
(< 0.001)

147.31
(< 0.001)

187.55
(< 0.001)

813.29
(< 0.001)

648.88
(< 0.001)

94.90
(< 0.001)

156.00
(< 0.001)

YUN L 17.91a 6.89b − 0.351a 12.83b 0.046a 0.300d − 0.025a

M 20.75b 6.36a 0.062b 13.71c 0.049b 0.266c 0.164b

MH 25.65c 7.11b 0.456b 12.03a 0.056c − 0.204b − 0.024a

H 27.48d 7.57c 0.128b 11.48a 0.057c − 0.391a − 0.131a

F
(p)

143.33
(< 0.001)

39.62
(< 0.001)

47.18
(< 0.001)

26.24
(< 0.001)

95.76
(< 0.001)

80.69
(< 0.001)

17.43
(< 0.001)

PAR L 21.57a 11.78b − 0.464a 18.82b 0.050b 0.285c − 0.089a

M 24.39b 10.71b − 0.041b 14.91a 0.049b − 0.178a − 0.109a

MH 25.14b 7.31a 0.208c 14.09a 0.047b − 0.252a − 0.021a

H 25.01b 6.38a 0.326c 14.26a 0.042a 0.080b 0.203b

F
(p)

44.97
(< 0.001)

15.74
(< 0.001)

48.53
(< 0.001)

98.86
(< 0.001)

20.13
(< 0.001)

29.05
(< 0.001)

13.95
(< 0.001)

IAV-LST = inter-annual variability in phenology based on land surface temperature, SV-LST = spatial variability based on land surface temperature, I-LST = integration 
between IAV-LST and SV-LST, IAV-PHE = inter-annual variability in phenology based on vegetation greenness, SV-PHE = spatial variability based on vegetation 
greenness, I-PHE = integration between IAV-PHE and SV-PHE, I-GLO = global integration between I-LST and I-PHE. F = Fisher test value, p = probability. Different letters 
showed differences among levels using Tukey test at p < 0.05
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