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Abstract 

Background  The impact of changing land-use patterns and associated anthropogenic threats on scale-depend-
ent habitat use of semi-aquatic mustelids in scent-marking and social behaviour can provide important insights 
into the habitat ecology of smooth-coated otters (Lutrogale perspicillata).

Methods  We sampled 180 stream segments (100–400 m) as spatial replicates of 60 1-km2 sites to record indirect 
evidence (i.e. spraints and mass latrine sites) and group sizes of smooth-coated otters along the Tungabhadra Otter 
Conservation Reserve (TOCR) during the dry season. To quantify habitat, we recorded stream characteristics, ripar-
ian vegetation, and anthropogenic disturbances at the local scale, and hydro-environmental characteristics and land 
uses at the landscape scale. Using Markovian-chain detection and occupancy models, we assessed the multi-scale 
habitat use of otters in their selection of suitable areas for scent-marking based on repeated presence-absence data 
on spraint/latrine locations along the TOCR. We further used linear regression techniques to explore relationships 
between the number of individuals in smooth-coated otter group and hydro-environmental characteristics, spraint/
latrine encounter rate, anthropogenic pressure, land cover, topography, and vegetation.

Results  At the local scale, the probability of spraint deposition and group size decreased with anthropogenic distur-
bance while the probability of spraint detections decreased with grass cover. At the landscape scale, the probability 
of otter site use for spraint deposition and group sizes increased in southeast flowing streams. Spraint deposition 
increased with the proportion of sugarcane fields, whereas in contrast, group size decreased with proportion of sugar-
cane fields.

Conclusions  Our findings highlight the first empirical evidence on multi-scale habitat use of a southern Indian 
population of smooth-coated otters in an inland freshwater ecosystem surrounded by the scrub jungle–agriculture 
matrix. We suggest that habitat models built from analytical approaches that account for correlated detections can 
avoid biased predictions when estimating occupancy and detection probability of semi-aquatic or riparian mammal 
communities with linear distributions. Our findings indicate that human activity can impose constraints on the choice 
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Background
Morphological degradation of river channels from sand 
mining, hydropower projects, tourism activity, and con-
tamination from agricultural effluents threaten fresh-
water ecosystems globally (World Wildlife Fund 2018). 
Riparian areas play a crucial ecological role due to vari-
ous characteristics, including their ability to provide 
moisture, offer structural complexity, maintain linear 
continuity, create distinct microclimates, offer diverse 
food resources, and influence aquatic habitats (Kondolf 
et  al. 1996). However, these features constitute a small 
proportion of the total area relative to the adjacent terres-
trial ecosystems (National Research Council 2002). The 
seasonality of streams from confounding changes in cli-
mate, the interactive nature of ecotonal habitats or edge 
habitats at riparian buffers, and the fluvial effects from 
ecohydrological regimes play a crucial role in shaping the 
habitat ecology of semi-aquatic mammals (Crowley et al. 
2012; Holland et al. 2019; Hussain and Choudhury 1997). 
Particularly, inland rivers at low elevations have a greater 
risk of fragmentation from increasing land transforma-
tion and seasonal droughts. Riparian or semi-aquatic 
species in freshwater habitats are often prone to faster 
rates of local extinctions from climate change risks (Con-
roy et al. 1998; Khan et al. 2010; Suthar et al. 2017) rela-
tive to terrestrial or marine species (Collen et  al. 2014; 
Wiens 2016). India has the greatest freshwater withdraw-
als in the world with over 760 billion cubic metres with-
drawn per year followed by China and the United States 
(Ritchie and Roser 2020). In India, 91% of freshwaters 
are used in the agricultural sector (FAO 2016), which is 
protected through the 2010 National Wetland Rules and 
the 2012 National Water Policy (Iyer 2009). Additionally, 
waters are protected if they lie within the Protected Area 
Network (Gupta et  al. 2014). However, the designation 
of Freshwater Key Biodiversity Areas traversing multi-
ple Indian states outside of Protected Area networks also 
conserves many endangered and endemic freshwater 
species (Molur et al. 2011, 2014).

The smooth-coated otter Lutrogale perspicillata 
(SCO) is an emblematic species for freshwater biodi-
versity conservation in a broad societal context as they 
are an effective model species that could be linked with 
human health and well-being (Bedford 2009; Ben-David 
et  al. 1998; Nawab et  al. 2016; Wainstein et  al. 2022). It 
is one of the apex predators (Mason and Macdonald 

1986; Nawab and Hussain 2012); an ecological indica-
tor of anthropogenic stress (Shenoy 2003; Shenoy et  al. 
2006), freshwater connectivity (Carranza et  al. 2012), 
and freshwater ecosystem health (Bedford 2009); and a 
model species that provides valuable ecosystem services 
(Ben-David et  al. 1998; Nawab et  al. 2016). The species 
has a wide global distribution in south and southeast 
Asia (Foster-Turley and Santiapillai 1990). However, their 
global population has declined by > 30% during the last 
three decades (de Silva et  al. 2015). In India, frequent 
reports of SCO in urban and rural settings increases risks 
to their long-term persistence (Dias et  al. 2022; Raman 
et  al. 2019; Tamarapalli and Kolipaka 2022). Through-
out the species distribution range, the population con-
nectivity is threatened by hydrological barriers mainly 
hydrological projects. Additionally, increasing anthropo-
genic developmental pressure in the form of linear infra-
structure has led to the loss of high-quality in-stream, 
riparian, and riverine-edge habitats due to agricultural 
expansion, sand mining, and human settlements (Dudg-
eon 2000; Shenoy 2003; Shenoy et al. 2006; Suthar et al. 
2017). Otters are subject to persecution for their pelts, 
meat, and body parts, with retaliatory hunting by fisher-
men in response to fish thefts and fishing net damages 
(Meena 2002; Nagulu et al. 1999). Otters in the river sys-
tem of Karnataka including Tungabhadra are susceptible 
to various threats, including poaching, attributed to the 
absence of a robust conservation strategy (Shenoy 2003; 
Shenoy et al. 2006). The species is listed as ‘Vulnerable’ by 
the IUCN Red List of Threatened Species and included in 
Appendix I of CITES (Khoo et al. 2021). In India, SCO is 
protected and categorized under ‘Schedule I’ in the 1972 
Indian Wildlife Protection Act due to poaching, hunting, 
and illegal trade.

Studies indicate that determining the scale at which 
management interventions are required for the pro-
tection of otter species and their freshwater habitats is 
much needed as many of their habitat use patterns and 
ecological processes are scale-dependent (Crowley et al. 
2012; Holland et  al. 2019; Lundy et  al. 2010; Pimenta 
et  al. 2018). There are a number of recent studies indi-
cating multi-scale responses of semi-aquatic mammals 
to stream characteristics, river connectivity, land cover, 
riparian habitat, vegetation, and sediment chemistry 
(Crowley et  al. 2012; Holland et  al. 2019; Lundy and 
Montgomery 2010; Pimenta et  al. 2018). At the local 

of sites used for spraint deposition and preliminary patterns in otter groups. The study provides some crucial evidence 
on the need to maintain areas with minimal human interference for sustainability of freshwater reserves.
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scale, SCO use sites with higher-quality riparian veg-
etation and adequate ground substratum for choos-
ing appropriate holt locations and feeding/hunting prey 
whereas sandy and muddy banks are more suitable for 
grooming and basking (Khan et  al. 2014). At the land-
scape scale, SCO prefers large, slow-flowing rivers with 
greater inter-reach connectivity (Khan et  al. 2014; Raha 
and Hussain 2016). Therefore, SCO are likely to use cer-
tain sites more than others within their home ranges at 
multiple scales depending upon their perception of the 
environment, their hierarchical order of habitat selection, 
and the interactive effects of local-scale and landscape-
scale features (Johnson 1980).

Our objectives aimed to predict the probability of 
SCO site use as defined by spraint deposition (hence-
forth termed “site use”) and spraint detection along the 
riverine stretch of the Tungabhadra Otter Conservation 
Reserve (TOCR) by applying single-season Markovian-
chain presence/absence habitat models built from local-
scale (100–400  m) factors (i.e. stream characteristics, 
riparian habitat features, and anthropogenic activities) 
and its surrounding landscape-scale (1-km2) factors (i.e. 
land-use patterns and hydro-environmental characteris-
tics). Based on our knowledge of the study area and pat-
terns of habitat associations from literature, we tested 
relationships between SCO site use and local-scale and 
landscape-scale factors. We also explored relationships 
among the effects of multi-scale factors on the number 
of individuals in SCO groups (henceforth termed “group 
size”) using linear regression techniques. We hypoth-
esized that site use and SCO group size would be posi-
tively associated with hydrological characteristics (e.g., 
Raha and Hussain 2016; Narasimmarajan et  al. 2021; 
Nawab and Hussain 2012) and negatively associated 
with certain types of crop fields (e.g., Kantimahanti and 
Allaparthi 2017; Kamjing et  al. 2017), poor water qual-
ity (e.g., Bedford 2009; Hong et al. 2020; Dias et al. 2022), 
and degrees of anthropogenic threats (e.g., Shenoy 2003; 
Prakash et al. 2012). We hypothesized that the probabil-
ity of SCO spraint detection would be positively associ-
ated with stream substratum (Gupta et  al. 2020) and 
negatively associated with weed and grass cover (Acharya 
and Lamsal 2010; Shenoy et al. 2006).

Methods
Study area
TOCR is the first otter conservation reserve in India, 
being founded in 2015 by the Karnataka Government 
under the 1972 Indian Wildlife (Protection) Act. The 
reserve is dedicated to the conservation of Rare, Endan-
gered and Threatened keystone freshwater species. In 
TOCR, the SCO shares its freshwater habitats with 
the IUCN Red Listed ‘Vulnerable’ mugger crocodile 

(Crocodylus palustris), ‘Near Threatened’ Indian black 
turtle (Melanochelys trijuga), and the ‘Endangered’ 
Deccan mahseer (Tor khudree) (Devi and Boguskaya 
2007). Thus, TOCR is an important freshwater reserve 
for a range of freshwater-obligate species. The study 
area spans between 15°15′44.01″ N, 76°20′17.67″ E to 
15°26′27.90″N, 76°36′58.84″E (Fig.  1), which begins 
from Mudlapura village to Kampli in Bellary district, 
North Karnataka. TOCR lies at the boundary of Koppal 
and Bellary districts in the Krishna River Basin (KRB), 
which is India’s fourth largest drainage system, with a 
catchment area of 258,948 km2. Unlike other river sys-
tems of India, KRB has undergone severe modification 
in the hydrologic regime due to the agricultural develop-
ment coupled with the construction of major and minor 
irrigation structures and other water diversion struc-
tures. In fact, KRB is one of the nine river basins in India 
categorized as “strongly affected” by flow fragmentation 
and regulation (Groombridge and Jenkins 1998). The 
mainstream of the Tungabhadra River is formed by the 
confluence of the Tunga and Bhadra rivers, joining with 
the Krishna River 531  km downstream (Tungabhadra 
Board 2024). The mean width of the Tungabhadra River 
varies from 359 to 4312 m and increases downstream due 
to increasing discharges. The surrounding forests com-
prise dry deciduous and southern thorn forests (Cham-
pion and Seth 1968). A total of 14 ancient check dams 
(anicuts) built along the Tungabhadra River during the 
Vijayanagara Empire (Middle Period) 500 years ago pro-
vide supplementary water to irrigated dry-crop subsist-
ence farms (Morrison 2010). Of these check dams, nine 
still exist today in TOCR.

The average annual rainfall recorded over the Tungab-
hadra River region is around 1200  mm (Lo Porto et  al. 
2010; Venkatesh and Ramesh 2018). Most of the rainfall 
occurs during the southwest monsoon (average 456 mm 
from June through October) followed by the northeast 
monsoon (average of 127  mm from October through 
December). However, TOCR received very low rain-
fall (average of 68 mm) during the study period (Indian 
Water Resource Information System Web Portal https://​
india​wris.​gov.​in/​wris/#/​rainf​all). Elevation in the study 
area ranges from 450 to 750 m msl and slopes eastward 
(Ramachandra et al. 2015).

The Tungabhadra River is utilized for commercial fish-
ing, and in recent years, the state of Karnataka has pro-
moted the production of carp Catla catla, Labeo rohita, 
and  Cirrhinus mrigala and several exotic fish species 
Cyprinus carpio, Hypophthalmichthys molitrix, and 
Ctenopharyngodon idella (Gowda et  al. 2015). Despite 
the conservation significance of TOCR, it is exposed to 
a high degree of anthropogenic pressure from farmlands, 
stone quarrying, sand mining, waterlogging, salinization, 

https://indiawris.gov.in/wris/#/rainfall
https://indiawris.gov.in/wris/#/rainfall
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and poly-fibre industries, thereby creating seasonal and 
spatial variation in water quality (Janmat 2004; Shepur 
et  al. 2020). Additionally, certain reaches of TOCR are 
experiencing intense eutrophication from the weed-
infested water hyacinth (Eichhornia crassipes) and pink 
morning glory (Ipomoea carnea). TOCR also is under 
enormous pressure from tourism as it passes through the 
historical city of Hampi, which is a UNESCO World Her-
itage site. This city is visited by local and international 
tourists for its ancient and holy sites within the ruins of 
the Vijayanagara dynasty that still exist.

Smooth‑coated otter field survey
We overlaid 1-km × 1-km polygons as sampling sites along 
TOCR using ArcGIS 10.1 (ESRI 2012; Fig. 1). Before initi-
ating the recording of data, we first conducted a thorough 
preliminary survey of the TOCR over 15 days to identify 
SCO activity areas through evidence of spraints, holts, 
and direct group sightings. A site was defined as a 1-km2 
grid each having three spatial replicates ranging in length 
from 100 to 400  m. The average distance between sur-
vey segments within a site was 314.86 m, with an average 

distance between sites of 997.63  m. Most of the stream 
segment-based surveys have employed stream routes of 
100–600 m for surveying semi-aquatic mammals, includ-
ing other Asian otter species (Prakash et  al. 2012; Raha 
and Hussain 2016), Eurasian otters (Lutra lutra)  (Hong 
et  al. 2018; Bedford 2009), and Pyrenean desman  (Gale-
mys pyrenaicus) (Charbonnel et al. 2014). These segment 
lengths are within the range of the small-scale movement 
distances (250–1500 m) reported from radio-tagged SCO 
individuals in the National Chambal Sanctuary (Hussain 
1993). Thus, considering the reported home range sizes 
of adult males and females with pups, SCO home ranges 
could potentially range from 2.13 to 6.57 km2 (Hussain 
1993; Kruuk 1995), which is larger than the 1-km2 sites 
used in our study. Therefore, we considered the occu-
pancy term as ‘habitat use’ of the species given that SCO 
likely has home ranges larger than our sampling sites in 
which case the same SCO individual/group could use 
multiple sampling sites within a short survey duration. 
Thus, we interpreted our results in terms of the site used 
(i.e. habitat use for sprainting), and not the area occupied 
at sampling sites.

Fig. 1  Sampling sites for smooth-coated otter (SCO) surveys along the Tungabhadra Otter Conservation Reserve
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We collected data between February and May 2019 
during the dry/summer season. All segments were sur-
veyed by foot or coracle (circular bamboo boat) in the 
early mornings (06:00–09:00) when SCO are most active. 
We searched for indirect evidence (e.g., mass-latrines, 
spraints), active holts (e.g., large gaps among boulders 
used as breeding refugia), and claw marks that were 
recorded within the 15-m buffer along rocky, sandy, or 
vegetated banks of survey segments. We also opportun-
istically recorded direct sightings of SCO groups during 
these surveys. The majority of the spraint deposition sites 
were in communal latrine sites. We recorded all direct or 
indirect evidences of SCO using a handheld GARMIN 
20 × GPS (Garmin Ltd., Olathe, Kansas, USA) and Locus 
mobile mapping app (Asamm software, Krhanická, 
Czech Republic). Each instance of direct observation 
and the count of indirect signs were treated indepen-
dently. Communal latrine sites were also considered, 
with the criterion that spraints more than 5 m apart were 
treated as distinct evidence (Basak et  al. 2021; Kruuk 
et  al. 1986). We identified fresh SCO spraints based on 
the shape, diameter, and length (Khan et  al. 2014), and 
estimated the age of the spraints as fresh (< 2  days) or 
old (> 2 days) based on the texture, condition, moisture, 
and odour. Additionally, tracks of the Asian small-clawed 
otter (Aonyx cinereus) are distinct from SCO and can be 
inferred from the absence of claw marks and reduced 
webbing  in the latter (Mohapatra et  al. 2014; Raha and 
Hussain 2016). For further analysis, we considered only 
the fresh spraints and tracks of SCO.

Multi‑scale habitat measurements
We conducted a thorough literature review on stud-
ies reporting the ecological requirements of SCO, and 
other otter species and semi-aquatic mammals to iden-
tify potential local-scale and landscape-scale variables 
for modelling SCO habitat use in TOCR (see Additional 
file 2: Table S1). We also measured additional local-scale 
habitat variables in the region based on our field knowl-
edge in TOCR. We recorded local-scale habitat variables 
in a 15-m × 15-m plot delineated at every 50-m distance 
in each segment. Depending on the length of the seg-
ment, we laid 2–8 plots alternatively on the riverbank 
side to measure each habitat variable. We then calculated 
the average for the continuous variables and assigned 
them to the sampled segment or site, whereas for cate-
gorical variables, we assigned the most frequent category 
to the site. Additional file 2: Table S2 contains additional 
details on each local-scale measurement.

For landscape-scale measurements, we considered 
1-km × 1-km polygons along the riverine extent of 
TOCR using ArcMap 10.1 (ESRI 2012). This approach 
for measuring landscape-scale factors for semi-aquatic 

small carnivores has been applied previously to quantify 
land-uses surrounding rivers/streams in otter ecologi-
cal studies (e.g., Loy et  al. 2009). We measured high-
resolution, hydro-environmental attributes and land 
uses at 1-km × 1-km grids along 60 sample sites. The 
hydro-environmental variables utilized in this study were 
sourced from the Global hydro-environmental sub-basin 
and river reach characteristics dataset (Additional file 2: 
Table S2), offering high spatial resolution. These variables 
encompass elements from seven categories: hydrology 
(including discharge, runoff, wetland inundation, and 
groundwater table depth), physiography (encompassing 
elevation, slope, and landform), climate, land cover, soil, 
geology, and anthropogenic influences (as detailed in 
Linke et  al. 2019). Additional file  2: Table  S2 and Addi-
tional file 1: Fig. S1a–o contains additional details on the 
measurements of landscape-scale variables, their defini-
tions, and calculations using GIS processing tools.

Principal component analysis of hydro‑environmental 
characteristics
We z-transformed all continuous local-scale and land-
scape-scale variables for standardization. We conducted 
principal component analysis (PCA) to reduce nine 
hydro-environmental variables (total stream power, dis-
tance to the most downstream pixel of the reach, catch-
ment area, river geometry, river area, terrain slope, 
stream gradient, soil erosion, and order strata) into three 
components (PC1, PC2 and PC3) that would describe the 
stream structure and hydrology. We conducted all analy-
ses using program R packages (R Core Team 2019). We 
used the package “factoextra” (Kassambara 2015) to first 
plot the eigenvalues and percentage of variance in a scree 
plot and identify the number of dimensions needed to 
explain variation. We concluded that three dimensions 
were sufficient to summarize the variation and then cre-
ated biplots of variable contributions. PCA was followed 
by a Hierarchical Agglomerative Clustering (HAC) where 
we applied gap statistics to identify the optimum num-
ber of clusters by comparing the total within intra-cluster 
variation for different values of k (# of clusters) with their 
expected values under the null data distribution using the 
package “cluster” (Tibshirani et al. 2001). We then applied 
the Euclidean distance (from PCA) and Ward’s criterion 
to group the sampled sites into clusters characterized by 
the nine hydro-environmental variables using the HCPC 
function in package “FactoMineR” (Lê et  al. 2008). We 
described each cluster by variables and their significance 
using the v.test associated with a p-value (Husson et  al. 
2010). We further tested correlations among local-scale 
and landscape-scale variables using Pearson correlation 
coefficients (Additional file 1: Fig. S2) from the package 
“mosaicdata” (http://​www.​mosaic-​web.​org/​about.​html, 

http://www.mosaic-web.org/about.html
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Pruim et al. 2017), “ggcorrplot” (Kassambara 2019), and 
“ggplot2” (Wickham 2016).

Modelling site use and detection probability
We assessed the multi-scale habitat use of SCO by fit-
ting Markovian-chain models to the presence/absence 
data (Hines et al. 2010). This model accounts for the lack 
of spatial independence in replicate surveys by includ-
ing segment‐level occupancy and detection probability 
conditional on adjacent segment‐level occupancy. This 
model has been successfully applied when surveys are 
conducted along linear features (Charbonnel et al. 2014; 
Srivathsa et al. 2014; Thorn et al. 2011), and when target 
species have linear territories (Hussain 1993; ÓNéill  et 
al. 2009; Sauer et al. 1999). However, this model has been 
rarely applied to assess habitat use of semi-aquatic spe-
cies (Charbonnel et  al. 2014, 2015). Hines et  al. (2010) 
reported that standard single-season models consider-
ably under-estimated occupancy when spatial autocor-
relation was not accounted for. Spatial replicates are a 
cost-effective approach when sites are surveyed within 
short durations. In our study, 100–400  m survey seg-
ments were spatial replicates for 60 1-km2 sites. In this 
manner, we built detection histories for 60 1-km2 sites, 
with each having three spatial replicates. Hines et  al. 
(2010) spatial dependence model estimates ψ, which 
denotes the probability of SCO at a site. The model cap-
tures spatial dependence in segment-level occupancy (θ) 
through θ0, which is the probability of SCO being present 
at a replicate (i.e. segment) given the previous replicate 
was not occupied by SCO; θ1, the probability of SCO 
being present at a replicate given the previous replicate 
was occupied by SCO; and θπ, represents the first rep-
licate where there is no prior information for segment-
level occupancy. Additionally, p indicates the probability 
of detecting SCO in a segment. The detection parameters 
θ0 and θ1 express the magnitude of spatial dependence 
between continuous segments, with θ0 = θ1 indicating 
complete independence of segments.

We created SCO detection histories for each of the 
three spatial replicates that constituted segments such 
that each of the 60 sites had three sampling occasions, 
resulting in a sampling effort of 180 survey segments. The 
detection history consisted of binary values with ‘1’ indi-
cating SCO detection during the sampling occasion and 
‘0’ indicating non-detection based on direct and indirect 
evidence such as fresh spraints/latrines along a segment 
(Newman and Griffin 1994; Khan et al. 2014). Thus, the 
resulting detection histories were created as 110, 001, 
111, 101, 000, 010, 011, or 100. We analysed detection 
histories for the 180 segments covering 60 1-km2 grids 
(henceforth termed “sites”) with multi-scale covariates by 
fitting single-season Markovian models in the program 

PRESENCE v 13.11 (Hines 2006). During modelling, 
we used the z-transformed values of continuous covari-
ates. For modelling, we did not combine variables into 
a single model when they were correlated (r ≥ 0.5) using 
Pearson’s correlation test (Additional file  1: Fig. S2). 
Rather, we grouped all covariates for each scale into six 
categories: habitat, vegetation, topography, hydrology, 
land use, and anthropogenic disturbance. First, we cal-
culated the naïve occupancy estimate without account-
ing for false absences (i.e. number of sites where SCO 
presence was detected at least once/total number of sites 
surveyed) (Mackenzie et al. 2018). To construct a set of 
candidate models, we followed a common practice of 
first modelling the detection probability by selecting the 
best detection covariate (< 2 ΔAIC) while keeping site 
occupancy constant. This involved taking seven detec-
tion covariates, of which stream substrate failed to con-
verge (Additional file  2: Table  S3). Then, by holding the 
best detection covariate, we constructed models with 
seven local-scale covariates (Additional file  2: Table  S4) 
and then with 24 landscape-scale covariates under each 
broad category in a univariate fashion (Additional file 2: 
Table  S5). At this stage, we selected the best local-scale 
and landscape-scale variables under each of the six cat-
egories to identify the most important predictors of 
SCO site use. This further allowed us to assess whether 
site occupancy was driven by local-scale or landscape-
scale variables, or combinations of variables from both 
scales (Additional file 2: Table S6; Burnham and Ander-
son 1998; MacKenzie et  al. 2018). We eliminated those 
models that did not converge (Cooch and White 2005). 
The relationship between the probability of SCO site use 
and covariates at both spatial scales was established using 
a logistic model (logit link) in the program PRESENCE 
v 13.11 (Hines 2006). For the best models, we averaged 
the untransformed beta coefficients and standard errors 
(β, SE(β)) to determine the magnitude and direction of 
influence of individual covariates on the probabilities of 
site use, the detection of SCO, and infer relationships 
(whether positive or negative) between covariates and 
parameters. We further assessed how well the top-ranked 
models (ΔAIC < 2) fit the data with a ‘goodness-of-fit’ 
test using 10,000 bootstrapping iterations (MacKenzie 
and Bailey 2004) to obtain P values of the model’s fit. The 
overdispersion (ĉ) was estimated by calculating the χ2 
‘goodness of fit’ statistic for a model divided by the mean 
test statistic of 10,000 bootstrapped samples. We consid-
ered parameters with a 95% confidence interval not over-
lapping 0 to be informative. The Akaike weights (ωi) also 
were calculated for each model. A final prediction map 
was produced from the top models by plotting the aver-
age site using ψ and detection probability p of SCO from 
the top models. Figure 2 contains a complete schematic 
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workflow of the steps involved from field data collection 
to analysis.

Group size relationships with habitat factors
SCOs are highly social, semi-aquatic carnivores, and 
thus, we expected that certain local-scale and landscape-
scale habitat features would be associated with both high 
and low group sizes. To associate group-size relation-
ships with local-scale and landscape-scale factors, we 
considered the z-transformed values of hydro-environ-
mental characteristics, vegetation, land cover, hydrology, 
and topography. We applied box plots to compare group 
sizes between categorical or binary factors such as the 
presence/absence of check dams, islands, sand banks, 
and flow direction. We conducted univariate linear 
regression modelling using ordinary least-squares regres-
sion techniques from the ‘olsrr’ package (Hebbali 2023) in 
R studio (Rstudio Team 2020). Specifically, we used PC1, 
river depth, river width, the proportion of sugarcane and 
banana fields, island size, anthropogenic pressure, and 
grass cover as potential predictors. For each model, we 

tested for significant relationships, residual diagnostics, 
homoscedasticity, and normal distribution.

Overall, we chose these potential variables as we 
expected large SCO group sizes to be associated with 
PC1, wider river widths, greater river depths, increas-
ing island sizes, and greater grass coverage. We further 
expected that smaller groups would be sensitive to high 
anthropogenic pressure and thus avoided disturbed sites 
thereby exhibiting negative relationships with increasing 
SCO group sizes. Given the territorial nature of otters, 
we expected the larger groups to displace the smaller 
ones to highly modified landscapes, as these areas pro-
vide suboptimal conditions. This displacement is antici-
pated to compel smaller groups to river buffers having 
high proportion of sugarcane for foraging and hunting.

Results
Smooth‑coated otter sign evidence and groups
We recorded evidence of SCO in the form of spraints 
48 out of 180 sampling segments. Other evidences such 
as direct sightings, claw marks, and holts were recorded 

Fig. 2  A schematic representation of the workflow involving the sampling procedure for smooth-coated otter surveys, local- and landscape-scale 
measurements of variables, correlations, principal component analysis and a decision tree-based procedure to predict smooth-coated otter habitat 
use in Tungabhadra Otter Conservation Reserve
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at 15 sampling sites. Overall, SCO signs were recorded 
at 31 of 60 sampling sites yielding a naïve occupancy of 
0.52. During the study period, we encountered a total 
of 69 SCOs in 12 different groups, each consisting of 
1–13 individuals including both adults and sub-adults. 
The mean SCO group size in TOCR was 5.75 ± 3.41 
(mean ± SD). Various activities like basking over boul-
ders, grooming, travel groups, individuals huddling 
over each other while resting, and large hunting and 
foraging groups along with at least two sub-adults were 
observed. Six of the  12 groups were hunting/foraging 
groups (mean group size = 6.5), two groups had loners for 
which behavioural information could not be recorded as 
they were brief encounters, one group was observed rest-
ing over boulders on islands and near sugarcane banks, 
two groups were observed travelling from either side 
of the riverbank, and one group was observed escaping 
from fishermen during fishing activity. The mean SCO 
sign encounter rate (number of signs/km) in TOCR was 
1.40 ± 0.20 signs/km. Sign encounter rate was the greatest 
in the river reach surrounded by barren rocky stretches 
and rock outcrops broadly categorized here as barren 
land (1.84 ± 0.20 signs/km) followed by agriculture fields 
(1.39 ± 0.20 sign/km), with human settlements having the 
lowest encounter rate (0.89 ± 0.20 signs/km).

Stream structure and hydrology
The PCA of stream attributes across all sites created 
three principal components. PC1 explained 25% of the 
total variance with PC2 explaining 16% of the variance 
(Table  1). The varimax rotation revealed a major gradi-
ent for PC1 (Additional file  1: Fig. S3a) that was largely 
explained by stream order and river area with greater val-
ues towards the right end of the first axis, and slope and 
catchment area with greater values towards the left end of 
the first axis. The second PC2 (Additional file 1: Fig. S3b) 
was explained largely by soil erosion and river geometry 
with greater values towards the right end of the axis and 
the most downstream pixel of reach and slope towards 
the left end of the axis. The third PC3 (Additional file 1: 
Fig. S3c) was mainly related to stream gradient and river 
geometry, which was towards the left end of the axis and 
the distance to the most downstream pixel of the reach 
had greater values towards the right end of the axis. The 
HAC analysis generated a dendrogram (Additional file 1: 
Fig. S4a) and partition plot (Additional file  1: Fig. S4b) 
representing nine site clusters (Additional file 1: Fig. S4c).

Probability estimates of site use and detection and model 
fit
The bootstrap χ2 goodness-of-fit test showed that the 
three top-ranked models fitted the data well (model 1 

bootstrapped P value = 0.90 for ψ(sugarcane + anthro-
pogenic pressure + flow direction south-eastwards), θ0
(.),θ1(.), p(grass cover),θπ(.); model 2 bootstrapped P 
value = 0.93 for ψ(sugarcane + anthropogenic pres-
sure + flow direction southwards),θ0(.),θ1(.), p(grass 
cover),θπ(.); model 3 bootstrapped P value = 1.06 for ψ
(sugarcane + anthropogenic pressure),θ0(.),θ1(.), p(grass 
cover),θπ(.) The average predicted site use (0.77 ± 0.19; 
95% CIs 0.29–0.96) and detection probability (0.84 ± 0.13; 
95% CIs 0.27–0.97) was relatively high in TOCR and 
greater than naive occupancy (0.52). The average prob-
ability of site use ranged from a minimum of 0.48 ± 0.28 to 
0.98 ± 0.03 (Fig. 3), suggesting sites with moderate to high 
SCO habitat suitability and also that SCO selectively used 
certain sites more than others. Average detection prob-
ability for each survey segment ranged from 0.41 ± 0.22 to 
0.97 ± 0.04 (Fig. 4). The top spatial autocorrelation models 
indicated that the probability of SCO presence was lower 
when there was no spraint detected on the previous seg-
ment than when spraints had been detected on the pre-
vious segment (θ0

average of top 3 models = 0.33 ± SE 0.14 and 
θ1

average of top 3 models = 0.48 ± 0.12).

Influence of multi‑scale covariates on the probability 
of SCO site use and detection
The top survey-specific covariate contained weed cover 
and grass cover in the lowest-rank models (< 2 ΔAIC). 
Other survey-specific covariates such as river depth, 
river width, survey effort, and proximity to natural veg-
etation had generally greater ΔAIC rankings (Additional 
file 2: Table S3). The univariate analysis of the local-scale 
occupancy covariates after accounting for detections 

Table 1  Principal component loadings from 60 sites for stream 
attributes in Tungabhadra Otter Conservation Reserve

Bold font indicates the loadings used to interpret the meaning of the principal 
component

Stream attribute PC1 PC2 PC3

Total stream power 0.52 − 0.25 − 0.22

Distance to the most downstream 
pixel of the reach

0.32 − 0.42 0.69

Area of catchment − 0.48 0.29 − 0.16

River geometry − 0.009 0.45 0.42
River area 0.68 0.35 − 0.020

Slope − 0.72 − 0.41 − 0.13

Stream gradient − 0.05 0.08 0.65
Soil erosion − 0.34 0.77 0.05

Order strata 0.75 0.18 − 0.28

Variance 2.27 1.46 1.25

Percentage of variance 25.31 16.27 13.92

Cumulative percentage of variance 25.31 41.58 55.51
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suggested that variables < 2 ΔAIC included the pres-
ence of islands, sand banks, bank vegetation, canopy 
cover, and anthropogenic pressure (Additional file  2: 
Table S4) while the univariate results of landscape-scale 
covariates included elevation, island size, flow direc-
tion, proportion of sugarcane fields, area of roads, and 
area of settlements (Additional file  2: Table  S5). These 
univariate models contained lower AIC values than 
the null models for each covariate group. The combi-
nation of local-scale and landscape-scale covariates 
into a single model had a lower AIC than either local-
scale or landscape-scale models done separately (Addi-
tional file 2: Table S6). Hence, the final top three models 
explaining SCO site use included the additive effects of 
the proportion of sugarcane fields, anthropogenic pres-
sure, flow direction (south-eastwards and southwards), 
and with grass cover as the top detection covariates 
(Additional file  2: Table  S6). The proportion of sugar-
cane fields (βaverage of top 3 models = 0.71 ± 0.23) had a posi-
tive relationship with SCO site use as indicated by the 
positive β coefficients (Fig.  5a). Similarly, SCO site use 
increased in streams flowing south-eastwards (βtop model 1  

= 0.68 ± 0.38) more so than southwards (βtop model 2  
= − 0.67 ± 0.39) and south-westwards (Fig.  5b). Con-
versely, the probability of SCO site use decreased with 
increasing anthropogenic disturbance (βaverage of top 3 models  
= − 0.42 ± 0.19; Fig.  5c). The probability of SCO detec-
tion had a strong negative relationship with increasing 
grass cover (βaverage of top 3 models = − 1.24 ± 0.78; Fig. 5d). 
Additionally, SCO spraint locations appeared to be non-
random and clustered within sites with some adjacent 
stream segments marked with more spraints than others. 
SCO also occurred at more or less regularly spaced sites 
across TOCR, with apparent marked preferences for spe-
cific sites during the dry season.

Group size relationships with multi‑scale habitat
SCO group size was not correlated with sign encoun-
ter rate (r = 0.08, P = 0.79) and the autocorrelation test 
results showed that spatial locations of SCO groups were 
independent (Moran’s Index: −  0.33, z-score: −  1.61, 
P = 0.10), which allowed us to treat locations of group 
activity as unique behavioural locations independent of 
spraint locations. SCO group size decreased significantly 

Fig. 3  Map showing the average predicted probability of smooth-coated otter site use along 60 sites in Tungabhadra Otter Conservation Reserve
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with increasing proportion of sugarcane fields (β = − 
1.74 ± 0.59, R2 = 0.46, F = 8.62, P = 0.01) while it increased 
with grass cover (β = 2.20 ± 1.10, R2 = 0.28, F = 3.96, 
P = 0.074), though only with marginal significance. 
Although insignificant, SCO group sizes increased with 
PC1 (β = 0.54 ±  0.50, R2 = 0.10, F = 1.16, P = 0.31), river 
depth (β = 1.06 ± 0.77, R2 = 0.16, F = 1.86, P = 0.20), and 
river width (β = 1.66 ± 1.17, R2 = 0.16, F = 2.00, P = 0.18) 
while it decreased with island size (β = − 2.21 ± 1.35, 
R2 = 0.21, F = 2.69, P = 0.13) and anthropogenic pressure 
(β = − 1.79 ± 1.18, R2 = 0.18, F = 2.32, P = 0.15; Fig. 6a–g). 
There was virtually no difference in SCO group sizes 
between sites with and without islands (Fig.  7a). Larger 
group sizes were associated with sites having south-
east-flowing streams more so than southwest-flowing 
streams (Fig. 7b), with a similar pattern observed at sites 
with sand banks compared to sites without sand banks 
(Fig. 7c).

Discussion
This study considered high-resolution hydro-environ-
mental characteristics, riparian vegetation, and anthro-
pogenic threats at multiple spatial scales for determining 
the probability of SCO site use and group size patterns 
in a low-elevation, inland river surrounded by a highly 
modified scrub jungle–agriculture matrix in southern 
India. Our study applies a novel empirical method that 
accounts for the spatial dependency in stream survey 
routes covering adjacent segments to assess site use and 
detection probabilities of SCO. Approximately two-thirds 
area of TOCR was intensively used by SCO during the 
dry season when 80% of TOCR was shallow (0.3–2.5 m 
depth) until the monsoon season arrived. SCO spraint 
locations appeared to be non-random and clustered 
within sites with some adjacent stream segments marked 
with more spraints than others. SCO appeared to occur 
at regularly spaced sites across TOCR, though they did 

Fig. 4  Map showing the average probability of smooth-coated otter detection along 180 survey segments in Tungabhadra Otter Conservation 
Reserve
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exhibit marked preferences for spraint deposition as 
“chemical signals” and grouping patterns specific to 
behaviour across the TOCR during the dry season.

Site-specific preferences emphasized the impact of 
certain covariate combinations on SCO habitat utiliza-
tion. Previous studies have shown patterns of site-specific 
preferences for spraint deposition and communal latrine 
sites of otters (Aadrean and Usio 2020; Hussain 1993). 
In several areas of the TOCR, we observed the species’ 
sensitivity to intense anthropogenic pressure, most nota-
bly in the form of solid plastic waste, excessive dynamite 
fishing, and the placement of poaching traps by migrant 
fishermen  and poachers. These traps were placed near 
mass-latrine sites, which are easily recognized by poach-
ers as frequent SCO activity centres. Sand mining was 
observed at nine sites in the middle section of TOCR. 
This mining covered approximately 15% of TOCR and 
is illegally performed near the major cities of Hospet 
and Kampli in Bellary district. The presence of islands 
in a specific length may prove to be a significant influ-
ence since they may offer secure denning locations and 
refugia, especially if they are vegetated and challenging 
to access from the banks (Prakash et  al. 2014; Shenoy 

et  al. 2006). In this study, however, SCO groups with 
more members appeared to avoid larger islands because 
of human pressures. While smaller islands were largely 
devoid of human disturbance, larger islands were heav-
ily utilized for leisure activities by tourists. According 
to other research, SCO were reportedly less sensitive to 
human presence (Anoop and Hussain 2004; Shariff 1985), 
but also have shown to be negatively affected by human 
presence outside and inside protected areas (de Silva 
2011; Juhász et  al. 2013; Khan et  al. 2014; Prenda et  al. 
2001; Shenoy 2003; Shenoy et  al. 2006). It appears that 
the sensitivity of SCO towards human activities varies 
across sites within its range in India.

Otters have a natural preference for emergent tall 
grass along riverbanks since it provides access to dens, 
resting areas, and hidden pathways (Helon et  al. 2004; 
Nawab and Hussain 2012; Newman and Griffin 1994; 
Reed-Smith et al. 2014; Verbeek and Morgan 1978). The 
TOCR lacks both natural and planted woodland vegeta-
tion along the river buffer, leaving only emergent shore-
line grass (mostly Typha angustifolia and Scirpus validus) 
as the only naturally occurring vegetative cover in this 
heavily altered terrain that was frequented by larger SCO 

Fig. 5  Effects of multi-scale covariates on the model-averaged probability of smooth-coated otter site use and detection probability predicted 
by the top-ranked models. Colour shaded areas show 95% confidence intervals. Red dots represent the predicted estimates of SCO use 
and detection probability for each site. Predicted estimates were allowed to vary with the multi-scale covariates under consideration, while other 
explanatory variables present in the model were held at their mean values
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groups as foraging sites. Emergent grass-dominated sec-
tions supported larger SCO groups, though negatively 
influenced SCO spraint detections. Tall-grass cover 
affects the detectability of otter evidence (Kamjing et al. 
2017) such as scat, spraints, and tracks (Jeffress et  al. 
2011). However, the increase in SCO site use for spraint-
ing coincident with the amount of sugarcane fields could 
imply the resemblance of sugarcane to naturally occur-
ring vegetation in TOCR. There were instances when the 
smaller SCO groups were observed resting along the edge 
of the mud bank next to sugarcane fields. Preference of 

river otters Lontra canadensis to sugarcane fields also has 
been recorded in the Florida Everglades, USA (Pearlstine 
et  al. 2005). In peninsular India, observations of SCO 
have been reported in areas of the river that were trans-
formed into sugarcane fields (Pradhan 1996; Sonawane 
et al. 2019). There is little knowledge on how sugarcane 
fields can affect the habitat ecology of small mammals 
associated with riparian habitats (Khan and Abbasi 2015; 
Paolino et al. 2018; Sunil et al. 2011). In our study area, 
among the other croplands, sugarcane fields were distrib-
uted around all nine ancient check dams (anicuts) to fulfil 

Fig. 6  Simple linear regression plots of expected and observed group sizes from univariate models for a proportion of sugarcane fields, b grass 
cover c PC1 d river depth e river width f island size, and g anthropogenic pressure
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high-water demands. Furthermore, the irrigation chan-
nels originating from these anicuts appeared to enhance 
stream connectivity thereby creating suitable movement 
routes for SCO (e.g., Latorre-Cardenas et al. 2021).

Sandbanks are extensively used by otters for groom-
ing and basking and might be a very important feature 
in SCO and other otter habitats (Prakash et  al. 2014). 
These microhabitats help regulate the body tempera-
ture, maintain fur texture, and create bonds among SCO 
group individuals (Basak et  al. 2021). Otters groom by 
rolling over the sand to dry themselves after intermittent 
dives into the water, which is a behaviour that consti-
tutes a large part of their daily activities. Hussain (2013) 
also reported that otters used sand banks extensively 
for marking and grooming, which is consistent with our 
findings that river reaches with substantial sandbank 
habitat supported larger SCO groups. The increasing 
SCO site use for sprainting and a wide range of SCO 
groups in southeast flowing streams was markedly linked 
with the greater sub-basin area. River hydrological con-
ditions such as river direction, flow velocity, and hydro-
morphology have been shown to influence SCO habitat 
use (Khan et al. 2014; Raha and Hussain 2016).

Territoriality by otters carries costs and benefits, which 
are commonly affected by the spatial and temporal abun-
dance, food availability and predictability, and pres-
sure from intruders (Leuchtenberger et al. 2015) to gain 
exclusive access to essential resources (Brown and Ori-
ans 1970; Grant et al. 1992; Kruuk 1992). In TOCR, we 
recorded a much greater relative density of otters (1.32 
individuals/km) than those reported along the Chambal 
and Cauvery rivers in India, which were 0.07 individuals/
km, and 0.57 individuals/km, respectively (Baskaran et al. 
2022; Hussain and Choudhury 1997). SCO group size 
is known to increase with the quality of habitat patches 

(Macdonald 1983), as we reported larger groups using 
small islands and along riverine segments with substan-
tial emergent grassland-dominated cover. Although our 
interpretations of SCO group size relationships are to be 
considered preliminary, it appeared that SCOs use trans-
formed landscapes, even if they represented suboptimal 
habitat conditions. Due to their extensive geographical 
requirements, food specialization, and slow reproduc-
tive rates, these semi-aquatic carnivores are particularly 
sensitive to human disturbances and changes in land use 
(Ripple et al. 2014).

Conclusions
Our study showed that at the landscape-scale, the sug-
arcane-dominated river buffer of TOCR were inten-
sively used by SCO. Although larger sub-basin areas 
are suitable for foraging and sprainting by SCO at the 
landscape scale, anthropogenic activities occurring at 
local scales have negative effects. The breeding females 
during the pup season could be highly sensitive towards 
disturbances from local human activities. Thus, the des-
ignation of TOCR as a Protected Freshwater Reserve 
may not be adequate for the sustainable conservation 
of SCO populations and their habitats. Primarily, the 
upper and lower reaches of TOCR, near the Kampli 
and Anegundi anicuts in particular, contain several 
Indo-Gangetic carps and invasive fish species (Nagab-
hushan 2020). SCO are remarkably adaptable species, 
capable of thriving in heavily modified environments 
like megacities and agricultural landscapes, provided 
there is an abundance of food and effective poach-
ing control measures are in place (Dias et  al. 2022; 
Khoo  et al. 2021). Effective riverine-habitat manage-
ment warrants improvement of riparian habitat qual-
ity for strengthening the riverbank, minimizing human 

Fig. 7  Group size comparisons of SCO between a flow direction, b islands and c sand banks
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activities, reducing soil erosion, and enhancing the 
lateral stability of river channels along the TOCR and 
beyond. In order to sustain SCO populations and other 
freshwater apex predators over the long-term, forest 
department authorities might regulate rampant rock 
and sand mining, especially near holt locations in the 
TOCR. Continuous monitoring, regulating water qual-
ity, and conserving native fish fauna are crucial actions 
to sustain the SCO population, as agricultural land-
scapes pose a potential threat to local fish fauna due to 
the use of chemicals (Bedford 2009). This study war-
rants further understanding of the species’ tolerance 
thresholds in ecotonal habitats along riverine edges as 
well as the extension of SCO and other otter conserva-
tion strategies in multi-land use systems across India. 
Furthermore, educational and awareness programmes 
on the habitat requirements of SCO among local vil-
lagers, fishermen, and riverside communities should be 
undertaken by promoting otters as ambassadors of the 
freshwater ecosystems.

Our study suggested that both local-scale and land-
scape-scale features had strong relationships with SCO 
site use and group size patterns. Cross-scale analyses 
such as these may be further extended to other river-
scapes for other otter species through rigorous field-
collected data on the local-scale habitat coupled with 
high-resolution remote-sensed variables at the land-
scape scale. Our models could assist decision‐makers 
in focusing on limited resources to inform conservation 
and monitoring efforts for all otter species. Accounting 
for correlated detections and their contributing factors 
is essential to avoid biased predictions when building 
habitat use models for freshwater-dependent species. It 
should be taken into consideration that detection prob-
abilities of otters and colonization of new sites may be 
driven by seasonally influenced hydrological dynamics 
(e.g., MacKenzie et  al. 2002) that were not accounted 
for in this study. However, future seasonal surveys 
should emphasize tracking communal latrine sites or 
fresh spraint deposits in order to explain spatiotem-
poral shifts in otter distributions. Our novel modelling 
approach also could be applied towards other otter-
occupied riverscapes using a larger number of sites 
coupled with spatial replicates as river segments within 
the home range (Hines et al. 2010; Thorn et al. 2011).
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