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Ecological Processes

An approach for finding causal relations 
in environmental systems: with an application 
to understand drivers of a toxic algal bloom
Benny Selle1,2*   

Abstract 

Background Discovering causality in environmental systems is challenging because frequently controlled experi-
ments or numerical simulations are difficult. Algorithms to learn directed acyclic graphs from system data are power-
ful, but they often result in too many possible causal structures that cannot be properly evaluated.

Results An approach to this problem proposed here is to initially restrict the system to a target variable with its 
two major drivers. Subsequently, testable causal structures are obtained from rules to infer directed acyclic graphs 
and expert knowledge. The proposed approach, which is essentially based on correlation and regression, was applied 
to understand drivers of a toxic algal bloom in the Odra River in summer 2022. Through this application, useful insight 
on the interplay between river flow and salt inputs that likely caused the algal bloom was obtained.

Conclusions The Odra River example demonstrated that carefully applied correlation and regression tech-
niques together with expert knowledge can help to discover reliable casual structures in environmental systems.

Keywords Causal effect, Causal model, Causal diagram, Mediation analysis, Directed acyclic graph, Classification and 
regression trees

Background
When searching for causal relationships in environmen-
tal systems, multiple direct and indirect causes can usu-
ally explain an observed phenomenon (Stow and Borsuk 
2003). To illuminate causal relations among observed 
system variables—if controlled experiments are infea-
sible and numerical simulations are too complicated—
often spatial and temporal associations of empirical data 
were investigated via correlation and regression tech-
niques (Runge et  al. 2019a). However, significant statis-
tical associations only sometimes represent direct causal 

relationships, as e.g. both an indirect relationship via a 
mediating variable (Pearl and Makenzie 2019, p. 302ff) 
and a common cause can make two observations sta-
tistically dependent (Pearl and Makenzie 2019, p. 69ff). 
Cause and effect, the precise direction of the influence 
(positive or negative effect), and the strength of a directed 
effect often remain unclear if conventional correlation 
and regression analysis is applied (Ombadi et  al. 2020). 
Complex methodologies were therefore developed with 
which—if all relevant drivers of an effect were observed 
(Runge et  al. 2019a)—causal relationships in environ-
mental systems may be discovered (Runge et al. 2019b). 
These causal relations are typically expressed as directed 
acyclic graphs (DAG). DAG are ‘dot-and-arrow’ pictures 
(Pearl and Makenzie 2019, p. 7) relating system variables 
(‘dots’) using directed arcs (‘arrows’). Directed arcs rep-
resent causal links pointing from a ‘parent’ represent-
ing a cause to a ‘child’ representing an effect (Jensen and 
Nielsen 2007, p. 26). Feedback loops, e.g. A causes B and 
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B causes A, are not allowed for a DAG because with these 
loops, cause and effect cannot be distinguished anymore. 
Hence, DAG are different to equations in the way that for 
the latter the direction of a relationship does not matter 
(e.g. A equals B is the same as B equals A). For inference 
of DAG, there are a few methods available such as the 
Peter-Clark (PC) algorithm (Spirtes and Glymour 1991) 
with its extensions like PCMCI (Runge et  al. 2019b). In 
practical applications of these methods, however, already 
a few variables (say > 3) result in too many possible causal 
structures, which are difficult to evaluate from a techni-
cal point of view (see e.g. Alameddine et al. 2011). If the 
number of variables examined is equal to three, possi-
ble causal structures are still complex enough but at the 
same time they can still be evaluated in detail. For a reli-
able detection and quantification of causal structures, 
therefore the problem of causal discovery among multi-
ple observations in environmental systems may be first 
reduced to the target variable and its most important two 
controlling variables. Driving variables could be selected 
using suitable methods such as classification and regres-
sion trees (CART, Breiman et al. 1984) in advance of the 
actual detection of a causal structure. Here, I hypoth-
esised that causal structures can be determined if the 
system analysis is reducible to only three variables, i.e. 
one target with two driving variables. In this case, pos-
sible causal structures and the various assumptions of the 
analyses are still testable. Assuming both X1 and X2 as 
direct or indirect driving variables of a target variable Y 
(where X1, X2 and Y could represent either temporally or 
spatially correlated data), the following five causal struc-
tures are conceivable:

a. X1 controls X2 and X2 in turn controls Y (X1 → X2 → Y),
b. X2 controls X1 and X1 in turn controls Y (X2 → X1 → Y),
c. Both X2 and X1 control Y directly (X1 → Y ← X2),
d. X1 controls Y both directly and indirectly via X2 

(X1 → X2 → Y and X1 → Y), and
e. X2 controls Y both directly and indirectly via X1 

(X2 → X1 → Y and X2 → Y).

In this article, correlation and regression techniques 
are combined and for the first time applied in this com-
position for finding causal structures in environmental 
systems. Specifically, the following techniques were com-
bined: CART and random forests (Breiman 2001) to find 
two key drivers of a target variable, the inference of DAG 
from linear marginal and partial correlations (Jensen and 
Nielsen 2007, p.  320ff) and linear regression to further 
test and refine DAG. The approach is demonstrated using 
measured time series from the Odra River in eastern 
Germany. The aim of this analysis of time series, besides 
demonstrating the proposed approach, was to better 

understand causes of a toxic algal bloom in the Odra 
River in August 2022 (German Environment Agency 
2022). In previous studies, a bloom of the toxic brackish 
water algae Prymnesium parvum was identified as likely 
cause of a massive fish kill observed in the Odra River 
(European Commission 2023), but processes leading to 
the algal bloom remained less understood.

Methods
Overview of the proposed approach to find causal 
relationships
A schematic overview on the proposed approach is given 
in Fig.  1. The approach involves three steps. For each 
step, statistical techniques as well as expert knowledge 
are applied.

In a first step, two driving variables of a given target 
variable along with the associated time lags (if observed 
variables are time series) are identified from a set of pre-
selected drivers using CART or random forests. Expert 
knowledge may be used to preselect measured variables 
as potential drivers. Data analysis with CART and random 
forests neither requires a specific distribution of potential 
drivers nor a particular form of relationship between the 
investigated variables. Therefore, raw data may be used 
to find driving variables of the untransformed target vari-
able. Random forests can be used instead of CART as the 
former technique overcomes the problem of relatively 
unstable decision trees that are generated if the data set is 
slightly changed. CART and random forests can both be 
understood as non-linear regression methods. However, 
as subsequent steps of the approach are based on linear 
methods and if time series are analysed, time lags identi-
fied using CART and random forests may be modified via 
linear cross-correlations.

In a second step, possible causal structures are 
obtained based on rules to infer DAG using linear mar-
ginal and partial correlations among the three variables 
coming out of the first step of the analysis. DAG may be 
inferred from correlation coefficients using tests for sta-
tistical independence of system variables, i.e. ‘rules to 
infer DAG’ (Jensen and Nielsen 2007, p. 230ff). Briefly, 
starting with a fully connected graph with undirected 
arcs between all system variables, arcs are removed if two 
variables are ‘d-separated’. Two variables are d-separated 
if they are statistically independent, either marginally or 
conditional on a third variable or a set of variables. For 
remaining undirected arcs, v-structures (e.g. both A and 
B cause C, i.e. A → C ← B) are first directed if suitable 
statistical dependencies between system variables were 
found, and subsequently the remaining undirected arcs 
are randomly directed but creation of new v-structures 
or cyclic structures is avoided.
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In a third step, possible causal structures (DAG) from 
step two are further tested via linear regression, with 
which effect sizes for possible DAG are quantified. A 
DAG can be expressed as a set of linear equations (but 
an equation has many possible DAG), with coefficients 
representing the strength (effect sizes) of causal links 
between ‘parent’ and ‘child’ variables (Spirtes et al. 1993, 
p. 14ff). Coefficients of those linear equations can be esti-
mated using linear regression.

Both steps two and three involve expert knowledge 
as well as practical considerations to evaluate possible 
causal structures. As those two steps rely on a quantifi-
cation of correlation and regression coefficients including 
their significance, means and variances of time series may 
be stabilised over time by suitable variable transforma-
tions and trend corrections. Transformations may also be 
applied to make relations between system variables more 
linear. If time series (correlation) or residuals of modelled 
time series (regression) are autocorrelated, convention-
ally determined confidence intervals of coefficients are 
too narrow (Selle and Hannah 2010). To compute reli-
able confidence intervals for correlation and regression 
coefficients in the context of time series analyses, block 
bootstrapping (Mudelsee 2013, p. 61ff) is applied. Appro-
priately quantified confidence intervals help to obtain 
reliable causal structures as well as effect sizes.

Study area and dataset used to demonstrate the proposed 
approach
To apply the proposed approach, I analysed a dataset 
of the Odra River in the context of a fish kill in August 
2022. The Odra River, which discharges into the Bal-
tic Sea, has a total length of 855  km and a basin area 
of about 120,000   km2 with 86% in Poland and minor 
basin fractions in Germany and the Czech Repub-
lic (Fig.  2, Wiederhold et  al. 2023). Population of the 
basin is about 16 ×  106 habitants, approximately 50% of 
the basin area is used as cropland (European Commis-
sion 2023). A major tributary of the Odra River is the 
Warta River, which drains almost half of the total basin 
area, and discharges at Odra-km 618 into the main 
river (Fig.  2). Annual precipitation amounts to 1000–
1400  mm in the upper basin, but the major fraction 
of the basin only receives 500–600 mm per year. Dur-
ing the last two decades, the Odra River had elevated 
annual average concentrations of total phosphorus 
of > 0.1 mg/L at nearly all monitoring sites; and steadily 
increasing electrical conductivities of about 17  µS/cm 
per year were observed in the lower reach of the Odra 
River, where also water temperatures increased signifi-
cantly. In Poland, saline waters are regularly discharged 
from coal and copper mining in Silesia (Fig. 2, Wieder-
hold et al. 2023).

Final result: the most reliable causal structure relating X1, X2 and Y

Starting point: an observed target variable Y with a number of potential drivers 
X1,..,Xn, which were preselected based on expert knowledge 

First Step
Use:
- CART/Random Forests
- Linear Cross

Correlation (if variables
are time series)

? <
? ≥

?? ≥ ?? <
Y = Y = Y =

Y =

Y = → to identify the two most important  
drivers X1 and X2 (including possible 
time lags for time series) of a given 
target variable Y; raw uncorrected 
and untranformed data may be used.

Second Step
Use:
- Linear Correlation

with Bootstrapping
- Rules to infer DAG
- Expert Knowledge

Y

X2

X1
?

→  to obtain possible and plausible 
causal structures relating X1, X2 
and Y; variables may be corrected 
and transformed.

Third Step
Use: 
- Linear Regression    

with Bootstrapping 
- Expert Knowledge

X1

X2

Y

? ?
?

→ to obtain the most reliable causal 
structure from a set of possible and 
plausible structures obtained in   
second step.

Fig. 1 Schematic overview of the approach to find causal structures in an environmental system. ‘Y’ is a target variable, whereas ‘X1’ and ‘X2’ 
represent drivers of Y. ‘?’ are variables, directed arcs or effect sizes that need to be determined using the approach presented in this paper. Further 
explanations of the different steps are given in the text
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In the context of kills of fish and other aquatic organ-
isms along a major river section in August 2022 (Euro-
pean Commission 2023), hourly average chlorophyll-a 
concentrations attributed to diatoms (AL), electrical 
conductivities (EC), river flows (Q), water temperatures, 
pH values, dissolved oxygen and nitrate concentrations 
were analysed from 26 July to 19  August 2022 for the 
Odra River in Frankfurt (Odra-km 885). Fish kills in the 
Odra River, likely caused by a bloom of the toxic brackish 
water algae Prymnesium parvum (European Commission 
2023), were first observed at Frankfurt on 9 August 2022. 
After 19 August, abundances of Prymnesium parvum at 
Frankfurt fell below a critical value of 20 ×  106 cells/L, 
which is relevant for fish kills (German Environment 
Agency 2022). As a measure for the abundance of Prym-
nesium parvum, chlorophyll-a concentrations—obtained 
from a spectral fluorometer with an integrated differen-
tiation of algae classes (BBE Moldänke GmbH)—were 

used. According to the manufacturer of the spectral fluo-
rometer, the toxic algae Prymnesium parvum falls into 
the diatom class in terms of its absorption and hence 
chlorophyll-a concentrations attributed to diatoms were 
used as target variable AL. Hourly average time series 
on water levels at Frankfurt, Q at Hohensaaten-Finow 
and Q at Eisenhüttenstadt as well as EC at Hohenwutzen 
were used to generate time series of Q and EC at Frank-
furt (Fig. 2, see Additional file 1 for details). Water qual-
ity data were provided by the Landesamt für Umwelt 
Brandenburg (dl-de/by-2-0, www. govda ta. de/ dl- de/ by-2-
0) and were measured according to the German Surface 
Waters Ordinance (Oberflächengewässerverordnung 
2016). Water levels and Q were provided by the Bunde-
sanstalt für Gewässerkunde (https:// www. pegel online. 
wsv. de). Original time series had temporal resolutions in 
the order of minutes but were aggregated to hourly aver-
ages. Data gaps for individual hours were filled in by lin-
ear interpolation.

In a synopsis of time series at Frankfurt (Fig.  3), one 
can see a small discharge event, which started approxi-
mately at t = 160  h (1 August). Note that the peak dis-
charge of the event was still less than the mean annual 
low flow of about 120  m3/s. Time series of EC seem to 
follow the hydrograph with a time delay. This time delay 
could either be (i) the result of a Q source located down-
stream of an EC source or; (ii) a result of both sources 
coming from the same location or even; and (iii) a source 
of Q upstream EC. For cases (ii) and (iii), Q changes 

Odra
basin sea or 

lagoon

country
border

river

Baltic Sea

Slovakia

study 
area

Eisenhütten-
stadt

Frankfurt

Hohensaaten-Finow/
Hohenwutzen

salt inputs 
Upper Silesia 

(coal 
mining)

140 km

Fig. 2 Map of the study area for demonstrating the proposed 
approach with geographic features and monitoring sites 
mentioned in the text. Inset in the lower left corner of the map 
shows approximate location of the study area within Europe. Inset 
in the upper right corner of the map shows a photograph (picture 
taken by the author) of the Odra riverscape between Eisenhüttenstadt 
and Frankfurt 

Fig. 3 Hourly time series for Frankfurt used to apply the proposed 
approach to find causal relationships. ‘River flow’ was calculated 
based on water levels measured at Frankfurt and river flows observed 
in Eisenhüttenstadt (see Additional files for details). ‘Chlorophyll-a’ are 
concentrations attributed to diatoms from a spectral fluorometer 
with an integrated differentiation of algae classes

http://www.govdata.de/dl-de/by-2-0
http://www.govdata.de/dl-de/by-2-0
https://www.pegelonline.wsv.de
https://www.pegelonline.wsv.de
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(wave speed) need to travel faster down the river than 
EC changes (flow velocity), which is normally observed 
(Glover and Johnson 1974). Slightly increasing EC at 
the beginning of the analysis period was associated with 
decreasing Q. Generally, time series of AL and EC were 
similar. A sudden increase as well as a decrease in AL 
were both associated with a threshold of about EC = 2,000 
µS/cm. Also shown in Fig. 3 are hourly averaged pH val-
ues, dissolved oxygen and nitrate-N concentrations. With 
their diurnal variations and the step change at about 
t = 300 h, these water quality variables probably indicated 
the magnitude of algal photosynthesis, which simulta-
neously consumed nitrate, increased pH and produced 
oxygen. As pH, oxygen and nitrate concentrations were 
effects rather than causes of AL, these variables were 
excluded from the analysis of causes of AL. Water tem-
peratures showed diurnal variations and there was a 
slight temperature decrease during the Q event.

Results
First step of the approach: identification of two driving 
variables of a target variable and the associated time lags 
using CART, random forests and linear cross‑correlation
CART was applied to find two key variables driving 
observed levels of AL during the algal bloom episode in 
summer 2022. EC, water temperatures, and Q (Alamed-
dine et  al. 2011) were preselected to potentially explain 
AL. Note that nutrient concentrations (nitrogen, phos-
phorous, silicon and iron) and pH may also be relevant 
(Yin et  al. 2021). While nitrate concentrations and pH 
were predominantly interpreted as consequences rather 
than causes of changing AL (Fig.  3), phosphorus, sili-
con and iron concentrations were unavailable, but these 
nutrients likely behaved similarly to nitrate. For CART, 
time series of potential drivers were shifted forwards in 
time up to 100  h because AL could lag behind its driv-
ers; and these time lags resulted in 3 variables × 101 time 
lags = 303 explanatory variables. For the application of 
CART, firstly a maximum tree was generated, which 
was subsequently pruned back to the size of an optimal 
tree using a tenfold cross-validation (Venables and Rip-
ley 2003, p.  251ff). Little improvements were observed 
beyond a tree size (number of end nodes) of three 
(Fig. 4a) and therefore an optimal tree with two decision 
nodes was selected (Fig. 4b). Decision nodes were based 
on EC and Q with time lags of 95 h and 80 h, respectively. 
Note that there were several time lags with similar or 
even the same importance coming out of CART. A time 
lag of 50 h associated with the first split based on EC had 
the same importance as the time lag of 95 h displayed in 
Fig. 4b. In contrast to EC, the most important five time 
lags for Q (in the second split) were all between 78 and 
82 h. Consistently, both higher EC and Q implied larger 

AL (Fig. 4b). According to the CART analysis, water tem-
peratures had a minor effect on AL. EC was more impor-
tant for explaining AL than Q; this can be seen in the 
optimal tree from the vertical distances between decision 
and end nodes, which are scaled according to the cross-
validated variance of AL explained by the split (Fig. 4b).

An additional assessment of controlling variables using 
random forests confirmed Q and EC as most impor-
tant drivers but time lags were 100 h for Q and 12 h for 
EC (see Additional file 2: Data set and Additional file 3: 
R-script). Random forests are based on many regres-
sion trees, with every tree generated from subset of the 
observations and each split within each tree created by 
a random subset of variables (Grömping 2009). Random 
forests supplement CART results because drivers may 
be more reliably selected by random forests but—at the 
same time—the interpretability of a single decision tree 
(Fig. 4b) is lost. Time lags obtained from CART and ran-
dom forests were modified based on linear cross-corre-
lations between AL and its drivers Q and EC. Maximum 
coefficients were computed at time lags of 45 h (EC) and 
81 h (Q) (Fig. 4c and d).

As a result of this first step of the approach, EC and 
Q with time lags of 45  h and 81  h, respectively, were 
selected as controlling variables of AL. Apart from the 
system variables involved (EC, Q and AL) in the causal 
structure, the actual DAG as well as effect sizes remained 
unclear from the first step of the analysis. Here, steps two 
and three of the approach brought clarity.

Second step of the approach: detecting causal structures 
using linear correlation coefficients with bootstrapped 
confidence intervals and expert knowledge
In a second step, all possible linear marginal and par-
tial correlation coefficients among AL, Q and EC 
were calculated to obtain plausible causal structures 
between the variables according to rules for inferring 
DAG (Jensen and Nielsen 2007, p. 320ff ). The variable 
AL was LN-transformed for the correlation and later 
regression analyses, as this transformation made vari-
ances of the periods before and during the algal bloom 
more similar (compare Figs.  3 and 5). As measured 
values for AL and EC steadily increased over the study 
period (Fig.  3), a linear trend was subtracted from 
both time series of LN(AL) and EC, which stabilised 
their means over time. Time series for Q did not show 
a clear linear trend and thus Q remained uncorrected. 
The linearly increasing trend for both LN(AL) and EC 
as opposed to Q probably resulted from the fact that 
the former two time series did not reach their back-
ground values by the end of study period (Fig. 3) and 
thus these trends were likely unrelated to any causal 
relationships. Before conducting the correlation and 
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regression analyses, one could also remove other com-
ponents from the time series, such as non-linear trends 
or diurnal cycles, which are presumably unrelated to 
the causal structure under investigation. In the present 
analysis, however, there were no pronounced diur-
nal cycles for AL, EC and Q (as opposed to pH, water 
temperature, nitrate and dissolved oxygen, Fig.  3). 
Furthermore, non-linear trends, such as those that 
can be calculated via generalised additive modelling 
(Hastie and Tibshirani 1990), were not factored out 
because they likely reflected the sought-after causal 

relationships. In general, trends in the data should not 
be removed if they were caused by the interplay of the 
investigated system variables.

For the analyses of linear correlation, I obtained 
ρQ;EC = 0.727, ρQ;LN(AL) = 0.652, and ρEC;LN(AL) = 0.774, where 
ρQ;EC, e.g. represents the marginal coefficient of linear cor-
relation between lagged Q, and lagged and detrended EC. 
Note that sub-subscripts of correlation coefficients (for 
detrended and lagged time series) were suppressed. From 
the three marginal correlation coefficients, another three 
partial correlation coefficients were calculated:

ALt = 93.09*
n = 68

ALt = 5.41*
n = 206

ECt-95 < 1,465.27 µS/cm ECt-95 ≥ 1,465.27 µS/cm

Qt-80 < 81.08 m³/s Qt-80 ≥ 81.08 m³/s

ALt = 79.04*
n = 486

ALt = 146.07*
n = 212

ALt = 133.2*
n = 280

* average ALt
of hours assigned 
to that node (µg chl-a/L)

(a)

(c)

(b)

(d)

Size of tree

Fig. 4 Selected results from first step of the approach. a Result of CART: ‘size of tree’, i.e. the number of its end nodes versus ‘X-val Relative Error’, 
which is equal to unity minus the cross-validated proportion of explained variance of AL (chlorophyll-a concentrations attributed to diatoms). 
Complexity parameter ‘cp’ is part of CART and is associated with a certain number of end nodes (Breiman et al. 1984). Vertical bars represent one 
standard deviation of ‘X-val Relative Error’. b Result of CART: optimum sized tree with three end nodes (squares) and the number of hours (n) 
assigned to each end node. Ovals represent decision nodes with decisions based on the driving variables electrical conductivity (EC) and river 
flow (Q) with time lags of 95 h and 80 h, respectively. c Result of linear cross-correlations: time lags (h) versus coefficients of correlation for time 
series of AL and EC. Red line indicates a time lag of 45 h, which was the maximum correlation coefficient. d Linear cross-correlations: time lags (h) 
versus coefficients of correlation for time series of AL and Q. Red line indicates a time lag of 81 h, which was the maximum correlation coefficient
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and

(1)ρQ;EC;LN (AL) =
(

ρQ;EC − ρQ;LN (AL)ρEC;LN (AL)

)

/

(

1− ρ2
Q;LN (AL)

)0.5
/

(

1− ρ2
EC;LN (AL)

)0.5

= 0.463,

(2)ρQ;LN (AL);EC = ρQ;LN (AL) − ρQ;ECρEC;LN (AL) 1− ρ2
Q;EC

0.5

1− ρ2
EC;LN (AL)

0.5

= 0.206,

(3)
ρEC;LN (AL);Q =

(

ρEC;LN (AL) − ρQ;LN (AL)ρQ;EC

)

/

(

1− ρ2
Q;EC

)0.5
/

(

1− ρ2
Q;LN (AL)

)0.5

= 0.576,

Fig. 5 Time series used in step two of the analysis. a Unlagged time series of chlorophyll-a concentrations attributed to diatoms (LN(ALt)de), which 
was LN-transformed and then detrended by subtracting a linear trend (and hence subscript de). b Time series of electrical conductivities with a time 
lag of 45 h  (ECt-45,de), which were linearly detrended. c Time series of discharges with a time lag of 81 h (Qt-81). Note that time series were shortened 
in the beginning compared to unlagged data presented in Fig. 3
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where ρQ;EC;LN(AL), e.g. measures the correlation between 
EC and Q with the influence of LN(AL) removed. Note 
that the coefficient ρQ;LN(AL);EC = 0.206 was less than half 
of the other two partial coefficients. To obtain confidence 
intervals for correlation coefficients, block bootstrapping 
(Mudelsee 2013, p.  73ff) with a block size of 18  h was 
applied because partial autocorrelations were significant 
up to a time lag of 6 h (see Additional file 2: Data set and 
Additional file 3: R-script). Overlapping blocks of all three 
variables were drawn. Block bootstrapping yielded the fol-
lowing 95% confidence intervals: ρQ;EC = [0.631…0.893], 
ρQ;LN(AL) = [0.509…0.794], ρEC;LN(AL) = [0.624…0.856],  
ρ Q ; E C ; L N ( A L )  =  [ 0 . 3 4 8 … 0 . 7 7 9 ] ,  ρ Q ; L N ( A L ) ; E C  =  
[− 0.188…0.471], and ρEC;LN(AL);Q = [0.184…0.735]. Thus, 
the coefficient ρQ;LN(AL);EC appeared statistically insignifi-
cant. Consequently, Q and LN(AL) may be considered 
stochastically independent if the influence of EC was 
removed and hence AL and Q are ‘d-separated’. Accord-
ing to the rules for inferring DAG and starting with a 
fully connected but undirected graph, because of d-sep-
aration due to ρQ;LN(AL);EC = 0, a direct (still undirected) 
arc between Q and AL was removed. This removed arc 
resulted in possible causal structures with an arrange-
ment of EC between Q and AL: i.e. (i) Q → EC → AL, 
(ii) Q ← EC ← AL or (iii) Q ← EC → AL. Given the time lags 
for Q → AL (81 h) and for EC → AL (45 h), option (i) main-
tained a plausible temporal sequence of cause and effect. 
The second option (ii) was impractical, as AL remained 
unexplained. The last option (iii) was implausible, because 
this would require changing EC to alter Q. Additionally, 
with option (iii) there would be only one driver of AL, i.e. 
EC → AL, which contradicted results from the first step of 
the analysis (that there were two direct or indirect driv-
ers of AL). Since it remained uncertain if ρQ;LN(AL);EC was 
really insignificant (even bootstrapping of correlation 
coefficients is imperfect), I further hypothesised a direct 
causal link between Q and AL, which was investigated 
again in the third step of the analysis. Note that a new 
v-structure is created by the direct link EC → AL, which 
is to be avoided by rules to infer DAG. However, starting 
from the plausible causal structure Q → EC → AL (reason-
ing see above), an additional directed arc must necessarily 
point from Q to AL, because otherwise a cyclic struc-
ture would result, where cause and effect are arbitrarily 
interchangeable (this would not be a DAG anymore). The 
result of the second step of the causal analysis was there-
fore the possible causal structures: (i) Q → EC → AL or (ii) 
Q → EC → AL and Q → AL.

Final step of the approach: refining the causal structure 
via a quantification of effect sizes using linear regression 
coefficients with bootstrapped confidence intervals
In a third step, a linear regression was performed to 
quantify the effect sizes of the DAG Q → EC → AL and 
Q → AL (from the second step), and to further test this 
causal structure. One can best determine the effect sizes 
using linear regression if the variables are z-standard-
ised, i.e. variables are normalised to a mean of zero and 
a standard deviation of unity. With z-standardisation, 
regression coefficients can be interpreted as changes 
of the detrended and transformed target variable AL 
if (detrended) driving variables are increased by one 
standard deviation. Hence, z-standardisation of vari-
ables makes regression coefficients comparable for differ-
ent drivers. For the structure Q → EC → AL and Q → AL, 
there are three effects acting on AL (see also ‘mediation 
analysis’ as explained, e.g. by de Heus 2012): (i) the direct 
effect of Q on AL; (ii) an effect of EC on AL and (iii) the 
indirect effect of Q via EC on AL. Effects (i) and (ii) rep-
resent all causal links pointing directly to AL; and these 
were quantified using a linear regression explaining the 
‘child’ variable AL from its ‘parent’ variables Q and EC:

where AL, Q and EC are lagged, detrended (subscript 
de) and z-standardised (subscript z) time series; k1 = 0 
(because of z-standardisation), a and b are coefficients 
of the linear regression model, and εLN(AL) are model 
residuals (sub-subscripts are suppressed for simplicity). 
I obtained a = 0.19 and b = 0.636; and these coefficients 
represented the direct effect Q → AL (coefficient a) and 
an effect of EC → AL (coefficient b). While the direction 
of the relationship for b was plausible (positive effect: 
higher salinity lead to higher concentrations of the brack-
ish algae), a positive relationship between Q and AL 
was less comprehensible. Higher Q would rather lead to 
lower AL due to reduced residence times of water in a 
given river section as well as greater turbidity and thus 
less light penetration (Alameddine et  al. 2011). Coeffi-
cient b cannot be interpreted directly as an effect size for 
EC → AL, but it is used to determine the indirect effect 
Q → EC → AL. For a comparison of the direct effect of EC 
on AL and an indirect effect via changes in Q, a variance-
based approach may be suitable (de Heus 2012), which 
will be explained below.

A direct effect Q → EC was obtained via a regression 
explaining EC from its only parent Q:

(4)
LN(ALt)de,z = k1 + aQt−81,z + bECt−45,de,z + εLN(AL),
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where c = 0.727 represents the size of the direct effect 
Q → EC; k2 is another coefficient that is zero due to 
z-standardisation; and εEC are model residuals (where 
sub-subscripts are suppressed for simplicity). Because 
of z-standardisation, it follows that c = ρQ;EC = 0.727. The 
size of the indirect effect Q → EC → AL was:

The total effect size of Q on AL was:

i.e. the sum of a direct (a = 0.19) and an indirect effect 
(d = 0.462). The total effect e = 0.652 was equivalent to 
the marginal correlation between Qt-81 and LN(ALt)de, 
i.e. ρQ;LN(AL) = e = 0.652, because of the z-standardisation. 
Thus, the direct effect Q → AL was only about one-third 
of the indirect effect of Q → EC → AL. A confidence 
interval for the size of the direct effect Q → AL was quan-
tified using block bootstrapping because model residuals 
of the regression (4) were autocorrelated. For bootstrap-
ping, blocks of 18  h were resampled from model resid-
uals. Bootstrapping observations were constructed 
using blockwise drawn residuals plus the initially fitted 
LN(ALt)de,z values; and regression coefficients were 5,000 
times fitted to bootstrapping observations (Selle and 
Hannah 2010). The 95% confidence interval for a was 
[− 0.104…0.488]. Consequently, the strength of Q → AL 
may be negligible. If the direct effect of Q on AL can be 
neglected, a causal structure Q → EC → AL would result 
as most plausible and reliable structure.

The structure Q → EC → AL can be further illuminated 
using a variance-based interpretation (de Heus 2012). 
Because of ρEC;LN(AL)

2 = 0.599, 59.9% of the total variance 
of LN(ALt)de was explained by  ECt-45,de. This explained 
variance can be decomposed using the semipartial cor-
relation ρ LN(AL);(EC;Q), which is the correlation between 
LN(ALt)de and  ECt-45,de after the influence of Qt-81 is com-
puted out of  ECt-45,de. The semipartial correlation was:

Thus, 19.1% of the variance of LN(ALt)de is explained by 
 ECt-45,de alone because ρLN(AL);(EC;Q)

2 = 0.191 is a variance-
based measure of EC → AL. This leaves a residual effect of 
ρEC;LN(AL)

2—ρ LN(AL);(EC;Q)
2 = 0.599—0.191 = 0.408, which 

represents a variance-based measure of Q → EC → AL. 
Thus, it can be calculated that the effect of EC on AL 
via Q dominates over the effect of EC on AL (without 
changes in Q).

(5)ECt−45,de,z = k2 + cQt−81,z + εEC ,

(6)d = c b = 0.462.

(7)e = a+ d = 0.652,

(8)ρLN (AL);(EC;Q) =
(

ρEC;LN (AL) − ρQ;LN (AL)ρQ;EC

)

/(

1− ρ2
Q;EC

)0.5

= 0.437.

Discussion
Technical aspects of the proposed approach to find reliable 
causal structures
If—in the second step of the approach—ρEC;LN(AL);Q 
was insignificant and all other five correlation coef-
ficients were unequal to zero, the further procedure 
would be similar to one demonstrated in the Results 
sections—only that possible and practical causal struc-
tures (i) EC → Q → AL as well as (ii) EC → Q → AL plus 
EC → AL needed to be evaluated based on linear regres-
sion and expert knowledge. For a causal ‘v-structure’ 
EC → AL ← Q, it would be required that ρQ;EC = 0 and 
all other five marginal and partial correlations unequal 
to zero. For this v-structure, effect sizes can be quanti-
fied using regression Eq.  (4), where a and b are then 
direct effects of Q on AL and EC on AL, respectively; and 
there would be no indirect effects. Given that—based on 
results from the first step of the analysis—the identified 
two drivers control a given target variable, either directly 
or indirectly, and if there are no unobserved additional 
drivers, cases mentioned in Results sections and in this 
paragraph cover likely outcomes of the statistical analy-
ses and the associated five conceivable causal structures 
listed in the introduction.

If—in the first step of the approach—an optimum sized 
tree with more than two driving variables was obtained, 
these could be simply reduced to the two most impor-
tant ones. An alternative, arguably better, option may be 
a principal component analysis of all potential drivers 
with a selection of two principal components as linear 
combinations of the investigated explanatory variables. 
In case of a principal component analysis, CART and 
random forests would be unnecessary but time lags may 
still be relevant, which can be obtained using an analysis 
of linear cross-correlation between principal component 
scores and the target variable. If controlling variables 
were reduced via a principal component analysis, the 
causal structure and effect sizes between the target vari-
able (TV) and the two principal component scores (PC) 
would be examined. In this case, only a v-structure may 

be found (PC1 → TV ← PC2), since PC1 and PC2 should 
be stochastically independent.

If—in practical applications of the approach—there 
were no two major drivers but many equally impor-
tant non-linear drivers, one could try to capture them 
using two principal components as mentioned above. 
In the second step, relations between principal compo-
nent scores and target variables may be linearised using 
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suitable transformations. If there are more than two 
statistically independent drivers, principal component 
analysis would not work. Furthermore, the proposed 
approach only works if major drivers were measured and 
included in the first step of the analysis. If they were not 
included, one may end up with causal structures involv-
ing minor drivers, or even non-causal or indirect rela-
tionships—if the variables included as drivers in the 
second and third step of the analysis were just driven by 
the same missing variables. Therefore, expert knowledge 
remains the key for causal discovery and the analysis can 
only assist experts to obtain reliable causal relationships.

Plausibility of the identified causal structure for Odra river 
application
In the three steps of the outlined approach, the causal 
model Q → EC → AL crystallised, with Q → EC and 
EC → AL acting with 36  h and 45  h time lags, respec-
tively. The causal model indicates that increasing EC were 
a consequence of a discharge event, which in turn trig-
gered an algal bloom. This causal model is plausible; and 
this will be explained in the following two paragraphs.

The identified causal structure implies that an EC 
increase was caused by a flow event, and this inference 
will be illuminated in the following paragraph. Regular 
discharges of highly mineralised mine groundwaters from 
both Upper Silesia (primarily from active and abandoned 
coal mines) and from Lower Silesia (primarily from cop-
per mines) are known for the Odra River (Fig. 2, Wieder-
hold et al. 2023). To explore the option that both Q and 
EC at Frankfurt increased due to these mine water dis-
charges, a salt mass of M = 52,586 t of total dissolved sol-
ids (TDS) injected into the Odra River during the episode 
and the volume of the flow event of V = 18,201,388   m3 
were estimated from time series of Q and EC in Frank-
furt (Fig. 3 and Additional file 1: Table S1). With an esti-
mated input period of 13.8 d (Additional file 1: Table S1), 
salt inputs of 3,811  t TDS/d during the episode were 
calculated, which—according to previously published 
salt inputs from Silesia—had a plausible order of mag-
nitude (Additional file  1: Table  S1). In contrast, calcu-
lated concentrations of M/V = 2,889 g TDS/m3 appeared 
uncharacteristically low for mine discharges and would 
be characteristic of low mineralised groundwaters from 
shallow depths (Rogoż et  al. 1987). Therefore, the Q 
event likely originated from rainfall in the Odra River 
basin upstream of Frankfurt rather than from discharges 
of mine groundwaters. The Q event lasted from 1 to 
18 August and reached its peak discharge on 7 August 
(Fig. 3). With a maximum travel time of water of 8 d from 
the headwaters to Frankfurt (using a distance of 585 km 
and a conservative estimate of wave speed of 3  km/h, 
Dehmel 1992, p. 13), rainfall in the Odra River basin from 

24 July onwards was relevant for the calculated event vol-
ume V = 18,201,388  m3 (Additional file 1: Table S1). Dur-
ing the relevant period, most rain fell on 30 July in the 
Odra River basin upstream of Frankfurt (basin area of 
about 53,000  km2) with a computed area averaged pre-
cipitation of 20.7 mm (Cornes et al. 2018, data available 
at http:// www. ecad. eu, Additional file  1: Fig. S2b) and 
hence the area averaged runoff coefficient was probably 
only 1–2% for the event with its presumably dry anteced-
ent moisture conditions. Significant rainfall occurred on 
30 July both in the upper and the central basin (Addi-
tional file 1: Fig. S2b). It can be inferred that mine waters 
from Silesia, that were likely discharged between 27 July 
and 9 August (see Additional file  1: Table  S1), were at 
least partly diluted by a concurrent Q event. As in upper 
basin of the Odra River significant rain fell already on 
26 July with local rainfalls of more than 12 mm/d (Addi-
tional file 1: Fig. S2a), increasing river flows likely trigged 
the decision to discharge saline groundwaters in Silesia. 
Consequently, salt inputs appeared as an effect of the 
observed flow event in the causal model Q → EC → AL. 
It can only be speculated if salt inputs would have hap-
pened without the observed Q event. Certainly, salinities 
in the Odra River would have been worse in August 2022 
with salt inputs alone and without those dilutions from 
catchment runoff.

Based on the identified causal model Q → EC → AL, a 
small natural discharge event caused anthropogenic salt 
inputs increasing EC, which in turn—probably at a thresh-
old of about 2,000 µS/cm—triggered an algal bloom. When 
EC dropped below the aforementioned threshold, the algal 
bloom ceased (Fig. 3). It is discussed now whether such a 
threshold is plausible. Based on observed chlorophyll-a 
concentrations attributed to diatoms, a median exponen-
tial growth rate of about 0.6 1/d was determined between 
t = 280  h (beginning of growth) and t = 375  h (maximum 
of AL). Similar growth rates were observed in laboratory 
experiments with Prymnesium parvum (Baker et al. 2009; 
Yin et al. 2021) at water temperatures of 23 °C and at EC 
of about 2000  µS/cm, which were the conditions in the 
Odra River at Frankfurt during the algal bloom event. The 
threshold of EC = 2,000 µS/cm was reached in Frankfurt at 
the beginning of increasing AL at about t = 280 h. Water 
temperatures during the algal bloom fluctuated around 
23 °C (Fig. 3). However, because AL responded to EC with 
a delay, the threshold was likely lower than 2000  µS/cm. 
In a publication of the European Commission (2023) it 
was concluded that the risk for an algal bloom of Prym-
nesium parvum would increase already with EC > 1500 µS/
cm. So, it seems likely that exceedance of an EC threshold 
between 1500 and 2000 µS/cm triggered algal bloom in the 
Odra River. Furthermore, satellite imagery shows elevated 
chlorophyll levels moving downstream from a suspected 

http://www.ecad.eu
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source area in Upper Silesia from the beginning of August 
2022 (European Commission 2023). I therefore conclude 
that an increase of EC brought the algal bloom in the Odra 
River and this likely caused the fish kill. The latter point 
was not subject of this analysis but reported previously 
(European Commission 2023).

Conclusions
An approach to find causal relationships from a set of 
environmental variables was proposed and applied for 
time series of water quality during the toxic algal bloom 
in summer 2022 in the Odra River, Germany. For the 
proposed approach, firstly the two most important driv-
ers of an observed target variable including their time 
lags are identified. Subsequently, the most reliable and 
plausible causal structure from a set of statistically pos-
sible structures is determined. The approach is based on 
established correlation and regression techniques, which 
are compiled in a novel composition. For the exemplary 
application, specific circumstances of salt inputs to the 
Odra River as likely cause of the toxic algal bloom in 
summer 2022 were illuminated. More generally, it was 
demonstrated that carefully conducted and hypoth-
esis-driven regression und correlation analyses can 
help to detect causal structures and to quantify causal 
relationships.
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