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Abstract 

Background  Understanding community assembly mechanisms across taxa and space is fundamental for microbial 
ecology. However, the variability and determinants of assembly processes over taxa and space remain unclear. Here, 
we investigated taxonomic dependency and spatial heterogeneity in bacterial assembly mechanisms across coastal 
waters in the East China Sea using neutral and null models with customized visualization strategies.

Results  Overall, bacterial assembly mechanisms varied across broad taxonomic groups (phyla and proteobacterial 
classes) and space at the regional scale. A determinism–stochasticity balanced mechanism governed total bacte-
rial assembly, while taxonomic dependency existed in assembly mechanisms and ecological processes. Among 
community ecological features, niche breadth and negative-to-positive cohesion ratio were strongly associated 
with the determinism-to-stochasticity ratio of bacterial groups. Bacterial assembly mechanisms commonly exhibited 
spatial heterogeneity, the extent and determinants of which varied across taxonomic groups. Spatial assembly of total 
bacteria was directly driven by many environmental factors and potential interactions between taxa, but not directly 
by geographic factors. Overall, the bacterial groups with higher spatial heterogeneity in assembly mechanisms were 
more related to environmental and/or geographic factors (except Bacteroidetes), while those with lower heterogene-
ity were more related to ecological features.

Conclusions  Our results confirm the pervasiveness of taxonomic dependency and spatial heterogeneity in bacterial 
assembly, providing a finer understanding about regulation across complex coastal waters.

Keywords  Bacterioplankton, Assembly mechanism, Niche breadth, Null model, Environmental gradient, 
Biogeography

Background
Understanding assembly mechanisms of microbial com-
munity across geographic and taxonomic scales is a fun-
damental issue of microbial ecology (Zhou and Ning 
2017). As the two fundamental theories describing com-
munity assembly processes, niche-based theory hypoth-
esizes that deterministic processes such as environmental 
selection and interspecies interactions govern community 
assembly (Chesson and Kuang 2008; Letten et al. 2016), 
while neutral theory assumes that community assemblies 
are governed by stochastic processes such as dispersal, 
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ecological drift (including random birth and death), and 
speciation/diversification (McGill 2003; Volkov et  al. 
2003). As the fusion of the two theories has led to the 
general consensus that both deterministic and stochastic 
processes contributed to community assembly, the cen-
tral focus of microbial community assembly mechanisms 
is to quantify the relative importance of deterministic and 
stochastic processes (Vellend 2010). As two most popular 
and influential models specifically developed for micro-
bial communities, Sloan’s Neutral Model as a neutral-
theory-based process-oriented model (Sloan et al. 2006) 
and/or Stegen’s two-step Null Model based on phyloge-
netic signal in niche differences between species (Stegen 
et al. 2013) have been extensively used to infer assembly 
processes of microbial communities across a broad range 
of ecosystems or habitats including marine water (Sun 
et al. 2023; Wu et al. 2020), river (Isabwe et al. 2022; Yang 
et al. 2023b), lake (Yan et al. 2017; Yang et al. 2023a), soil 
(Barnett et al. 2020; Tripathi et al. 2018; Xu et al. 2023), 
human lung (Venkataraman et al. 2015), and aquatic ani-
mal (Wang et al. 2020b). Although the core assumptions 
of the two approaches differ, the deviation of observed 
patterns from the neutral or null distribution can indi-
cate the extent of determinism relative to stochasticity in 
shaping microbial communities (Stegen et al. 2012; Ven-
kataraman et al. 2015), thus providing important insights 
into the balance of ecological processes in governing 
microbial community assembly. However, given the high 
diversity and the broad fitness of microbes, quantifying 
community assembly mechanisms at the whole commu-
nity level is limited due to the neglect of taxonomically 
dependent processes, since various ecological processes 
commonly act on the finer taxonomic levels rather than 
the whole communities (Nemergut et al. 2013). Previous 
works based on null models at the community level have 
reported contrasting assembly mechanisms in global or 
regional marine waters between microbial domains/king-
doms, including bacteria vs. archaea (Wang et al. 2020a), 
bacteria vs. protists (Wu et al. 2018), and prokaryotes vs. 
microeukaryotes (Logares et al. 2020), suggesting the tax-
onomic dependency at a high taxonomic level. However, 
assembly mechanisms of different bacterial taxonomic 
groups across complex coastal waters and their deter-
minants have not been well understood, especially at the 
regional scale.

According to some previous discussions, including 
ours, about the pros and cons of neutral and null mod-
els (Wang et  al. 2020a; Zhou and Ning 2017), we pro-
pose that simultaneously considering two methods could 
improve the inference of the microbial assembly pro-
cesses. The typical results of either neutral or null mod-
els can reflect the general pattern in relative importance 
of deterministic and stochastic processes (or specific 

ecological processes) in shaping microbial communities 
in the study areas (Logares et  al. 2020; Wu et  al. 2018; 
Yan et al. 2017). However, at the larger geographic scale 
(i.e., regional scale), the understanding of underlying 
mechanism shaping microbial biogeography could be 
oversimplified without further characterization of the 
spatial variability in assembly processes (Wang et  al. 
2019; Yan et  al. 2021). Therefore, evaluating the hetero-
geneity of assembly processes of microbial communities 
across space is essential to understanding the mechanism 
shaping the spatial assembly of microbes, especially at 
or beyond the regional scale. However, the spatial het-
erogeneity in the assembly of total bacteria and different 
taxonomic groups across complex coastal waters at the 
regional scale has not been comprehensively investigated.

In marine waters, several previous studies have sug-
gested that contrasting community assembly mecha-
nisms of prokaryotes and picoeukaryotes were driven 
by their differences in dormancy potential and species 
composition (Kong et al. 2022; Logares et al. 2020), while 
the distinct assembly mechanisms between bacterial and 
protist communities depended on niche breadth and 
cellular size (Wu et  al. 2018). Our previous work found 
that domain-dependency patterns in prokaryotes cor-
responded to differences in niche breadth and bacteria 
and archaea population sizes (Wang et  al. 2020a). For a 
finer perspective of sub-communities, most previous 
efforts compared assembly mechanisms of abundant 
and rare communities (Alonso-Sáez et  al. 2015; Logares 
et al. 2014; Mo et al. 2018; Wu et al. 2017). For example, 
taxa abundance and diversity were suggested to con-
tribute to the differences in assembly mechanisms of 
abundant and rare communities of bacteria in subtropi-
cal bays (Mo et  al. 2018). However, key factors mediat-
ing the taxonomic dependency or spatial variability in 
assembly processes of marine bacteria have not been 
extensively revealed. Seawater density and temperature 
were suggested to be the most important environmen-
tal modulators of the balance between stochastic and 
deterministic assembly processes of prokaryotes along 
a ~ 2000-km longitudinal transect (Allen et al. 2020). Our 
previous work suggested suspended particles as a crucial 
factor driving the balance between deterministic and sto-
chastic assembly processes of bacteria across the coastal 
waters in the East China Sea (Wang et al. 2020a). How-
ever, determinants of taxonomic dependency and spatial 
heterogeneity in assembly mechanisms of bacteria across 
complex coastal waters remain largely unknown.

To characterize taxonomic dependency and spatial het-
erogeneity in assembly mechanisms of bacteria and their 
regulation in coastal waters, we used the coastal area of 
northern Zhejiang, East China Sea, with spatially struc-
tured environmental gradients (primarily salinity and 
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nutrient-related factors including dissolved inorganic 
nitrogen, phosphate, and suspended particles) (Wang 
et  al. 2015), as a model system. A 16S rRNA microbi-
ome dataset with regionally high coverage was analyzed 
with both neutral and null models, and with correspond-
ing visualization methods to test three hypotheses: (1) 
there would be pronounced taxonomic dependency in 
ecological processes governing bacterial assembly; (2) 
spatial heterogeneity in assembly processes of bacteria 
along the environmental gradients would be common 
across taxonomic groups; and (3) the extent and deter-
minants of spatial heterogeneity would also be taxonomi-
cally dependent. Our work could provide a baseline for 
assessing the impact of regional environmental changes 
on the mechanisms of maintenance of bacterial diversity 
and aggregation.

Methods
Sampling scheme, measurements of water 
physicochemical parameters, 16S rRNA gene amplicon 
sequencing, and sequence processing
The study area and sampling procedures were described 
in our previous work (Wang et al. 2015). Briefly, we used 
a high-coverage sampling scheme at a ~ 200-km scale 
across the coastal area of northern Zhejiang Province, 
China. A total of 95 surface water samples (at 0.5-m 
depth) were collected from 95 stations, affiliated to eight 
zones: Hangzhou Bay (HZ), Zhoushan archipelago (ZSI, 
including three subzones: ZSI_north (northern part of 
the archipelago), ZSI_mouth (in the mouth of HZ), and 
ZSI_other (others)), Xiangshan Bay (XS), Sanmen Bay 
(SM), Shipu (SP), Jiushan (JS), the east boundary of the 
Island-chain (BIC), and Yushan Reserve (YS) (Addi-
tional file  1: Fig. S1). Detailed information of measure-
ments of water physicochemical parameters, 16S rRNA 
gene amplicon sequencing, and sequence processing can 
be found in the Supplementary Methods and previous 
reports (Wang et al. 2015).

This study aims to test taxonomic dependency in 
assembly processes at the phylum and proteobacte-
rial class levels, since quantifying assembly processes at 
finer taxonomic levels like genus relies on extremely deep 
sequencing to obtain sufficient sequences for a given 
taxon across all the samples, which is limited by the cur-
rent dataset. A given bacterial phylum (or proteobacte-
rial class) with accumulative reads proportion > 2% in 
the whole dataset was selected as a dominant taxon for 
downstream analyses. As the most dominant and diverse 
bacterial phylum in the marine environment, Proteobac-
teria (accounting for 40.6% of bacterial sequences in the 
present study) was conventionally divided into classes 
when getting involved into the phylum-level analysis with 
other bacterial phyla (Hoshino et al. 2020; Sunagawa et al. 

2015). Separate tables were generated from the total bac-
terial ZOTU (Zero-radius Operational Taxonomic Unit) 
table for the above bacterial groups. The Actinobacteria, 
Gammaproteobacteria, Alphaproteobacteria, Bacteroi-
detes (aka. Bacteroidota in the GTDB taxonomy), Cyano-
bacteria, Planctomycetes, and Deltaproteobacteria tables 
were composed of 574, 1,816, 1,265, 1,297, 93, 1,150, 
and 1,353 ZOTUs, respectively. To deal with uneven 
sequence numbers among different taxonomic groups 
and across different samples, each sub-ZOTU table was 
normalized by the cumulative sum scaling transforma-
tion (Paulson et al. 2013).

Inference and visualization of assembly processes 
of bacterial communities from the metacommunity using 
the neutral model
We used the Sloan Neutral Model to infer assembly 
processes of bacterial communities from the metacom-
munity across the study area based on the total bac-
terial ZOTU table rarefied at 7,140 reads per sample 
(Sloan et  al. 2006). Briefly, the relationship between the 
frequency of occurrence of ZOTUs in the local com-
munities of 82 stations and their abundance in the meta-
community (estimated by the mean relative abundance 
across all local communities) was fitted by the neutral 
model. The model predicts that more abundant species 
(as referred to ZOTUs here) of a metacommunity will 
be more ubiquitous across local communities, because 
of their higher probability to be randomly dispersed and 
then to colonize in a local community, while less abun-
dant species are more likely to be lost or replaced by oth-
ers due to ecological drift (Burns et al. 2016). The R code 
from Burns et al. (2016) was used for the neutral model 
fitting, the goodness of model fitting was evaluated by R2, 
ranging from ≤ 0 (not fit) to 1 (perfectly fit). The 95% con-
fidence intervals of the model were calculated by boot-
strapping with 1,000 replicates. The estimated migration 
rate (m), presenting the probability that stochastic losses 
of individuals in local communities replaced by dispersal 
from the metacommunity, was calculated using a non-
linear least-squares fitting with the R package ‘minpack.
lm’ (Burns et al. 2016; Elzhov et al. 2013). This parame-
ter can be considered as an indicator of dispersal limita-
tion, that is, higher m values mean less dispersal limited 
(Burns et al. 2016).

The ZOTUs that fall within the 95% confidence inter-
vals of the neutral model are considered as neutrally 
distributed, which are likely assembled into local com-
munities by stochastic dispersal from the metacom-
munity and ecological drift (Venkataraman et  al. 2015). 
The ZOTUs that were overrepresented compared to the 
neutral prediction hold a strong probability of prefer-
ence for certain local conditions, thus being selected 
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for, while the ZOTUs that were underrepresented com-
pared to the neutral prediction are likely selected against 
by most of local conditions and/or governed by disper-
sal limitation from the metacommunity (Venkataraman 
et al. 2015). The cumulative relative abundances of neu-
trally distributed and non-neutrally distributed (above 
and below prediction) species were calculated as a metric 
to infer the relative influence of dispersal and drift (sto-
chastic processes) and selection (deterministic processes) 
in governing the assembly of bacteria at the community 
level (Venkataraman et al. 2015). To assess the taxonomic 
dependency in relative importance of deterministic and 
stochastic processes, we calculated the cumulative rela-
tive abundance of non-neutrally and neutrally distributed 
ZOTUs of total bacterial communities and different taxo-
nomic groups. Furthermore, the abundance ratio of non-
neutrally and neutrally distributed ZOTUs (hereinafter 
referred to as non-neutral-to-neutral ratio) of each com-
munity at each station was calculated as following:

where Abovei, Belowj, and Neutralk are the relative abun-
dance of overrepresented ZOTU i, underrepresented 
ZOTU j, and neutrally distributed ZOTU k in a given 
community, respectively. Then non-neutral-to-neutral 
ratio of each station was visualized using ArcGIS Desk-
top 10.4 to evaluate the spatial heterogeneity in assembly 
processes of bacteria.

Inference and visualization of assembly processes 
of bacterial communities on between‑station basis using 
the null models
The assembly processes of bacterial communities on 
the basis of pairwise comparison between stations 
were inferred using the null models (Stegen et al. 2013). 
This approach (Stegen et  al. 2013) and spatial visu-
alization of assembly processes (Wang et  al. 2019) have 
been described previously. Briefly, the first step of this 
approach is using the deviation of observed phylogenetic 
turnover (based on β-Mean Nearest Taxon Distance 
(βMNTD)) from the null expectation, that is β-Nearest 
Taxon Index (βNTI), to distinguish deterministic and 
stochastic processes:

(1)

Non-neutral-to-neutral ratio =

∑M
i=1Abovei +

∑N
j=1Belowj

∑T
k=1Neutralk

,

(2)

βMNTD = 0.5

nk

ik=1

fikmin �ik jm +

nm

im=1

fimmin �imjk ,

where fik is the relative abundance of ZOTU i in commu-
nity k, nk is the number of ZOTUs in k, and min

(

�ik jm

)

 is 
the minimum phylogenetic distance between ZOTU i in 
community k and all ZOTUs j in community m;

where βMNTDobs is phylogenetic distances between 
two observed communities, βMNTDnull is that between 
two randomized communities, βMNTDnull  is the mean 
βMNTDnull from 999 randomization, and sd(βMNTDnull) 
is standard deviations of 999 βMNTDnull. The signifi-
cant difference (|βNTI|> 2) indicates the dominance of 
deterministic processes for a given pair of communities, 
and βNTI >  + 2 or <  − 2 suggests that heterogeneous or 
homogeneous selection governs between-community 
difference or similarity, respectively. For all the pairs of 
communities with |βNTI|< 2, which suggests stochas-
tic processes, the second step uses Raup–Crick metric 
based on Bray–Curtis dissimilarity (RCbray) to estimate 
the standardized deviation of observed ZOTU turno-
ver from the null expectation, thus disentangling vari-
ous stochastic processes (Chase and Myers 2011; Stegen 
et  al. 2013). When |βNTI|< 2, the significant difference, 
that is RCbray >  + 0.95 or <  − 0.95, suggests that dispersal 
limitation or homogenizing dispersal governs between-
community difference or similarity, respectively, while 
|RCbray|< 0.95 suggests that the turnover between a given 
pair of communities is undominated by any processes 
(Stegen et al. 2015). Subsequently, the spatial distribution 
of assembly processes of total bacterial communities or 
different taxonomic groups between stations was visual-
ized using ArcGIS Desktop 10.4 (Yan et al. 2021).

Calculation of niche breadth of bacteria
Levins’ niche breadth was used to present habitat special-
ization and generalization of each bacterial ZOTU, based 
on the abundance of species in different resource states 
(Levins 1968). Here, resource states were defined by non-
hierarchical clustering as previously described (Wang 
et  al. 2020a; Yan et  al. 2022). The ZOTU tables of total 
bacterial community and different taxonomic groups 
were then converted into resource matrices (Krebs 2014). 

(3)βNTI =
βMNTDobs − βMNTDnull

sd(βMNTDnull)
,
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Niche breadth of ZOTUs was calculated and standard-
ized as following (Pandit et al. 2009).

where Bj is the niche breadth of ZOTU j, Pij is the pro-
portion of ZOTU j in resource state i, N is the total num-
ber of resource states. The arithmetic average BA of all 
ZOTUs in a given bacterial community or groups were 
calculated as niche breadth at the levels of the total com-
munity or taxonomic group (Wu et  al. 2018). The habi-
tat specialists and generalists were defined according to 
BA value of a given ZOTU as previously described (Liao 
et  al. 2016). Additional details of the threshold of habi-
tat specialists and generalists are provided in Additional 
file 1.

Inference of potential microbial interactions by association 
network analysis
Direct microbial associations were inferred using 
FlashWeave (sensitive = true, heterogeneous = false, 
alpha = 0.001, normalize = true) (Tackmann et  al. 2019). 
FlashWeave was used because of its merits on detecting 
and removing indirect (i.e., purely correlational) associa-
tions to construct direct association networks based on 
local-to-global learning approach, a constraint-based 
causal inference framework for the prediction of direct 
relationships between variables, thus reducing false or 
suspicious associations. It furthermore allows to estimate 
influence of environmental factors on microbial associa-
tions and then to remove indirect associations driven by 
them. The total bacterial network with non-environmen-
tally driven edges was generated, and then was divided 
into sub-networks for seven bacterial groups according 
to the edges connected to the nodes (ZOTUs) of each 
bacterial group. Community cohesions and cohesion 
ratio (|negative cohesion/positive cohesion|), as metrics 
evaluating the degree of connectivity and relative impor-
tance of negative and positive relationships between taxa 
in a community, were calculated based on the associa-
tions revealed in total bacterial network and seven sub-
networks as previously described (Hernandez et al. 2021; 
Herren and McMahon 2017). Furthermore, station-based 
networks were extracted from the total bacterial network 
and seven bacterial sub-networks according to the edges 
connected to the nodes (ZOTUs) present in the local 
community (Ma et al. 2016) and then topological features 
including modularity and average degree, as metrics 
evaluating community stability and potential interaction 

(4)
Levins’ niche breadth index (B) : Bj = 1/

∑N

i=1
P2
ij ,

(5)
Levins’ standardized niche breadth (BA) : BA = (B− 1)/(N− 1),

strength (Hernandez et  al. 2021; Wan et  al. 2020), were 
calculated using the R package “igraph”.

Estimating the direct and indirect effects of different factor 
categories on bacterial community assembly
Partial least squares path modeling (PLS-PM) (Sanchez 
et al. 2023) was conducted to obtain a systematic under-
standing of the direct and indirect effects of factor cat-
egories including Longitude, Latitude, basic abiotic 
constraints (Basic; including pH and DO), inorganic 
resources (Inorganic; including salinity, DIN (dissolved 
inorganic nitrogen; sum of NO3 (nitrate), NO2 (nitrite), 
NH4 (ammonium), and PO4 (phosphate)), organic 
resources (Organic; including SP (suspended particles), 
COD (chemical oxygen demand), and oil), chlorophyll-a 
(Chl-a), niche breadth of bacterial community (Niche), 
bacterial alpha diversity indices (Diversity; including 
phylogenetic diversity, ZOTU richness, and Shannon–
Wiener index), relative abundance (Abundance), and the 
features reflecting potential microbial interactions (Inter-
action; including cohesion ratio (|negative cohesion/
positive cohesion|), modularity, and average degree) on 
bacterial community assembly mechanisms (as expressed 
by the ratio of the relative abundance of non-neutrally 
ZOTUs to that of neutrally distributed ones) with the R 
package ‘plspm’ (Sanchez et  al. 2023). The GoF index is 
regarded as goodness of fit of the entire model. The total 
effects are the sum of direct and indirect effects. The 
direct effects are expressed as the path coefficients, and 
the indirect effects are expressed as the product of the 
path coefficients by taking an indirect path. Partial least 
squares path modeling shows the path coefficients (direct 
effects) of the above ten factor categories, significance of 
linear model fitting between pairwise factor categories 
were checked by bootstrap t-test.

General statistical analyses
The geo-statistics were performed in ArcGIS Desktop 
10.4. Kruskal–Wallis analysis was applied to test the sig-
nificance of differences in the ecological features includ-
ing non-neutral-to-neutral ratio, niche breadth, alpha 
diversity indices, and the features of microbial asso-
ciations across bacterial communities using IBM SPSS 
Statistics Version 22.0. Spearman rank correlations 
between assembly mechanisms (as expressed by non-
neutral-to-neutral ratio) of bacterial communities and 
other community ecological features were tested in IBM 
SPSS Statistics Version 22.0. Distance-based redundancy 
analysis (db-RDA) was performed to determine key envi-
ronmental driver of compositional variation of bacterial 
communities using the ‘capscale’ function of the R pack-
age “vegan”.
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Results
Assembly processes of bacterial communities
Our analyses focused on seven bacterial taxonomic 
groups at the phylum and proteobacterial class levels, 
accounting for 92.8% of reads of the metacommunity. 
Overall, the assembly of total bacterial communities fit 
the neutral model (R2 = 0.77; Additional file  1: Fig. S2). 
According to the cumulative relative abundance of three 
categories of ZOTUs (Zero-radius Operational Taxo-
nomic Units) indicating the relative importance of differ-
ent ecological processes, neutral (stochastic) processes 
had slightly more contribution to total bacterial com-
munity assembly compared with that of selection (deter-
ministic (above or below prediction)) processes (58.4% 
vs. 41.6%) (Fig.  1A). However, the relative importance 
of neutral and selection processes was highly variable 
across the seven bacterial groups, that is, Actinobacte-
ria, Gammaproteobacteria, Alphaproteobacteria, and 
Cyanobacteria were more dominantly governed by neu-
tral processes; and Bacteroidetes, Planctomycetes, and 
Deltaproteobacteria were more shaped by selection pro-
cesses, with more selection against in the assembly of 
Bacteroidetes and Planctomycetes but more selection for 
in the assembly of Deltaproteobacteria.

In order to quantify phylogenetic turnover of bacte-
rial communities using the null model based on βNTI 
(β-Nearest Taxon Index), we first tested for phyloge-
netic signals for total bacterial community or taxonomic 
groups (Additional file 1: Fig. S3), and confirmed signifi-
cant signals across relatively short phylogenetic distances 
(typically < 13% of the maximum) (Stegen et  al. 2012). 
The null models showed that total bacterial communities 
were equally governed by deterministic and stochastic 

processes (Fig.  1B). Similar to the pattern revealed by 
the neutral model, Actinobacteria, Gammaproteobacte-
ria, Alphaproteobacteria, and Cyanobacteria were  more 
governed by stochastic processes, of which the rela-
tive importance was even higher than that shown by 
neutral model, while the enhanced stochasticity made 
Bacteroidetes equally shaped by deterministic and sto-
chastic processes (50.2% vs. 49.8%) (Fig.  1B). However, 
Planctomycetes and Deltaproteobacteria were governed 
more by stochastic processes, showing the opposite pat-
tern as revealed by the neutral model. Additionally, we 
found that all bacterial groups were governed more by 
deterministic processes when quantifying with RCbray 
(Raup–Crick metric based on Bray–Curtis dissimilarity) 
alone than with βNTI alone (Additional file 1: Fig. S4).

Spatial variability of assembly processes of bacterial 
communities
The ratio of deterministic and stochastic assembly 
processes at each station quantified by non-neutral-
to-neutral ratio was mapped to illustrate the spatial het-
erogeneity of bacterial community assembly mechanism 
(Fig.  2). Total bacterial communities were more shaped 
by deterministic processes (selection) in Hangzhou Bay 
(HZ) and Yushan Reserve (YS), serving as two ends of 
multiple environmental gradients (including salinity 
and nutrient-related factors). In other zones among the 
intermediate interval of the environmental gradients, 
stochastic (neutral) processes showed more power in 
governing the assembly of total bacterial communities. 
The assembly processes of the seven bacterial groups 
showed distinct spatial patterns. Bacteroidetes showed 
a similar pattern as the total bacterial community, with 
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Fig. 1  Relative importance of assembly processes of bacteria using neutral (A) and null models (B). A Cumulative relative abundance of bacterial 
ZOTUs above prediction, below prediction, and neutrally distributed. B The percentage of ecological processes governing the spatial turnover 
of total bacterial communities or seven taxonomic groups in all pairwise comparisons between stations according to βNTI values
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the zones dominated by determinism extending to the 
northern part of Zhoushan archipelago (ZSI_north) and 
Jiushan Islands (JS). The assemblies of Alphaproteobac-
teria and Gammaproteobacteria were dominantly gov-
erned by deterministic processes in HZ, while stochastic 
processes in other zones. Actinobacteria and Cyano-
bacteria were generally shaped by stochastic processes 
across the entire study area (except several HZ stations 
for Cyanobacteria), while the assembly of Deltaproteo-
bacteria was dominated by deterministic processes. The 
assembly of Planctomycetes was dominated by determin-
istic processes in most zones except the east boundary 
of the Island-chain (BIC). The degree of heterogeneity in 
assembly mechanisms of bacteria estimated by coefficient 
of variation (CV) of non-neutral-to-neutral ratio varied 
from 0.36 to 1.35 (data not shown). Taxonomic groups 
with higher spatial heterogeneity were Bacteroidetes 

(1.35), Alphaproteobacteria (1.18), Cyanobacteria (1.12), 
and Planctomycetes (1.06), while those with lower heter-
ogeneity were Actinobacteria (0.69), Gammaproteobac-
teria (0.42), and Deltaproteobacteria (0.36).

From the perspective of pairwise comparisons 
between zones (as indicated by the ratio of determin-
istic processes between zones according to βNTI), total 
bacterial community and taxonomic groups including 
Bacteroidetes, Deltaproteobacteria, and Planctomy-
cetes showed higher spatial heterogeneity in assem-
bly processes, compared with other taxonomic groups 
(Fig.  3 and Additional file  1: Fig. S5). The extent of 
heterogeneity across taxonomic groups overall cor-
responded to those revealed by the neutral model, 
except Alphaproteobacteria and Gammaproteobacte-
ria, which showed much less heterogeneity compared 
with that based on the neutral model. For the total 

Fig. 2  Kriged maps illustrating the spatial variability of the ratio of relative abundance of non-neutrally (sum of above-prediction 
and below-prediction) distributed ZOTUs to that of neutrally distributed ZOTUs (defined by the neutral model) in total bacterial communities 
or seven taxonomic groups. The colors of the stations correspond to different zones, and the stations in the Zhoushan archipelago were grouped 
into three subzones including ZSI_north (northern part of the archipelago), ZSI_mouth (in the mouth of HZ), and ZSI_other (others), which were 
shown as square, circle, and triangle symbols, respectively
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bacterial community, a determinism-dominated pat-
tern was more frequently detected between ZSI/Xiang-
shan Bay (XS)/Sanmen Bay (SM)/Shipu (SP) and other 

zones, while a determinism-dominated pattern of Bac-
teroidetes and Deltaproteobacteria was mainly found 
between HZ/ZSI_mouth and other zones. Additionally, 
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Fig. 3  Heatmap showing deterministic ratio of assembly processes of total bacterial communities and seven taxonomic groups based on pairwise 
comparisons between zones according to βNTI. Data in bold indicate deterministic ratio of assembly processes within each zone. HZ, Hangzhou 
Bay; ZSI, Zhoushan archipelago; XS, Xiangshan Bay; SM, Sanmen Bay; SP, Shipu; JS, Jiushan; BIC, the east boundary of the Island-chain; YS, Yushan 
Reserve. The stations in the ZSI were grouped into three subzones including ZSI_north (northern part of the archipelago), ZSI_mouth (in the mouth 
of HZ), and ZSI_other (others). Details about the geographic distribution of the ecological processes governing the spatial turnover of bacterial 
communities between stations according to βNTI and RCbray values are shown in Additional file 1: Fig. S5
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the heterogeneous distribution of five specific ecologi-
cal processes governing the assembly of total bacterial 
community and bacterial groups was ubiquitous (Addi-
tional file 1: Fig. S5).

Associations of community ecological features 
with assembly mechanism
The optimal number and spatial distribution of resource 
states are shown in Additional file 1: Fig. S6, then niche 
breadth was calculated based on the resource matrices. 
The ecological features including standardized Levins’ 
niche breadth, alpha diversity indices (including phylo-
genetic diversity, ZOTU richness, and Shannon–Wiener 
index), relative abundance, and the features of microbial 
associations (including cohesion ratio (|negative cohe-
sion/positive cohesion|), modularity, and average degree) 
varied across bacterial groups (Additional file 1: Fig. S7). 
In the study area, Cyanobacteria possessed the widest 
niche breadth, followed by Gammaproteobacteria and 
Actinobacteria, while Deltaproteobacteria with the nar-
rowest niche breadth. In addition, Bacteroidetes had 
higher proportion of habitat specialists compared with 
those of the other bacterial groups (Additional file 1: Fig. 
S8).

Among observed ecological features, niche breadth 
of bacterial community/groups showed strong nega-
tive correlations (ρ = −  0.477, P < 0.001) with the 

non-neutral-to-neutral ratio (as an indicator of commu-
nity assembly mechanisms; Table 1). For alpha diversity, 
Shannon–Wiener index and ZOTU richness showed 
positive correlations with the non-neutral-to-neutral 
ratio (ρShannon = 0.500, ρRichness = 0.244, both P < 0.001), 
while the phylogenetic diversity was not significantly cor-
related. Relative abundance showed a negative correla-
tion with the non-neutral-to-neutral ratio (ρ = −  0.355, 
P < 0.001). Furthermore, cohesion ratio, |negative cohe-
sion|, and modularity of community showed positive cor-
relations with the non-neutral-to-neutral ratio (ρ = 0.406, 
0.381, and 0.381, respectively, all P < 0.001), while positive 
cohesion was negatively correlated with the non-neutral-
to-neutral ratio (ρ = − 0.384, P < 0.001).

Effects of different factor categories on spatial variability 
in assembly processes of bacteria
Spatial variability of environmental conditions across the 
study area was extensively found previously (Wang et al. 
2015). The distance-based redundancy analysis (db-RDA) 
plots revealed that environmental conditions [commonly 
including salinity, dissolved oxygen (DO), pH, and nutri-
ent-related factors such as nitrate, phosphate, and sus-
pended particles (SP)] largely drove the similar patterns 
of compositional variation of total bacterial community 
and seven bacterial groups across zones (Additional 
file  1: Fig. S9). As for the ecological features, niche 
breadth, Shannon–Wiener index, and average degree 
showed overall stronger spatial variability compared with 
other features (Fig. 4 and Additional file 1: Fig. S7). After 
screening strongly correlative factors corresponding to 
each factor category (latent variables) for partial least 
squares path modeling (PLS-PM) (Fig. 5), the final PLS-
PM showed that basic abiotic constraints (Basic), inor-
ganic resources (Inorganic), and Chl-a directly shaped, 
while geographic factors (Longitude and/or Latitude) 
indirectly shaped spatial variability of assembly mecha-
nisms of total bacterial communities via the aforemen-
tioned three factor categories (Fig.  6). Furthermore, 
potential microbial interactions (Interaction) also showed 
a direct effect for the total bacterial community but not 
for the seven bacterial groups. The combination of factors 
that drove spatial heterogeneity in the assembly mecha-
nisms of bacteria varied across taxa. Geographic fac-
tors (Longitude and/or Latitude) only directly mattered 
for Planctomycetes, but indirectly influenced all bacte-
rial groups via environmental factors (Basic, Inorganic, 
organic resources (Organic), and/or Chl-a) and/or the 
ecological features (niche breadth (Niche), alpha diversity 
(Diversity), and/or relative abundance (Abundance)) of 
bacteria. Basic directly shaped the spatial assembly pat-
terns of Alphaproteobacteria, Planctomycetes, and Del-
taproteobacteria. Spatial assembly of Actinobacteria and 

Table 1  Spearman rank correlations of the ratio of relative 
abundance of non-neutrally distributed (sum of above-
prediction and below-prediction) ZOTUs to that of neutrally 
distributed ZOTUs (defined by the neutral model) with niche 
breadth, alpha diversity indices (including phylogenetic diversity, 
ZOTU richness, and Shannon–Wiener index), relative abundance 
of bacteria groups, and the features of microbial associations 
(including |negative cohesion|, positive cohesion, cohesion ratio 
(|negative cohesion/positive cohesion|), modularity, and average 
degree)

Data in bold indicate significant correlations (P < 0.001)

Ecological features Non-neutral-to-neutral ratio

ρ P

Niche breadth − 0.477  < 0.001

Phylogenetic diversity − 0.014 0.740

ZOTU richness 0.244  < 0.001

Shannon–Wiener index 0.500  < 0.001

Relative abundance − 0.355  < 0.001

|Negative cohesion| 0.381  < 0.001

Positive cohesion − 0.384  < 0.001

Cohesion ratio 0.406  < 0.001

Modularity 0.381  < 0.001

Average degree − 0.150 0.008
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Cyanobacteria were directly and positively influenced by 
Organic, while Inorganic had a direct and positive effect 
only on Alphaproteobacteria. Chlorophyll-a directly 
shaped spatial assembly pattern of Planctomycetes, and 
indirectly shaped that of Gammaproteobacteria via 
Niche. As for the internal ecological features of bacterial 
communities, Diversity directly and positively affected 
the spatial assembly patterns of Actinobacteria and 
Gammaproteobacteria, but negatively affected those of 
Planctomycetes and Deltaproteobacteria. Furthermore, 
Abundance directly mattered for the spatial assembly 
patterns of Bacteroidetes, Planctomycetes, and Deltapro-
teobacteria, while Niche only directly mattered for Gam-
maproteobacteria and Deltaproteobacteria.

Discussion
Taxonomic dependency in bacterial assembly processes 
and its determinants
Our results suggested high taxonomic dependency in 
assembly processes within the domain Bacteria across 
the coastal waters at the regional scale. The assembly 
mechanisms of the dominant bacterial groups, including 
Actinobacteria, Gammaproteobacteria, Alphaproteobac-
teria, Bacteroidetes, and Cyanobacteria, derived from 
both neutral and null models, were overall similar, in 
terms of relative importance of determinism to stochas-
ticity. Among these five taxonomic groups, only Bacte-
roidetes was more dominantly governed by determinism, 
while the other bacterial groups were more governed by 

Fig. 4  Kriged maps showing the geographic distribution of the standardized Levins’ niche breadth (Bcom) of the total bacterial communities 
or the seven taxonomic groups. The scale of color bar varies with panel
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stochastic mechanisms, among which Gammaproteo-
bacteria was more influenced by deterministic processes 
compared with others. This is consistent with the pre-
vious report suggesting that Bacteroidetes were more 
shaped by deterministic processes compared with Alp-
haproteobacteria and Cyanobacteria in the ocean surface 

via null model based metrics (net relatedness and near-
est taxa indices) (Barberán and Casamayor 2010; Webb 
2000). On the other hand, we found inconsistency in 
the dominant assembly mechanisms of bacterial groups 
inferred by neutral and null models for certain groups 
like Planctomycetes and Deltaproteobacteria. Moreover, 
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Fig. 5  Bar plots showing the loadings between observed factors and corresponding factor categories (latent variables) according to partial least 
squares path modeling (PLS-PM). The factors with empty bars were below the loading threshold (< 0.7) to the corresponding factor category, 
and thus were not used in the final PLS-PM. Relative abundance of total bacteria was marked as NA (not applicable) due to that all values are 
same as 1 thus being forbidden by PLS-PM. DO, dissolved oxygen; DIN, dissolved inorganic nitrogen; SP, suspended particles; COD, chemical 
oxygen demand; Chl-a, chlorophyll-a; PD, phylogenetic diversity; Richness, ZOTU richness; Shannon, Shannon–Wiener index; Abundance, relative 
abundance; Cohesion ratio, |negative cohesion/positive cohesion|

Fig. 6  Partial least squares path modeling (PLS-PM) showing path coefficients (direct effects) of factor categories on spatial variability in assembly 
mechanisms of total bacterial community and seven taxonomic groups (expressed by the ratio of the relative abundance of non-neutrally 
ZOTUs to that of neutrally distributed ones). The overall prediction performance of the models was assessed using goodness of fit (GoF) statistic. 
Blue and red lines present significant positive and negative effects, respectively (only significant effects were shown, P < 0.01), and the thickness 
of lines indicated direct effect strength (as data on the lines). Basic: basic abiotic constraints including pH, and DO; Inorganic: inorganic 
resources including salinity, DIN (sum of NO3, NO2, and NH4), and PO4; Organic: organic resources including SP, COD, and oil; Chl-a: chlorophyll-a; 
Diversity: alpha diversity indices including phylogenetic diversity, ZOTU richness, and Shannon–Wiener index; Niche: niche breadth of bacteria 
at the community level; Interaction: potential bacterial interactions inferred by the features of microbial associations including cohesion ratio 
(|negative cohesion/positive cohesion|), modularity, and average degree

(See figure on next page.)



Page 12 of 18Yan et al. Ecological Processes            (2024) 13:6 

Longitude Latitude

Basic Organic

Assembly
R² = 0.79

Niche AbundanceDiversity

Inorganic Chl-a

Total Bacteria
GoF = 0.745 -0.53

0.910.34

Interaction

-0.61
0.70 -0.43

0.31

0.69

0.46
-0.23

0.59

0.56
-0.43 0.45

-0.35

-0.56
-0.66

0.38
0.52

-0.79

0.91 Longitude Latitude

Basic Organic

Assembly
R² = 0.79

Niche AbundanceDiversity

Inorganic Chl-a

Actinobacteria
GoF = 0.676

0.780.35

Interaction

-0.60
0.70 -0.45

0.34

0.64

0.69
0.41

0.51
-0.72

0.59

-1.00

0.30
0.48

Longitude Latitude

Basic Organic

Assembly
R² = 0.85

Niche AbundanceDiversity

Inorganic Chl-a

Gammaproteobacteria
GoF = 0.744 -0.52

0.890.35

Interaction

-0.61
0.69 -0.43

0.31

0.31

0.52
-0.44 0.40

-0.25

-0.38 0.39
0.52

0.81

-0.25

0.73

Longitude Latitude

Basic Organic

Assembly
R² = 0.81

Niche AbundanceDiversity

Inorganic Chl-a

Alphaproteobacteria
GoF = 0.711 -0.54

0.900.36

Interaction

-0.60
0.70 -0.43

0.31

0.64
0.57

0.44

-0.33 0.55
0.20

0.53
-0.78

1.1

-0.60

Longitude Latitude

Basic Organic

Assembly
R² = 0.85

Niche AbundanceDiversity

Inorganic Chl-a

Bacteroidetes
GoF = 0.745 -0.51

0.880.35

Interaction

-0.61
0.69 -0.43

0.31

-0.50 0.45
-0.57 0.51

-0.76

0.55

-0.66

0.76

Longitude Latitude

Basic Organic

Assembly
R² = 0.32

Niche AbundanceDiversity

Inorganic Chl-a

Cyanobacteria
GoF = 0.614

0.700.38

Interaction

-0.60
0.69 -0.42

0.33

0.80

0.48

0.39 0.46
-0.68

0.51
-0.42 0.37

0.53

-0.68

Longitude Latitude

Basic Organic

Assembly
R² = 0.82

Niche AbundanceDiversity

Inorganic Chl-a

Planctomycetes
GoF = 0.710

0.900.37

Interaction

-0.61
0.70 -0.43

0.31

0.30

0.46

0.53
-0.78

0.73

0.40

-0.31

-0.19
0.69

1.13

-0.81

-0.61

Longitude Latitude

Basic Organic

Assembly
R² = 0.42

Niche AbundanceDiversity

Inorganic Chl-a

Deltaproteobacteria
GoF = 0.710 -0.53

0.880.37

Interaction

-0.61
0.69 -0.43

0.31

0.30-0.36 0.39

0.52
-0.76

0.88

0.43

0.66 -0.23

0.37

0.25

-0.24
0.34

-0.77

0.56

-0.36

-0.570.78 -0.25

-0.53

-0.24

0.33

-0.19

-0.26

-0.59 0.28

-0.54

1.22
-0.44

-1.53

Fig. 6  (See legend on previous page.)



Page 13 of 18Yan et al. Ecological Processes            (2024) 13:6 	

the null model seems to introduce a higher proportion 
of stochasticity compared with the neutral model for 
any given bacterial group. The following reasons may 
explain the extra randomness introduced by the current 
null model. First, the null model based on phylogenetic 
metrics can result in higher proportion of stochastic pro-
cesses compared with the one based on taxonomic-abun-
dance metrics (Stegen et al. 2013), which was confirmed 
by the comparison between the results derived from 
βNTI and from RCbray alone, while the neutral model is 
a special form of taxonomic-abundance based null model 
(Hubbell 2001; Sloan et  al. 2006). The second possible 
explanation could be the endogenous difference in the 
basis for inferring community assembly process, that is 
the local-metacommunity relationship of each species 
for the neutral model and pairwise comparison between 
local communities based on community-level metrics 
for the null model. These results emphasize the neces-
sity of using different models to complementarily inter-
pret assembly mechanisms of microbial communities, 
especially for taxonomic groups with lower relative abun-
dance, since conflicting results from the two models were 
more likely to occur in bacterial groups with lower rela-
tive abundance. Despite that, both models confirmed that 
taxonomic dependencies exist in the assembly mecha-
nisms of bacterial groups in terms of dominant assem-
bly mechanisms and specific ecological processes. Due 
to the limitation of sequencing depth and unevenness in 
sequences and coverage across taxonomic scales for dif-
ferent samples, our analyses did not expand to the finer 
taxonomic resolutions. Future efforts should be made 
to assess taxonomic scale dependency and hierarchical 
determinants of bacterial assembly mechanisms.

The current knowledge about taxonomic dependency 
determinants in community assembly mechanisms is 
scarce. Niche breadth at the community level has been 
proposed as a major determinant of differences in assem-
bly mechanisms across microbial domains (Logares et al. 
2020; Wang et al. 2020a; Wu et al. 2018), since microor-
ganisms with wider niche breadths are less sensitive to 
environmental changes and are less governed by envi-
ronmental selection, thus leading to stronger stochastic 
assembly relative to deterministic assembly (Jiao et  al. 
2020; Liao et al. 2016). In this study, we also found that 
niche breadth showed a strong negative correlation with 
the determinism-to-stochasticity ratio in the assembly 
of bacterial groups, suggesting this principle could also 
apply to taxonomic dependency in assembly mecha-
nisms within the domain Bacteria. Furthermore, the rela-
tive abundance of habitat specialists and generalists (as 
defined by the range of niche breadth) in a given commu-
nity could also determine its assembly mechanism, and 
the community with higher proportion or abundance of 

specialists tends to be more governed by selection (Mo 
et al. 2020). Therefore, the higher abundance of special-
ists in Bacteroidetes compared with those of other bacte-
rial groups corresponded to the determinism-dominated 
assembly mechanism of Bacteroidetes assemblages. We 
also found that bacterial groups with higher alpha diver-
sity tended to have a higher determinism-to-stochas-
ticity ratio. Similarly, previous studies found that the 
bacterial communities with higher alpha diversity were 
more deterministically assembled in wetlands (Yang 
et  al. 2022) and tropical ocean water ecosystems (Kong 
et al. 2022), suggesting that bacterial groups with higher 
species diversity could possess more diverse metabolic 
potential to cope with the broader spectrum of environ-
mental selection. On the contrary, the bacterial groups 
with lower species diversity were more governed by sto-
chastic processes. In the case of Cyanobacteria with the 
lowest diversity here, stochasticity-dominance could be 
due to the broad range of growth conditions even within 
a particular cyanobacterial genus or species (Ferris and 
Palenik 1998), leading to niche complementarity and sub-
sequently the resistance to environmental selection dur-
ing the assembly. Biotic interactions are often considered 
as a part of selection, thus being deterministic in govern-
ing community assembly (Faust and Raes 2012; Lin et al. 
2024); however, others proposed that biotic interactions 
do not necessarily impose deterministic assembly (Zhou 
and Ning 2017). We found considerable positive effects 
of negative-to-positive cohesion ratio, negative cohe-
sion strength, and modularity on the determinism-to-
stochasticity ratio, while positive cohesion showed the 
opposite effect. These results suggested that negative 
cohesion, with its ratio to positive cohesion reflecting 
the relative importance of potential competitive relation-
ships to cooperative relationships between taxa (Danc-
zak et al. 2018), could impose a more selective pressure 
to govern deterministic community assembly (Wu 
et  al. 2023b), while higher positive cohesion reflecting 
more extensive microbial cooperative interactions may 
increase the flexibility during community assembly thus 
increasing stochasticity (Wang et al. 2023). Furthermore, 
negative-to-positive cohesion ratio and modularity were 
considered as good indicators to reflect community sta-
bility (Hernandez et al. 2021; Yuan et al. 2021), and higher 
community stability should be largely archived by more 
deterministic assembly processes. The average degree 
reflecting potential interaction strength showed a weak 
correlation with assembly mechanism, suggesting that 
the relative importance of microbial interaction types, 
not microbial interaction strength, might be the key 
determinant of taxonomic dependency in the assembly 
mechanisms of bacteria. Notably, the relative abundance 
of a given taxonomic group, reflecting its population size 
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within the bacterial community, showed a negative asso-
ciation with determinism-to-stochasticity ratio. Theoret-
ically, however, a given taxa with smaller population size 
is more vulnerable to ecological drift (caused by random 
birth and death of individuals) and thus tends to be more 
stochastically assembled (Kong et al. 2022). Our previous 
work demonstrated that archaea with lower abundance 
relative to bacteria were more strongly governed by sto-
chasticity at a similar regional scale (Wang et al. 2020a). 
Some other studies comparing assembly mechanisms of 
abundant and rare bacterial communities also reported 
inconsistent results, where rare bacterial sub-commu-
nities were more governed by stochastic processes rela-
tive to abundant sub-communities in many bays across 
China’s coastline (Mo et al. 2018). Despite the inconsist-
ency, the importance of niche breadth, diversity, relative 
abundance, and potential interactions of bacterial taxa in 
driving taxonomic dependency in assembly mechanisms 
of marine bacteria could be general patterns, worthy of 
further testing across various temporal and spatial scales.

Spatial heterogeneity of bacterial assembly mechanisms 
and its key determinants
During the past decade, the vision of microbial biogeog-
raphy has evolved from patterns to processes (Hanson 
et al. 2012; Vellend 2010; Zhou and Ning 2017). However, 
most of the studies interpreted microbial community 
assembly mechanisms in a general manner across various 
geographic scales (Cheng et al. 2023; Logares et al. 2020; 
Wu et  al. 2018). The spatial variability or heterogene-
ity of community assembly mechanisms of microorgan-
isms has been neglected for a long time. Our previous 
work has demonstrated the remarkable spatial variabil-
ity of community assembly processes of total archaea 
and the dominant archaeal groups (Marine Groups I 
and II) (Wang et al. 2019). We also found that the extent 
of spatial heterogeneity of microbial assembly mecha-
nisms might largely depend on the range of environ-
mental gradients across similar geographic scales, that 
is, broader environmental gradients led to higher spa-
tial heterogeneity of assembly mechanisms (Wang et  al. 
2019, 2020a). In this study, by using customized spatial 
visualization methods for both neutral and null models, 
we confirmed the prevalence of spatial heterogeneity 
in assembly processes of total bacterial community and 
taxonomic groups, and the differences in the degree of 
spatial heterogeneity in assembly processes across the 
seven bacterial groups suggested taxonomic dependency 
in spatial heterogeneity of assembly mechanisms. As the 
two ends of the environmental gradients (including salin-
ity and nutrients) in our study area, the Hangzhou Bay 
(HZ) and Yushan Reserve (YS) served as the only two hot 
spots of determinism-dominated mechanism for the total 

bacterial community. This corresponded to the stronger 
selection triggered by more extreme local environmental 
conditions in these two zones, which harbored very dis-
tinct community composition compared with those in 
the other zones (Wang et  al. 2015). As one of the most 
eutrophic coastal area in China, the study area forms a 
strong-to-weak gradient of anthropogenic/terrestrial 
disturbances from HZ to YS (MEE 2023), due to the 
emissions from the intensive economic development of 
the big/mega cities surrounding HZ and the terrestrial 
runoffs from the Qiantang River (Chen et  al. 2009; Sun 
et al. 2013; Yang et al. 2012). The stochasticity-dominated 
assembly mechanism of the total bacterial community 
found in the zones across the intermediate range of gra-
dients suggests that intermediate anthropogenic/terres-
trial disturbances could lead to more stochastic assembly 
of bacteria. These results indicate an ‘intermediate dis-
turbance hypothesis’ (Connell 1979) of heterogeneity in 
microbial community assembly mechanisms. This has 
been shown in a soil ecosystem/microcosm experiment 
where stochasticity overwhelmed determinism in bacte-
rial community assembly processes at neutral pH/mod-
erate disturbance conditions but showed the opposite 
pattern at two poles of pH value/disturbance frequency 
(Santillan et al. 2019; Tripathi et al. 2018).

Although the degree of heterogeneity varied across 
bacterial groups, HZ served as the hot spot of determin-
ism-dominated mechanisms for more than half of the 
taxonomic groups including Alphaproteobacteria, Gam-
maproteobacteria, Planctomycetes, and Bacteroidetes, 
emphasizing that these bacterial taxa tend to be more 
deterministically assembled under more intensive dis-
turbances. Several previous studies also found enhanced 
determinism (niche selection) coupled with more inten-
sive perturbation such as anthropogenic activities and 
extreme climates like heavy rain and desiccation across 
various ecosystems including freshwater lakes (Obieze 
et al. 2022; Wu et al. 2023a), rock pools (Vass et al. 2020), 
and coastal sediments (Valverde et  al. 2014). Further-
more, eutrophic waters in HZ could increase the pro-
portion of deterministic processes of these taxa as other 
researchers found that planktonic Vibrio communities 
were more deterministically assembled in eutrophic 
waters compared with those in mesotrophic waters in a 
marine subtropical gulf (Li et al. 2020). Furthermore, YS 
also served as the hot spot of determinism-dominated 
mechanisms for Bacteroidetes, which corresponded to 
the dominant Bacteroidetes likely triggered by the phy-
toplankton bloom in this zone as previously reported 
(Wang et  al. 2015). Collectively, spatial heterogeneity 
in the assembly mechanisms of bacteria was prevalent 
across the study area.
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Our understanding of the determinants of spatial het-
erogeneity in bacterial assembly mechanisms in marine 
waters is poor at best. Some studies have demonstrated 
that temperature was the major factor mediating the 
balance between stochastic and deterministic assembly 
processes of bacteria in the sediments of hot springs (He 
et  al. 2021) and in the oligotrophic ocean at a ~ 2,000-
km scale (Allen et  al. 2020). Our previous study across 
coastal waters at a ~ 300-km scale found that suspended 
particles (SP) and phosphate had a great impact on spa-
tial variability of bacterial assembly processes (Wang 
et al. 2020a), while salinity largely regulated that along an 
exorheic river (Shi et al. 2023). Here, we found that envi-
ronmental determinants including pH, dissolved oxygen 
(DO), salinity, dissolved inorganic nitrogen (DIN), and 
phosphate directly affected the spatial heterogeneity of 
the determinism-to-stochasticity ratio of total bacte-
rial community. Among them, the nutrient concentra-
tions (mainly DIN and phosphate) formed a high-to-low 
gradient from HZ to YS, while salinity and pH showed 
a high-to-low gradient from YS to HZ, corresponding 
to the determinism-dominance in total bacterial assem-
bly in these two zones, but stochasticity-dominated pat-
tern in other zones as discussed above. Besides strong 
environmental constraints on total bacterial community 
assembly mechanisms over space, potential interactions 
between taxa also contributed to spatial assembly pat-
terns of total bacteria, emphasizing the role of specific 
microbial interactions in enhancing deterministic com-
munity assembly as we discussed above.

In general, many factors could affect the spatial assem-
bly of multiple bacterial groups, but how they acted on 
distinct communities subtly differed. As we hypothe-
sized, the determinants of spatial heterogeneity in assem-
bly mechanisms were also taxonomically dependent. 
Similar to the total bacterial community, spatial variabil-
ity in the assembly mechanism of Alphaproteobacteria 
was strongly and directly affected by basic abiotic con-
straints and inorganic resources. But the underestimation 
of a key alphaproteobacterial group (Pelagibacterales, 
aka. SAR11 clade) by the current primer set could influ-
ence the assessment of processes and determinants of 
Alphaproteobacteria assembly, which should be evalu-
ated in the future with the modified primer set. Bacte-
roidetes was strongly and directly affected by its relative 
abundance, corresponding to its thriving following a 
phytoplankton bloom in YS as mentioned above. It is 
well known that the spatial distribution of abundance 
and diversity of marine Cyanobacteria is mainly driven 
by the combination of light, temperature, and inorganic 
nutrients including N, P, and Fe (Cunningham and John 
2017; Flombaum et al. 2013), but the factors determining 
the spatial variability in its assembly processes are barely 

known. We found that spatial heterogeneity in the assem-
bly of Cyanobacteria was directly regulated by organic 
resources including SP and chemical oxygen demand 
(COD), enforcing determinism-dominance in the mouth 
of HZ, which may reflect underlying cruciality of light 
and nutrients. Given the importance of Cyanobacteria in 
marine endogenous organic carbon flux, this association 
between cyanobacterial assembly and exogenous organic 
matter indicates the complex roles of cyanobacteria in 
organic carbon turnover in the transitional zone between 
land and sea. Among all the tested bacterial groups, only 
the assembly of Planctomycetes was simultaneously and 
directly controlled by geographic, environmental, and 
community ecological features. This suggests complex-
ity in the mechanisms governing the spatial assembly 
of Planctomycetes. Given that longitude showed the 
strongest effect on Planctomycetes, we speculated that 
unmeasured factors such as water temperature highly 
associated with longitude might be the actual drivers, 
which deserves further investigation.

Compared with the above bacterial groups, the assem-
bly mechanism of Gammaproteobacteria, Actinobac-
teria, and Deltaproteobacteria showed much lower 
spatial heterogeneity. The spatial heterogeneity in assem-
bly mechanism of Gammaproteobacteria was strongly 
and directly affected by its alpha diversity, which was 
largely conditioned by environmental and geographic 
factors, suggesting diversification as a force in govern-
ing deterministic assembly in HZ. Alpha diversity also 
directly influence spatial assembly patterns of Actinobac-
teria and Deltaproteobacteria but with opposite manners 
and different co-factors, suggesting distinct mechanisms 
underlying the observed patterns. Collectively, the degree 
and determinants of spatial heterogeneity in community 
assembly mechanisms varied across bacterial groups. The 
ones with higher heterogeneity in assembly mechanism 
were more related to environmental and/or geographic 
factors (except Bacteroidetes), while those with lower 
heterogeneity were more related to community ecologi-
cal features.

Conclusions
This study systematically tested the existence and extent 
of taxonomic dependency and spatial heterogeneity in 
assembly mechanisms of marine bacteria in a coastal 
ecosystem with spatially structured regional environ-
mental gradients. Our results confirmed the variability of 
assembly processes of bacteria with taxonomic group and 
with space. The assembly of total bacterial communities 
was balancedly governed by deterministic and stochastic 
processes, while only the Bacteroidetes were dominated 
by determinism among the  seven dominant bacterial 
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groups. The taxonomic dependency of bacterial assembly 
processes was mainly related to the differences in niche 
breadth and negative-to-positive cohesion ratio, fol-
lowed by alpha diversity and relative abundance of bac-
terial taxa. The spatial distribution patterns of assembly 
processes commonly varied across bacterial groups, and 
were driven by various combinations of factors, suggest-
ing that spatial heterogeneity of assembly processes of 
bacteria also exhibited taxonomic dependency. Collec-
tively, this work assessed the pervasiveness of taxonomic 
dependency and spatial heterogeneity in bacterial com-
munity assembly from the perspectives of one-station 
(local-community) basis and pairwise between-station 
comparisons, providing a comprehensive understanding 
of the regulation of bacterial community assembly across 
taxa and space.
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Additional file 1: Supplementary methods. Figure S1. The map of 
sampling stations from eight coastal zones. The colors of the stations cor-
respond to different zones, and the stations in the Zhoushan archipelago 
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Figure S2. Fit of the neutral model for bacterial ZOTUs with bacterial 
metacommunity across the sampling zones as the source. R2 values 
present the goodness of fit of the neutral model, ranging from 0 (no fit) to 
1 (perfect fit). The ZOTUs that occurred more frequently than predicted by 
the model are shown in green, while those occurred less frequently than 
predicted are shown in orange (A). The ZOTUs are colored by their tax-
onomy at the phylum level and at the class level for the phylum Proteo-
bacteria (B). Dashed lines represent 95% confidence intervals around the 
model prediction and the ZOTUs fall within the confidence intervals were 
considered as neutrally distributed. Figure S3. Mantel correlograms show-
ing significant phylogenetic signal in between-ZOTU niche differences 
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Holm correction, 999 permutations) and non-significant Pearson correla-
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values. Figure S5. The geographic distribution of the ecological processes 
governing the spatial turnover of total bacterial community and seven 
taxonomic groups in all pairwise comparisons between stations accord-
ing to βNTI and RCbray values. Each column corresponds to a specific 
ecological process as noted at the top. Figure S6. The optimal number of 
resource states when setting different number of groups for the partition 
based on the simple structure index (SSI) using K-means partitioning 
(1,000,000 iterations) (A). Spatial distribution of the resource states deter-
mined by K-means partitioning based on water environmental conditions 
(B). The colors of the stations correspond to different resource states. 
Figure S7. Box plots illustrating the ecological features of total bacterial 
community and seven taxonomic groups, including ratio of relative abun-
dance of non-neutrally distributed ZOTUs to that of neutrally distributed 
ZOTUs, standardized Levins’ niche breadth, alpha diversity indices includ-
ing phylogenetic diversity, ZOTU richness, and Shannon–Wiener index, 
relative abundance, and the features of microbial associations including 
cohesion ratio (|negative cohesion/positive cohesion|), modularity, and 

average degree across sampling stations. Different communities sharing 
the same letter above the boxes are not significantly different from each 
other, whereas two communities with different letters are significantly 
different (multiple comparisons after Kruskal–Wallis test, P < 0.05). Figure 
S8. Cumulative relative abundance of habitat specialists and generalists 
in the total bacterial community and the seven taxonomic groups. ZOTUs 
with standardized niche breadth (BA) value > 0.5 were regarded as habitat 
generalists, and ZOTUs with BA < 0.05 were defined as specialists. This cri-
terion was chosen according to the frequency distribution of BA value for 
all ZOTUs. Figure S9. Distance-based redundancy analysis (db-RDA) plots 
based on Bray–Curtis dissimilarity illustrating environmental constraints of 
compositional variation of total bacterial communities and seven bacterial 
groups. Environmental variables were normalized to reduce the effect of 
unit differences. The “vif.cca” and “envfit” functions of the “vegan” package 
in R environment were used to identify nonredundant (variance inflation 
factors < 10) and significant (P < 0.05) constraints for generating the final 
ordinations. DO, dissolved oxygen; SP, suspended particle; COD, chemical 
oxygen demand; Chl-a, chlorophyll-a. HZ, Hangzhou Bay; ZSI, Zhoushan 
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proportion of reads > 2% in the whole dataset).

Acknowledgements
Not applicable.

Author contributions
DZ and KW: designed the study; KW: proposed the data analysis strategy; 
HY, DL, and KW: analyzed the data; GG, YH, XH, ZY, and DH: assisted with the 
analytic tools; HY and KW: wrote the manuscript; BJC: revised the manuscript. 
All the authors reviewed and approved the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(41977192), Natural Science Foundation of Ningbo (2021J060), Fundamental 
Research Funds for the Provincial Universities of Zhejiang (SJLY2022001), Zhe-
jiang Provincial Natural Science Foundation of China (LY21D060004), Graduate 
Research Innovation Fund in Ningbo University (IF2022147), and K.C. Wong 
Magna Fund in Ningbo University.

Availability of data and materials
The sequence data are available under accession number DRA002865 in the 
Sequence Read Archive of DDBJ (http://​ddbj.​nig.​ac.​jp/​DRASe​arch) (Wang et al. 
2015).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 October 2023   Accepted: 21 December 2023

References
Allen R, Hoffmann LJ, Larcombe MJ, Louisson Z, Summerfield TC (2020) 

Homogeneous environmental selection dominates microbial community 
assembly in the oligotrophic South Pacific Gyre. Mol Ecol 29(23):4680–
4691. https://​doi.​org/​10.​1111/​mec.​15651

https://doi.org/10.1186/s13717-023-00480-7
https://doi.org/10.1186/s13717-023-00480-7
http://ddbj.nig.ac.jp/DRASearch
https://doi.org/10.1111/mec.15651


Page 17 of 18Yan et al. Ecological Processes            (2024) 13:6 	

Alonso-Sáez L, Diaz-Perez L, Moran XA (2015) The hidden seasonality of the 
rare biosphere in coastal marine bacterioplankton. Environ Microbiol 
17(10):3766–3780. https://​doi.​org/​10.​1111/​1462-​2920.​12801

Barberán A, Casamayor EO (2010) Global phylogenetic community structure 
and β-diversity patterns in surface bacterioplankton metacommunities. 
Aquat Microb Ecol 59:1–10. https://​doi.​org/​10.​3354/​ame01​389

Barnett SE, Youngblut ND, Buckley DH (2020) Soil characteristics and land-use 
drive bacterial community assembly patterns. FEMS Microbiol Ecol 
96(1):fiz194. https://​doi.​org/​10.​1093/​femsec/​fiz194

Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K et al (2016) 
Contribution of neutral processes to the assembly of gut microbial 
communities in the zebrafish over host development. ISME J 10:655–664. 
https://​doi.​org/​10.​1038/​ismej.​2015.​142

Chase JM, Myers JA (2011) Disentangling the importance of ecological niches 
from stochastic processes across scales. Philos T R Soc B 366(1576):2351–
2363. https://​doi.​org/​10.​1098/​rstb.​2011.​0063

Chen CC, Shiah FK, Chiang KP, Gong GC, Kemp WM (2009) Effects of the 
Changjiang (Yangtze) River discharge on planktonic community respira-
tion in the East China Sea. J Geophys Res Oceans 114:C03005. https://​doi.​
org/​10.​1029/​2008J​C0048​91

Cheng Y, Liu X, Lu Y, Chen F, Zhou X, Song Z et al (2023) Long-term nitrogen 
fertilization alters phylogenetic structure of arbuscular mycorrhizal fungal 
community in plant roots across fine spatial scales. Plant Soil 483:427–
440. https://​doi.​org/​10.​1007/​s11104-​022-​05753-2

Chesson P, Kuang JJ (2008) The interaction between predation and competi-
tion. Nature 456(7219):235–238. https://​doi.​org/​10.​1038/​natur​e07248

Connell JH (1979) Response: intermediate-disturbance hypothesis. Science 
204(4399):1345–1345. https://​doi.​org/​10.​1126/​scien​ce.​204.​4399.​1345.a

Cunningham BR, John SG (2017) The effect of iron limitation on cyanobac-
teria major nutrient and trace element stoichiometry. Limnol Oceanogr 
62(2):846–858. https://​doi.​org/​10.​1002/​lno.​10484

Danczak RE, Johnston MD, Kenah C, Slattery M, Wilkins MJ (2018) Microbial 
community cohesion mediates community turnover in unperturbed 
aquifers. mSystems 3(4):e00066-18. https://​doi.​org/​10.​1128/​msyst​ems.​
00066-​18

Elzhov TV, Mullen KM, Bolker B (2013) Package ‘minpack.lm’. R package version 
1.2–1. https://​CRAN.R-​proje​ct.​org/​packa​ge=​minpa​ck.​lm

Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev 
Microbiol 10(8):538–550. https://​doi.​org/​10.​1038/​nrmic​ro2832

Ferris M, Palenik B (1998) Niche adaptation in ocean cyanobacteria. Nature 
396:226–228. https://​doi.​org/​10.​1038/​24297

Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N et al 
(2013) Present and future global distributions of the marine Cyano-
bacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 
110(24):9824–9829. https://​doi.​org/​10.​1073/​pnas.​13077​01110

Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond bio-
geographic patterns: processes shaping the microbial landscape. Nat Rev 
Microbiol 10(7):497–506. https://​doi.​org/​10.​1038/​nrmic​ro2795

He Q, Wang S, Hou W, Feng K, Li F, Hai W et al (2021) Temperature and micro-
bial interactions drive the deterministic assembly processes in sediments 
of hot springs. Sci Total Environ 772:145465. https://​doi.​org/​10.​1016/j.​
scito​tenv.​2021.​145465

Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environ-
mental stress destabilizes microbial networks. ISME J 15:1722–1734. 
https://​doi.​org/​10.​1038/​s41396-​020-​00882-x

Herren CM, McMahon KD (2017) Cohesion: a method for quantifying the con-
nectivity of microbial communities. ISME J 11:2426–2438. https://​doi.​org/​
10.​1038/​ismej.​2017.​91

Hoshino T, Doi H, Uramoto GI, Wormer L, Adhikari RR, Xiao N et al (2020) Global 
diversity of microbial communities in marine sediment. Proc Natl Acad 
Sci USA 117(44):27587–27597. https://​doi.​org/​10.​1073/​pnas.​19191​39117

Hubbell SP (2001) The unified neutral theory of biodiversity and biogeogra-
phy. Princeton University Press, Princeton

Isabwe A, Yang JR, Wang Y, Wilkinson DM, Graham EB, Chen H et al (2022) 
Riverine bacterioplankton and phytoplankton assembly along an 
environmental gradient induced by urbanization. Limnol Oceanogr 
67(9):1943–1958. https://​doi.​org/​10.​1002/​lno.​12179

Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community 
assembly processes mediates species coexistence in agricultural soil 
microbiomes across eastern China. ISME J 14:202–216. https://​doi.​org/​10.​
1038/​s41396-​019-​0522-9

Kong J, Wang L, Lin C, Kuang F, Zhou X, Laws EA et al (2022) Contrasting com-
munity assembly mechanisms underlie similar biogeographic patterns of 
surface microbiota in the tropical North Pacific Ocean. Microbiol Spectr 
10(1):e00798-21. https://​doi.​org/​10.​1128/​spect​rum.​00798-​21

Krebs CJ (2014) Ecological methodology, 3rd Edition. Addison-Welsey Educa-
tional Publishers, Menlo Park

Letten AD, Ke P-J, Fukami T (2016) Linking modern coexistence theory and 
contemporary niche theory. Ecol Monogr 87(2):161–177. https://​doi.​org/​
10.​1002/​ecm.​1242

Levins R (1968) Evolution in changing environments. Princeton University 
Press, Princeton

Li N, Dong K, Jiang G, Tang J, Xu Q, Li X et al (2020) Stochastic processes 
dominate marine free-living Vibrio community assembly in a subtropical 
gulf. FEMS Microbiol Ecol 96(11):fiaa198. https://​doi.​org/​10.​1093/​femsec/​
fiaa1​98

Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang MC et al (2016) The importance 
of neutral and niche processes for bacterial community assembly dif-
fers between habitat generalists and specialists. FEMS Microbiol Ecol 
92(11):fiw174. https://​doi.​org/​10.​1093/​femsec/​fiw174

Lin L, Xiong J, Liu L, Wang F, Cao W, Xu W (2024) Microbial interactions 
strengthen deterministic processes during community assembly in a 
subtropical estuary. Sci Total Environ 906:167499. https://​doi.​org/​10.​
1016/j.​scito​tenv.​2023.​167499

Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R et al (2014) Patterns of 
rare and abundant marine microbial eukaryotes. Curr Biol 24(8):813–821. 
https://​doi.​org/​10.​1016/j.​cub.​2014.​02.​050

Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberod AK, Schmidt 
TSB et al (2020) Disentangling the mechanisms shaping the sur-
face ocean microbiota. Microbiome 8:55. https://​doi.​org/​10.​1186/​
s40168-​020-​00827-8

Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z et al (2016) Geographic patterns 
of co-occurrence network topological features for soil microbiota at 
continental scale in eastern China. ISME J 10:1891–1901. https://​doi.​org/​
10.​1038/​ismej.​2015.​261

McGill BJ (2003) A test of the unified neutral theory of biodiversity. Nature 
422(6934):881–885. https://​doi.​org/​10.​1038/​natur​e01583

MEE (2023) 2022 Bulletin of marine ecology and environment status of China. 
Ministry of Ecology and Environment, People’s Republic of China. https://​
engli​sh.​mee.​gov.​cn/​Resou​rces/​Repor​ts/​bomea​esoc/

Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S (2018) Biogeographic patterns of abun-
dant and rare bacterioplankton in three subtropical bays resulting from 
selective and neutral processes. ISME J 12:2198–2210. https://​doi.​org/​10.​
1038/​s41396-​018-​0153-6

Mo Y, Zhang W, Wilkinson DM, Yu Z, Xiao P, Yang J (2020) Biogeography and 
co-occurrence patterns of bacterial generalists and specialists in three 
subtropical marine bays. Limnol Oceanogr 66(3):793–806. https://​doi.​org/​
10.​1002/​lno.​11643

Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF et al 
(2013) Patterns and processes of microbial community assembly. Micro-
biol Mol Biol R 77(3):342–356. https://​doi.​org/​10.​1128/​MMBR.​00051-​12

Obieze CC, Wani GA, Shah MA, Reshi ZA, Comeau AM, Khasa DP (2022) 
Anthropogenic activities and geographic locations regulate microbial 
diversity, community assembly and species sorting in Canadian and 
Indian freshwater lakes. Sci Total Environ 826:154292. https://​doi.​org/​10.​
1016/j.​scito​tenv.​2022.​154292

Pandit SN, Kolasa J, Cottenie K (2009) Contrasts between habitat generalists 
and specialists: an empirical extension to the basic metacommunity 
framework. Ecology 90(8):2253–2262. https://​doi.​org/​10.​1890/​08-​0851.1

Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis 
for microbial marker-gene surveys. Nat Methods 10(12):1200–1202. 
https://​doi.​org/​10.​1038/​nmeth.​2658

Sanchez G, Trinchera L, Russolillo G (2023) plspm: partial least squares path 
modeling (PLS-PM). R package version 0.5.0, https://​CRAN.R-​proje​ct.​org/​
packa​ge=​plspm

Santillan E, Seshan H, Constancias F, Drautz-Moses DI, Wuertz S (2019) Fre-
quency of disturbance alters diversity, function, and underlying assembly 
mechanisms of complex bacterial communities. npj Biofilms Microbi-
omes 5:8. https://​doi.​org/​10.​1038/​s41522-​019-​0079-4

Shi Z, Ma L, Wang Y, Liu J (2023) Abundant and rare bacteria in anthropogenic 
estuary: community co-occurrence and assembly patterns. Ecol Indic 
146:109820. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2022.​109820

https://doi.org/10.1111/1462-2920.12801
https://doi.org/10.3354/ame01389
https://doi.org/10.1093/femsec/fiz194
https://doi.org/10.1038/ismej.2015.142
https://doi.org/10.1098/rstb.2011.0063
https://doi.org/10.1029/2008JC004891
https://doi.org/10.1029/2008JC004891
https://doi.org/10.1007/s11104-022-05753-2
https://doi.org/10.1038/nature07248
https://doi.org/10.1126/science.204.4399.1345.a
https://doi.org/10.1002/lno.10484
https://doi.org/10.1128/msystems.00066-18
https://doi.org/10.1128/msystems.00066-18
https://CRAN.R-project.org/package=minpack.lm
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1038/24297
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1038/nrmicro2795
https://doi.org/10.1016/j.scitotenv.2021.145465
https://doi.org/10.1016/j.scitotenv.2021.145465
https://doi.org/10.1038/s41396-020-00882-x
https://doi.org/10.1038/ismej.2017.91
https://doi.org/10.1038/ismej.2017.91
https://doi.org/10.1073/pnas.1919139117
https://doi.org/10.1002/lno.12179
https://doi.org/10.1038/s41396-019-0522-9
https://doi.org/10.1038/s41396-019-0522-9
https://doi.org/10.1128/spectrum.00798-21
https://doi.org/10.1002/ecm.1242
https://doi.org/10.1002/ecm.1242
https://doi.org/10.1093/femsec/fiaa198
https://doi.org/10.1093/femsec/fiaa198
https://doi.org/10.1093/femsec/fiw174
https://doi.org/10.1016/j.scitotenv.2023.167499
https://doi.org/10.1016/j.scitotenv.2023.167499
https://doi.org/10.1016/j.cub.2014.02.050
https://doi.org/10.1186/s40168-020-00827-8
https://doi.org/10.1186/s40168-020-00827-8
https://doi.org/10.1038/ismej.2015.261
https://doi.org/10.1038/ismej.2015.261
https://doi.org/10.1038/nature01583
https://english.mee.gov.cn/Resources/Reports/bomeaesoc/
https://english.mee.gov.cn/Resources/Reports/bomeaesoc/
https://doi.org/10.1038/s41396-018-0153-6
https://doi.org/10.1038/s41396-018-0153-6
https://doi.org/10.1002/lno.11643
https://doi.org/10.1002/lno.11643
https://doi.org/10.1128/MMBR.00051-12
https://doi.org/10.1016/j.scitotenv.2022.154292
https://doi.org/10.1016/j.scitotenv.2022.154292
https://doi.org/10.1890/08-0851.1
https://doi.org/10.1038/nmeth.2658
https://CRAN.R-project.org/package=plspm
https://CRAN.R-project.org/package=plspm
https://doi.org/10.1038/s41522-019-0079-4
https://doi.org/10.1016/j.ecolind.2022.109820


Page 18 of 18Yan et al. Ecological Processes            (2024) 13:6 

Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying 
the roles of immigration and chance in shaping prokaryote community 
structure. Environ Microbiol 8(4):732–740. https://​doi.​org/​10.​1111/j.​1462-​
2920.​2005.​00956.x

Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and determin-
istic assembly processes in subsurface microbial communities. ISME J 
6:1653–1664. https://​doi.​org/​10.​1038/​ismej.​2012.​22

Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ et al (2013) 
Quantifying community assembly processes and identifying features that 
impose them. ISME J 7:2069–2079. https://​doi.​org/​10.​1038/​ismej.​2013.​93

Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating and mapping 
ecological processes influencing microbial community assembly. Front 
Microbiol 6:370. https://​doi.​org/​10.​3389/​fmicb.​2015.​00370

Sun J, Zhang A, Fang L, Wang J, Liu W (2013) Levels and distribution of Dechlo-
rane Plus and related compounds in surficial sediments of the Qiantang 
River in eastern China: the results of urbanization and tide. Sci Total 
Environ 443:194–199. https://​doi.​org/​10.​1016/j.​scito​tenv.​2012.​10.​096

Sun P, Wang Y, Zhang Y, Logares R, Cheng P, Xu D et al (2023) From the sunlit to 
the aphotic zone: assembly mechanisms and co-occurrence patterns of 
protistan-bacterial microbiotas in the Western Pacific Ocean. mSystems 
8(2):e00013-23. https://​doi.​org/​10.​1128/​msyst​ems.​00013-​23

Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Karsenti E et al 
(2015) Structure and function of the global ocean microbiome. Science 
348(6237):1261359. https://​doi.​org/​10.​1126/​scien​ce.​12613​59

Tackmann J, Rodrigues JFM, Cv M (2019) Rapid inference of direct interac-
tions in large-scale ecological networks from heterogeneous microbial 
sequencing data. Cell Syst 9(3):286–296. https://​doi.​org/​10.​1016/j.​cels.​
2019.​08.​002

Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH medi-
ates the balance between stochastic and deterministic assembly of bac-
teria. ISME J 12:1072–1083. https://​doi.​org/​10.​1038/​s41396-​018-​0082-4

Valverde A, Makhalanyane TP, Cowan DA (2014) Contrasting assembly processes 
in a bacterial metacommunity along a desiccation gradient. Front Microbiol 
5:668. https://​doi.​org/​10.​3389/​fmicb.​2014.​00668

Vass M, Szekely AJ, Lindstrom ES, Langenheder S (2020) Using null models to 
compare bacterial and microeukaryotic metacommunity assembly under 
shifting environmental conditions. Sci Rep 10(1):2455. https://​doi.​org/​10.​1038/​
s41598-​020-​59182-1

Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 
85(2):183–206. https://​doi.​org/​10.​1086/​652373

Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB et al (2015) 
Application of a neutral community model to assess structuring of the 
human lung microbiome. mBio 6(1):e02284-14. https://​doi.​org/​10.​1128/​mBio.​
02284-​14

Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species 
abundance in ecology. Nature 424(6952):1035–1037

Wan X, Gao Q, Zhao J, Feng J, van Nostrand JD, Yang Y et al (2020) Biogeographic 
patterns of microbial association networks in paddy soil within Eastern China. 
Soil Biol Biochem 142:107696. https://​doi.​org/​10.​1016/j.​soilb​io.​2019.​107696

Wang K, Ye X, Chen H, Zhao Q, Hu C, He J et al (2015) Bacterial biogeography in the 
coastal waters of northern Zhejiang, East China Sea is highly controlled by 
spatially structured environmental gradients. Environ Microbiol 17(10):3898–
3913. https://​doi.​org/​10.​1111/​1462-​2920.​12884

Wang K, Hu H, Yan H, Hou D, Wang Y, Dong P et al (2019) Archaeal bioge-
ography and interactions with microbial community across complex 
subtropical coastal waters. Mol Ecol 28(12):3101–3118. https://​doi.​org/​10.​
1111/​mec.​15105

Wang K, Yan H, Peng X, Hu H, Zhang H, Hou D et al (2020a) Community assem-
bly of bacteria and archaea in coastal waters governed by contrasting 
mechanisms: a seasonal perspective. Mol Ecol 29(19):3762–3776. https://​
doi.​org/​10.​1111/​mec.​15600

Wang Y, Wang K, Huang L, Dong P, Wang S, Chen H et al (2020b) Fine-scale 
succession patterns and assembly mechanisms of bacterial community 
of Litopenaeus vannamei larvae across the developmental cycle. Microbi-
ome 8:106. https://​doi.​org/​10.​1186/​s40168-​020-​00879-w

Wang H, Zhang W, Li Y, Gao Y, Niu L, Zhang H et al (2023) Hydrodynamics-
driven community coalescence determines ecological assembly 
processes and shifts bacterial network stability in river bends. Sci Total 
Environ 858:159772. https://​doi.​org/​10.​1016/j.​scito​tenv.​2022.​159772

Webb CO (2000) Exploring the phylogenetic structure of ecological communi-
ties: an example for rain forest trees. Am Nat 156(2):145–155. https://​doi.​
org/​10.​1086/​303378

Wu W, Logares R, Huang B, Hsieh CH (2017) Abundant and rare picoeukaryotic 
sub-communities present contrasting patterns in the epipelagic waters 
of marginal seas in the Northwestern Pacific Ocean. Environ Microbiol 
19(1):287–300. https://​doi.​org/​10.​1111/​1462-​2920.​13606

Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC et al (2018) Contrasting the 
relative importance of species sorting and dispersal limitation in shaping 
marine bacterial versus protist communities. ISME J 12:485–494. https://​
doi.​org/​10.​1038/​ismej.​2017.​183

Wu W, Xu Z, Dai M, Gan J, Liu H (2020) Homogeneous selection shapes 
free-living and particle-associated bacterial communities in subtropical 
coastal waters. Divers Distrib 27(10):1904–1917. https://​doi.​org/​10.​1111/​
ddi.​13193

Wu S, Dong Y, Stoeck T, Wang S, Fan H, Wang Y et al (2023a) Geographic 
characteristics and environmental variables determine the diversities and 
assembly of the algal communities in interconnected river–lake system. 
Water Res 233:119792. https://​doi.​org/​10.​1016/j.​watres.​2023.​119792

Wu Y, Fu C, Peacock CL, Sorensen SJ, Redmile-Gordon MA, Xiao KQ et al 
(2023b) Cooperative microbial interactions drive spatial segregation in 
porous environments. Nat Commun 14:4226. https://​doi.​org/​10.​1038/​
s41467-​023-​39991-4

Xu Z, Sun R, He T, Sun Y, Wu M, Xue Y et al (2023) Disentangling the impact of 
straw incorporation on soil microbial communities: enhanced network 
complexity and ecological stochasticity. Sci Total Environ 863:160918. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2022.​160918

Yan Q, Stegen JC, Yu Y, Deng Y, Li X, Wu S et al (2017) Nearly a decade-long 
repeatable seasonal diversity patterns of bacterioplankton communities 
in the eutrophic Lake Donghu (Wuhan, China). Mol Ecol 26(14):3839–
3850. https://​doi.​org/​10.​1111/​mec.​14151

Yan H, Wang K, Zhang D (2021) Spatial visualization of microbial community 
assembly processes. Microbiome Protocols eBook. Bio-101:e2003392. 
https://​doi.​org/​10.​21769/​BioPr​otoc.​20033​92. (in Chinese)

Yan H, Zhang D, Wang K (2022) Partitioning of resource states in the marine 
environment and calculation of niche breadth of microbial community. 
Microbiome Protocols eBook. Bio-101:e2003391. https://​doi.​org/​10.​
21769/​BioPr​otoc.​20033​91. (in Chinese)

Yang H, Zhuo S, Xue B, Zhang C, Liu W (2012) Distribution, historical trends and 
inventories of polychlorinated biphenyls in sediments from Yangtze River 
Estuary and adjacent East China Sea. Environ Pollut 169:20–26. https://​
doi.​org/​10.​1016/j.​envpol.​2012.​05.​003

Yang Y, Cheng K, Li K, Jin Y, He X (2022) Deciphering the diversity patterns and 
community assembly of rare and abundant bacterial communities in a 
wetland system. Sci Total Environ 838:156334. https://​doi.​org/​10.​1016/j.​
scito​tenv.​2022.​156334

Yang N, Hou X, Li Y, Zhang H, Wang J, Hu X et al (2023a) Inter-basin water 
diversion homogenizes microbial communities mainly through stochas-
tic assembly processes. Environ Res 223:115473. https://​doi.​org/​10.​1016/j.​
envres.​2023.​115473

Yang Q, Zhang P, Li X, Yang S, Chao X, Liu H et al (2023b) Distribution patterns 
and community assembly processes of eukaryotic microorganisms along 
an altitudinal gradient in the middle reaches of the Yarlung Zangbo River. 
Water Res 239:120047. https://​doi.​org/​10.​1016/j.​watres.​2023.​120047

Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D et al (2021) Climate warming 
enhances microbial network complexity and stability. Nat Clim Chang 
11(4):343–348. https://​doi.​org/​10.​1038/​s41558-​021-​00989-9

Zhou J, Ning D (2017) Stochastic community assembly: Does it matter in 
microbial ecology? Microbiol Mol Biol R 81(4):e00002-17. https://​doi.​org/​
10.​1128/​MMBR.​00002-​17

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.1038/ismej.2012.22
https://doi.org/10.1038/ismej.2013.93
https://doi.org/10.3389/fmicb.2015.00370
https://doi.org/10.1016/j.scitotenv.2012.10.096
https://doi.org/10.1128/msystems.00013-23
https://doi.org/10.1126/science.1261359
https://doi.org/10.1016/j.cels.2019.08.002
https://doi.org/10.1016/j.cels.2019.08.002
https://doi.org/10.1038/s41396-018-0082-4
https://doi.org/10.3389/fmicb.2014.00668
https://doi.org/10.1038/s41598-020-59182-1
https://doi.org/10.1038/s41598-020-59182-1
https://doi.org/10.1086/652373
https://doi.org/10.1128/mBio.02284-14
https://doi.org/10.1128/mBio.02284-14
https://doi.org/10.1016/j.soilbio.2019.107696
https://doi.org/10.1111/1462-2920.12884
https://doi.org/10.1111/mec.15105
https://doi.org/10.1111/mec.15105
https://doi.org/10.1111/mec.15600
https://doi.org/10.1111/mec.15600
https://doi.org/10.1186/s40168-020-00879-w
https://doi.org/10.1016/j.scitotenv.2022.159772
https://doi.org/10.1086/303378
https://doi.org/10.1086/303378
https://doi.org/10.1111/1462-2920.13606
https://doi.org/10.1038/ismej.2017.183
https://doi.org/10.1038/ismej.2017.183
https://doi.org/10.1111/ddi.13193
https://doi.org/10.1111/ddi.13193
https://doi.org/10.1016/j.watres.2023.119792
https://doi.org/10.1038/s41467-023-39991-4
https://doi.org/10.1038/s41467-023-39991-4
https://doi.org/10.1016/j.scitotenv.2022.160918
https://doi.org/10.1111/mec.14151
https://doi.org/10.21769/BioProtoc.2003392
https://doi.org/10.21769/BioProtoc.2003391
https://doi.org/10.21769/BioProtoc.2003391
https://doi.org/10.1016/j.envpol.2012.05.003
https://doi.org/10.1016/j.envpol.2012.05.003
https://doi.org/10.1016/j.scitotenv.2022.156334
https://doi.org/10.1016/j.scitotenv.2022.156334
https://doi.org/10.1016/j.envres.2023.115473
https://doi.org/10.1016/j.envres.2023.115473
https://doi.org/10.1016/j.watres.2023.120047
https://doi.org/10.1038/s41558-021-00989-9
https://doi.org/10.1128/MMBR.00002-17
https://doi.org/10.1128/MMBR.00002-17

	Taxonomic dependency and spatial heterogeneity in assembly mechanisms of bacteria across complex coastal waters
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Sampling scheme, measurements of water physicochemical parameters, 16S rRNA gene amplicon sequencing, and sequence processing
	Inference and visualization of assembly processes of bacterial communities from the metacommunity using the neutral model
	Inference and visualization of assembly processes of bacterial communities on between-station basis using the null models
	Calculation of niche breadth of bacteria
	Inference of potential microbial interactions by association network analysis
	Estimating the direct and indirect effects of different factor categories on bacterial community assembly
	General statistical analyses

	Results
	Assembly processes of bacterial communities
	Spatial variability of assembly processes of bacterial communities
	Associations of community ecological features with assembly mechanism
	Effects of different factor categories on spatial variability in assembly processes of bacteria

	Discussion
	Taxonomic dependency in bacterial assembly processes and its determinants
	Spatial heterogeneity of bacterial assembly mechanisms and its key determinants

	Conclusions
	Acknowledgements
	References


