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Abstract 

Background Mixed forests are better than monoculture forests in biodiversity, stand structure and productivity 
stability. However, a more comprehensive assessment of the ecosystem functions of monoculture and mixed planta-
tions is lacking. We compared the single functions and ecosystem multifunctionality (EMF) in Fraxinus mandshurica 
and Larix olgensis mixed plantations with monoculture plantations in Northeast China and discussed the influences 
of biodiversity and environmental factors on EMF.

Results The mixed plantations had higher biodiversity and ecological functions. Biodiversity was significantly higher 
in mixed plantations (such as  CWMMH, Shrub.Shannon, Shrub.Richness, Herb.Shannon, Herb.Richness), but environ-
mental factors differed less among the three forest types, and belowground diversity differed significantly only in the 
Bacterial.Shannon and Fungal.Shannon. Mixed plantations showed significant differences in single ecological func-
tions relative to monoculture plantations, with more pronounced differences between mixed plantations and Larix 
olgensis monoculture plantations. Weighted ecosystem multifunctionality was significantly higher in mixed planta-
tions than in monoculture plantations. EMF was mainly driven by tree diversity, environmental factors, shrub and herb 
species diversity, and soil microbial alpha diversity, which explained 25.35%, 8.94%, 8.83%, and 7.65% of the variation, 
respectively.

Conclusions The establishment of mixed plantations can increase the biodiversity of forest stands and improve 
the ecosystem functions. These results highlight the advantages of multi-species plantations and the neces-
sity of planting them. They are important for the conservation of biodiversity and the sustainable management 
of plantations.
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Introduction
Plantation management is important for global bio-
geochemical cycles and climate change mitigation due 
to the rapid growth, high forest turnover, and extensive 
planted areas (Hua et  al. 2022). Since the 1970s, China 

has promulgated and implemented several forest protec-
tion projects (e.g., the Returning Farmland to Forest Pro-
gram, Three-North Shelter Forest Program, and Natural 
Forest Protection Program), plenty of plantations have 
been planted in a short period. The 2019 9th National 
Forest Resources Inventory indicated a 7.95-million hec-
tare forest plantation area in China, the highest glob-
ally (Administration 2019). However, these plantations 
face some challenges. As a result of the long-term tra-
ditional plantation management mode, many planta-
tions with simple structure and single tree species have 
been formed, resulting in serious problems such as soil 
acidification and soil fertility decline (Wang et al. 2017). 
Meanwhile, biodiversity loss has negatively affected 

*Correspondence:
Lihu Dong
lihudong@nefu.edu.cn
Fengri Li
fengrili@nefu.edu.cn
1 Key Laboratory of Sustainable Forest Ecosystem Management-Ministry 
of Education, School of Forestry, Northeast Forestry University, 
Harbin 150040, Heilongjiang, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13717-024-00525-5&domain=pdf


Page 2 of 13Tian et al. Ecological Processes  (2024) 13:44

forest productivity and ecosystem services (Gurmesa 
et  al. 2023). Nowadays, researchers have attempted to 
establish mixed plantations with multiple tree species 
to improve their biodiversity and ecosystem functions 
(Sande et al. 2017; Yang et al. 2022). Studies on the mul-
tifunctionality of forest ecosystems have traditionally 
focused more on natural forests with mixed species, 
while little attention has been paid to the multifunction-
ality changes in mixed-species plantations (Lwila et  al. 
2021). Therefore, it is important and necessary to study 
the changes in ecological functions and ecosystem multi-
functionality of mixed plantations to achieve sustainable 
management (Xu et al. 2021).

Forest ecosystems can provide a variety of ecological 
functions. Previous studies on plantations have focused 
on single functions, such as carbon sequestration capac-
ity, timber production, nutrient cycling and productivity 
(Ma et al. 2007; Dangal et al. 2017; Luo et al. 2019; Car-
rasco et al. 2022; Wang et al. 2022a; Li et al. 2023b). To 
data, few studies have comprehensively evaluated the 
multifunctionality of plantation ecosystems and their 
influencing factors. As a comprehensive index used to 
evaluate multiple ecological functions, ecosystem mul-
tifunctionality (EMF) is of great significance for com-
prehensively understanding ecosystem structure and 
functions. Therefore, it is necessary to consider the eco-
system function of plantations from various perspectives 
to accurately evaluate the EMF of plantations (Manning 
et  al. 2018; Wang et  al. 2022b; Xu et  al. 2023). The two 
mechanisms through which biodiversity influences EMF 
are selection- and niche-complementarity effects (Men-
sah et  al. 2018; Wang et  al. 2021). The niche-comple-
mentarity effect stipulates that heightened diversity of 
species can improve the efficiency of limited space and 
resource utilization and realize a variety of ecosystem 
functions (Tilman et  al. 1997). However, communities 
with higher species diversity are more likely to have high-
yielding species, which are often the main determinants 
of ecosystem functions (selection effect) (Huston 1997). 
Changes in the environment enhance or decrease ecosys-
tem multifunctionality, but greater ecosystem multifunc-
tionality increases resistance to environmental change 
(Hong et al. 2022; Zhao et al. 2024). Most studies agree 
that ecosystem functions are stronger in communities 
with higher biodiversity, including accumulation of soil 
organic carbon and recycling of nutrients (Inkotte et al. 
2022). Uncertainty exists in the driving of EMF by above-
ground and belowground biodiversity, as species diver-
sity, stand structural diversity, functional characteristics 
of dominant species, and soil microbial diversity affect 
EMF differently, and thus the exploration of the relation-
ship between biodiversity and EMF needs to be further 
strengthened.

The biodiversity of monoculture forests is limited com-
pared to that of natural forests (Hua et  al. 2022). The 
species diversity is more concentrated in understory veg-
etation in monoculture forests, and the herb and shrub 
diversity fulfils a vital role in promoting the EMF (Wei 
et al. 2021). In addition to aboveground biodiversity (spe-
cies diversity, structural diversity, functional diversity, 
and phylogenetic diversity), biodiversity  also includes 
soil microbial diversity (bacterial and fungal alpha diver-
sity) (Soliveres et  al. 2016). Soil microbial communities 
are complex and diverse, which affects the biogeochemi-
cal cycle and plays a key role in ecosystem functions 
(Li et  al. 2023a). Likewise, the relationship between 
microbial diversity and EMF can be positive (Delgado-
Baquerizo et  al. 2016; Cui et  al. 2022), negative (Huang 
et  al. 2024), or neutral (Osburn et  al. 2021), depending 
on the research methods and scale used. Belowground 
biodiversity is closely related to the soil environment. 
For example, soil pH strongly influences microbial com-
position and community structure across soil types and 
at different spatial scales (Zheng et  al. 2019). Addition-
ally, increased soil water content may be associated with 
higher complexity of plant community  structure and 
EMF, which can also explain EMF changes (Li et al. 2021; 
Migliavacca et  al. 2021). Belowground biodiversity and 
soil environment are important for evaluating the EMF 
in plantations because the continuous planting of large 
areas of monoculture forests affects plantation soil fertil-
ity and sustainable management (Zeng et al. 2021; Yang 
et  al. 2022). Therefore, studying only aboveground or 
belowground diversity may lead to bias in EMF assess-
ments (Delgado-Baquerizo et al. 2020).

Larix olgensis monoculture forests have some problems 
in the long term, such as the loss of nutrients leading to 
a decrease in soil fertility and the single species leading 
to a decrease in biodiversity (Yan et al. 2016). In general, 
Fraxinus mandshurica monoculture forests are more 
difficult to establish due to the high mortality of seed-
lings (Wang et  al. 2013). Therefore, the establishment 
of mixed plantations can enhance stand productivity 
and functions of ecosystems (Li et al. 2020b; Feng et al. 
2022). In mixed plantations, the principle of mutualism 
between two species can promote the growth of both 
species (Lwila et  al. 2021). The roots of Fraxinus man-
dshurica improve soil chemical and microbial proper-
ties, thereby increasing soil nutrients (Wang 2002; Yan 
et  al. 2016). This current study analyzed the differences 
between monoculture forests and mixed plantations and 
the correlation between their above- and belowground 
biodiversity, EMF, and environmental factors. Our pri-
mary objectives were to: (1) quantitatively assess  the 
ecosystem multifunctionality of monoculture and mixed 
plantations; (2) identify the differences in environmental 
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factors, ecosystem functions, and biodiversity between 
monoculture and mixed plantations; and (3) clarify the 
associations between environmental factors, biodiver-
sity, and multifunctionality of the ecosystem. We aim to 
evaluate three hypotheses: H1: mixed plantations would 
have higher biodiversity than that of monoculture planta-
tions, especially in terms of shrub-herb and soil microbial 
alpha diversity; H2: compared to monoculture planta-
tions, mixed plantations would increase ecosystem func-
tions; H3: aboveground biodiversity has a greater impact 
on ecosystem multifunctionality than belowground 
biodiversity.

Materials and methods
Site of study
The plantations were established in Shangzhi Forestry 
Bureau in Shangzhi City, Heilongjiang Province, China 
(127° 18′ 0″–127° 56′ 12″, 45° 18′ 16″–45° 35′ 55″). 
The area is a temperate humid continental monsoon cli-
mate zone, with a wet summer, dry spring, and icy winter. 
The mean yearly temperature is 2.8  °C and mean yearly 
precipitation is 723 mm, mainly occurring from June to 
August. The soil is a dark brown forest soil type, and the 
parent material is granite bedrock. Vegetation is catego-
rized as Changbai flora, a typical broad-leaved, conifer-
ous mixed forest in China and natural secondary forest 
and plantation formed by human disturbance. The main 
native tree species are Fraxinus mandshurica, Betula 
platyphylla, Pinus koraiensis, Larix olgensis, and Acer pic-
tum, etc.

Experimental design
The selected plantations were  with same age and same 
initial spacing (2 m × 1.5 m). Larix olgensis and Fraxinus 
mandshurica seedlings were planted in row mixtures. Six 
monoculture L. olgensis plantations (PL), three monocul-
ture F. mandshurica plantations (PF), and six mixed L. 
olgensis–F. mandshurica plantations (LF) were selected 
to set up plots. The area of each plot was 0.09 ha (Table 1) 
and three 10 m × 10 m tree subplots were established in 
each plot. Three 2  m × 2  m shrub, 1  m × 1  m herb, and 
0.5 m × 0.5 m litter subplots were established in each plot, 
respectively. The composition and number of trees in 

each plot with a diameter at breast height (DBH) ≥ 5 cm 
was recorded, and their height and DBH were measured. 
The aboveground biomass (BT) of each tree  species in 
the each plot was estimated according to DBH allometry 
equations for Larix olgensis and Fraxinus mandshurica 
(Xie 2022). Standard sample trees were selected and at 
least 50 intact leaves were collected for leaf functional 
trait measurements. The leaf area was scanned using a 
scanner and calculated using the ImageJ software. The 
specific area of leaves was calculated as: Specific leaf 
area = (leaf area/leaf dry weight) × 100%. The leaves were 
placed into an oven and dried at 80 °C to constant weight, 
and their dry weight was measured.

The species composition, abundance, height, and cov-
erage of shrubs and herbs were investigated. The harvest 
method was used to obtain all the shrubs, herbs, and lit-
ter in the plots, and their fresh weights were measured. 
In the laboratory, samples were dried at 80  °C  to con-
stant weight, and the biomasses of shrubs, herbs, and 
litter (BS, BH, and BL, respectively) were measured. The 
contents of N and C in litter were determined utilizing 
the  K2Cr2O7/H2SO4 oxidation and semimicro-Kjeldahl 
methods, respectively.

Measurements of soil physicochemical properties, soil 
enzymes and microbes
Nine sampling sites were evenly distributed in each 
plot. The 0–10  cm layer of soil was drilled using a soil 
drill (5 cm in diameter). This soil layer was used because 
studies have shown that it is the layer most significantly 
affected by tree species (Augusto et  al. 2002). Compos-
ite samples were evenly mixed and transported to the 
laboratory in a sealed bag. After filtering the samples 
through a 2-mm sieve, they were sub-divided into three 
components. Soil microbial diversity was analyzed at 
− 80  °C, soil enzyme activity was analyzed at − 4 °C, 
and air-dried samples were utilized to measure the soil 
chemical and physical characteristics. Soil water content 
(SWC) and soil bulk density (SBD, g/cm3) were identified 
through the use of the cutting ring method. Soil pH was 
measured using a pH meter. Organic C in soil (SOC, g/
kg) was determined utilizing the  K2Cr2O7/H2SO4 oxida-
tion approach, and total N (TN) in soil was determined 

Table 1 Basic characteristics of the stand types

Note: PL, monoculture Larix olgensis plantation; LF, mixed Larix olgensis –Fraxinus mandshurica plantation; PF, monoculture Fraxinus mandshurica plantation. L, Larix 
olgensis; F, Fraxinus mandshurica.

Stand type Density (trees/ha) Altitude (m) Canopy density Species Age (yrs) Mean DBH (cm) Mean height (m)

PL 2207 ± 170 369 0.75 L 23 12.16 ± 0.44 13.71 ± 1.14

LF 1861 ± 284 408 0.70 L 22 13.22 ± 0.62 15.00 ± 0.69

F 22 12.31 ± 0.25 15.36 ± 1.08

PF 1996 ± 223 395 0.75 F 21 10.89 ± 0.51 13.70 ± 0.66
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utilizing the semimicro-Kjeldahl method. Density of 
organic  C in soil (SOD, g/m2) was calculated using the 
following formula:

where i represents the layer of soil, Hi indicates depth of 
soil sample, and Gi represents the proportion (%) of soil 
consisting of gravel > 2 mm in diameter.

Soil enzyme activities, including those of N-acetylglu-
cosaminidase (NAG), β-glucosidase (GC), and acid phos-
phatase (ACP), in the samples were identified using the 
double-antibody sandwich approach. Solid-phase anti-
bodies were prepared by coating a microporous plate 
with purified NAG, GC, or ACP antibodies. NAG, GC, 
or ACP were applied to the coated monoclonal antibody 
micropores, following which horseradish peroxidase 
(HRP)-labeled NAG, GC, or ACP antibodies were added 
to form a complex of antibody-antigen-enzyme-labeled 
antibodies. Subsequent to comprehensive washing, the 
3,3′,5,5′-tetramethylbenzidine (TMB) substrate was 
included for coloration. TMB color transitions to blue 
under HRP enzyme catalysis and finally to yellow under 
acid action. Color depth shows positive relationships to 
NAG, GC, and ACP activity in the sample. Absorbance 
(OD) was determined using an instrument for enzyme 
labeling at 450 nm, and the activity of NAG, GC, or ACP 
was identified using a standard curve.

Microbial community total DNA was extracted using 
the E.Z.N.A.® Soil DNA kit (Omega Bio-tek, Norcross, 
GA, USA). Quality of the extracted DNA was deter-
mined using 1% agarose gel electrophoresis, and the 
concentration and purity of DNA was determined using 
a NanoDrop2000 spectrophotometer. The primers 338 
(5′-ACT CCT ACG GGA GGC AGC AG-3′) and 806R 
(5′-GGA CTA CHVGGG TWT CTAAT-3′) were applied 
for PCR amplification of the V3-V4 region of the 16S 
rRNA gene, and ITS1F (5′-CTT GGT CAT TTA GAG GAA 
GTAA-3′) and ITS2R (5′-GCT GCG TTC TTC ATC GAT 
GC-3′) were utilized. PCR products of the same sam-
ple were mixed, following which a 2% agarose fluorom-
eter, purified using an AxyPrep DNAGel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) was used 
for recovery, 2% agarose gel electrophoresis was used for 
identification, and a Quantus agarose fluorometer (Pro-
mega, USA) was used for quantification. The present 
study utilized a NEXTFLEX Rapid DNA-Seq Kit to con-
struct the library. Shanghai Majorbio Biopharm Technol-
ogy (Shanghai, China) performed the sequencing using 
an Illumina MiSeq PE300 platform. Within sequenc-
ing, the original sequence was regulated using the Fastp 
software and spliced using the Flash software. Then, 
the Uparse software package was used to cluster the 
sequences by OTUs (operational taxonomic units), and 

(1)SOD = SOCi × SBDi ×Hi × (1− Gi)/100

chimerism was eliminated according to the 97% similar-
ity threshold. Fungi and bacteria were identified based on 
using the Silva 16S rRNA (v138) and UNITE/QIIME ITS 
datasets, respectively. The RDP Classifier was utilized 
to annotate the representative sequences of OTU in the 
species taxonomy, and the threshold of confidence was 
set at 0.7. The results of the annotation of species tax-
onomy were obtained. Alpha diversity was evaluated by 
diversity and richness indices (Chao1, Shannon–Wiener, 
and ACE).

Evaluation of biodiversity
As only one or two species were studied, tree diversity 
was characterized by the weighted average of the DBH 
coefficient of variation  (CVD), specific leaf area (SLA), 
and maximum tree height (MH). The Simpson diver-
sity  (D), species richness  (R), Shannon–Wiener diver-
sity  (H), and Pielou’s evenness indices  (J) were used 
to characterize the shrub (abbreviated as S.Simpson, 
S.Shannon, S.Richness, and S.Pielou, respectively) and 
herb layer species diversity (abbreviated as H.Simpson, 
H.Shannon, H.Richness, and H.Pielou, respectively). The 
Shannon, ACE, and Chao1 indices were used to charac-
terize the soil bacterial (B.Shannon, B.Ace, and B.Chao, 
respectively) and fungal alpha diversity (F.Shannon, 
F.Ace, and F.Chao, respectively).

The following equations were used for the calculations:

where SDD is standard deviation of DBH, MeanD is aver-
age value of DBH, CWM is community trait of species 
i, BAi is relative basal area of species i, Traiti is trait value 
of i species, n is the number of species in the community, 
S is number of species, Pi is the proportion of the number 
of individuals of species i to the total number of individu-
als in the community.

Quantification of multifunctionality
The weighted multifunctionality is calculated according 
to Manning et al. (2018). When calculating the EMF, we 

(2)CVD = SDD/MeanD × 100%

(3)CWM =

n

i=1
BAi × Traiti

(4)R = S

(5)H = −

∑
PilnPi

(6)D = 1−

∑
Pi

2

(7)J = H/lnS
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selected as many different types of functions as possible 
to represent the overall function of the ecosystem. Eight 
forest functions related to aboveground and belowground 
processes were quantified to represent the ecosystem 
multifunctionality: tree biomass (BT), shrub biomass 
(BS), herb biomass (BH), litter biomass (BL), N-acetyl-
glucosaminidase (NAG), β-glucosidase (GC), acid phos-
phatase (ACP), and soil organic carbon density (SOD). 
These parameters are closely linked to the productivity, 
soil carbon storage, and nutrient cycling in forest ecosys-
tems. However, the selected functions may be correlated, 
and overweighting some functions may lead to deviation. 
Pearson correlation analysis was performed after stand-
ardizing the eight function variables with Z-score trans-
formation, and it showed highly correlated variables. 
(Fig. 1). Therefore, the converted variables were analyzed 
using hierarchical clustering analysis, and clustering sub-
sets were determined (Fig. 2). Each clustering subset was 
assigned the same weight (for example, the weight of BH 
is 1, and the weight of BS, SOD, NAG, GC is 0.25), and 
the weighted average multifunction index was calculated.

Statistical analyses
Differences in ecosystem functional, environmental, 
and diversity variables between monoculture and mixed 
plantations were assessed using ANOVA (one-way 
analysis of variance). Logarithmic conversion is per-
formed for data that does not obey the normal distribu-
tion. Correlations among variables were assessed using 
Pearson’s correlation analysis. Principal component 

analysis (PCA) was used to reduce the dimensions 
of shrub and herb species diversity and soil microbial 
alpha diversity, and the first two principal components 
with the highest interpretation were retained as com-
prehensive indicators of shrub and herb species diver-
sity (SH1, SH2) and soil microbial alpha diversity (BF1, 
BF2). Among them, SH1 and SH2 explained 46.6% and 
31.4% of the total variance, and BF1 and BF2 explained 
68.7% and 20.5% of the total variance, respectively. 
Univariate linear regression was utilized to analyze the 
association between EMF and various factors. Multi-
ple linear regression was applied to analyze the effects 
of environmental and diversity variables on EMF, and 
variation partitioning analysis (VPA) was applied to 
identify the explanation rate of various variables to 
ecosystem multifunctionality. Statistical analysis was 
carried out and drawings were made using the R4.2.2 
software.

Results
Environmental and diversity characteristics
The SWC and C:NL of PF were significantly higher 
than those of LF and PL. The pH of PL was significantly 
lower than that of LF and PL. The C:NS and  CWMSLA 
were not significantly different among the different 
plantations. The  CWMMH of LF was significantly higher 
than that of PF and PL. The  CVD of PL was significantly 
higher than LF and PF.

The S.Shannon, S.Richness, H.Shannon, H.Richness 
of LF were significantly higher than PF and PL. The 
S.Pielou, H.Simpson were not significantly different 
among the different plantations.

The B.Ace, B.Chao, F.Ace, F.Chao were not signifi-
cantly different among the different plantations. The 
B.Shannon of LF and PF was significantly higher than 

Fig. 1 Pearson correlation analysis of ecosystem functions. BT: tree 
biomass, BS: shrub biomass, BH: herb biomass, BL: litter biomass, NAG: 
N-acetylglucosaminidase, GC: β-glucosidase, ACP: acid phosphatase, 
SOD: soil organic carbon density

Fig. 2 Cluster analysis of ecosystem functions. Explanations of all 
abbreviations are the same as Fig. 1
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PL. The F.Shannon of LF was significantly higher than 
that of PF and PL (Table 2).

Single and multiple ecosystem functions
The single-function value of the mixed plantations 
mostly exceeded that of the monoculture plantations. 
For example, the BT, BH, BS, and GC in LF significantly 
exceeded that in PF and PL (p < 0.05; Fig. 3). BL and ACP 
in PL significantly exceeded PF and LF, and SOD was sig-
nificantly higher in PF than in PL and LF (p < 0.05; Fig. 3). 
For NAG, there were no differences among the three 
stand types.  To better integrate the eight single ecosys-
tem functions and evaluate EMF, the weighted average 
method was used. The results showed that LF resulted 
in significantly increased weighted multifunctionality 
(p < 0.05, Fig. 3).

Predictors of weighted ecosystem multifunctionality
The relationship among the functions of a single ecosys-
tem, its diversity, and environmental factors is complex. 
In the present study, the results of the bivariate relation-
ship analysis between multifunctionality, diversity, and 
environmental factors showed multifunctionality had 
a positive correlation with SWC,  CWMMH, C:NS, SH1, 
and SH2, among which a significant correlation occurred 
only with SH1, as well as a negative correlation with pH, 
 CWMSLA,  CVD, C:NL, BF1, and BF2, among which a sig-
nificant relationship occurred with  CWMSLA,  CVD, and 
BF2 (Fig. 4).

VPA and multiple linear regression were used to ana-
lyze the effects of biodiversity and environmental factors 
on ecosystem multifunctionality. Our results showed that 
EMF was negatively correlated with pH,  CWMSLA,  CVD, 
C:NL, and BF2 (Fig. 5) and positively correlated with SH1. 
However, it had no significant correlations with the other 
variables.

On average, 50.8% of the observed total variation was 
explained, with EMF driven mainly by tree diversity, 
environmental factors, shrub and herb species  diver-
sity, and soil microbial alpha diversity, which explained 
25.35%, 8.94%, 8.83%, and 7.65% of the variation, respec-
tively (Fig. 5). Among these,  CWMSLA and  CVD were sig-
nificantly negatively related to EMF, the diversity of soil 
microbes was negatively related to EMF, shrub and herb 
species diversity was positively related to EMF, and C:NL 
and pH were negatively related to EMF.

Discussion
Environmental and diversity characteristics
In Northeast China, Larix olgensis is often chosen to be 
mixed with Fraxinus mandshurica to improve stand sta-
bility and achieve more forest ecosystem functions. Our 

Table 2 Environmental and diversity factors of different stand 
types

The data are shown as average ± standard errors. The differing letters of one 
row represent significant differences between different stand types (p < 0.05). 
The data are shown as average ± standard error. The differing letters of one 
line represent a significant difference between different plantation types 
(p < 0.05). LF: Mixed F. mandshurica and L. olgensis plantation; PF: monoculture F. 
mandshurica plantation; PL: monoculture L. olgensis plantation; SWC: Soil water 
content; C:NS: ratio of C to N in soil; C:NL: ratio of C to N in litter;  CWMSLA: average 
community-weighted specific area of leaves;  CWMMH: average community-
weighted maximum height;  CVD: DBH coefficient of variation; S.Shannon: Shrub 
Shannon–Wiener index; S.Simpson: Shrub Simpson index; S. Pielou: Shrub Pielou 
index; S.Richness: Shrub Species Richness; H.Shannon: Herb Shannon–Wiener 
index; H.Simpson: Herb Simpson index; H. Pielou: Herb Pielou index; H.Richness: 
Herb Species Richness; B.Shannon: Bacterial Shannon–Wiener index; B.Ace: 
Bacterial Ace index; B.Chao: Bacterial Chao index; F.Shannon: Fungal Shannon–
Wiener index; F.Ace: Fungal Ace index; F.Chao: Fungal Chao index

LF PF PL

Environmental factor

 SWC (%) 28 ± 5b 34 ± 1a 30 ± 4b

 pH 6.19 ± 0.10a 6.14 ± 0.16a 5.81 ± 0.36b

 C:NS 10.64 ± 0.61a 10.79 ± 0.19a 10.69 ± 0.43a

 C:NL 29.91 ± 6.79b 41.94 ± 5.24a 32.26 ± 7.58b

Tree species diversity

  CWMSLA 
 (cm2/g)

185.28 ± 30.27a 173.92 ± 37.53a 166.53 ± 33.80a

  CWMMH 
(m)

18.69 ± 0.76a 17.38 ± 0.41b 17.59 ± 1.05b

  CVD (%) 21.29 ± 4.01b 23.74 ± 5.37b 27.50 ± 4.45a

Shrub and herb species diversity

 S.Shan-
non

1.57 ± 0.29a 1.22 ± 0.47b 0.82 ± 0.42c

 S.Simp-
son

0.72 ± 0.10a 0.61 ± 0.18ab 0.48 ± 0.21b

 S.Pielou 0.81 ± 0.10a 0.75 ± 0.12a 0.77 ± 0.28a

 S.Rich-
ness

7.11 ± 1.63a 5.50 ± 2.18b 3.11 ± 1.52c

 H.Shan-
non

0.99 ± 0.58a 0.35 ± 0.18b 0.68 ± 0.41b

 H.Simp-
son

0.46 ± 0.27a 0.17 ± 0.09a 0.41 ± 0.25a

 H.Pielou 0.58 ± 0.26ab 0.34 ± 0.11b 0.70 ± 0.36a

 H.Rich-
ness

5.06 ± 2.25a 1.88 ± 1.05b 1.83 ± 1.12b

Soil microorganism alpha diversity

 B.Shan-
non

6.35 ± 0.11a 6.29 ± 0.10a 6.09 ± 0.30b

 B.Ace 3456.35 ± 227.16a 3322.31 ± 64.18a 3050.55 ± 282.82a

 B.Chao 3342.56 ± 143.99a 3241.36 ± 143.99a 2996.07 ± 287.11a

 F.Shan-
non

4.99 ± 0.13a 4.80 ± 0.12b 4.71 ± 0.26b

 F.Ace 1266.87 ± 213.17a 1260.25 ± 202.69a 1164.71 ± 225.30a

 F.Chao 1290.25 ± 213.17a 1266.67 ± 196.86a 1158.94 ± 218.29a
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study showed that mixed plantations are superior to 
monoculture forests in species diversity and soil nutri-
ents, supporting the findings of studies on other forest 
ecosystems showing that the establishment of mixed 
plantations can improve the quality of monoculture for-
ests (Williams et al. 2017; Huang et al. 2018; Yang et al. 
2023). Furthermore, our results showed that the above-
ground and belowground diversities of mixed planta-
tions exceeded those of monoculture forests. These 
results partially supported our hypothesis H1. The results 
are similar to some previous  studies. For example, Ran-
driamananjara et  al. (2023) compared the understory 

vegetation of hybrid poplar and spruce monocultures 
and mixed plantations in the northern forest region of 
southern Quebec. It was found that the mixture of hybrid 
poplar and spruce could maximize the diversity of under-
story vegetation, because the mixed plantation was bene-
ficial to the establishment of some understory vegetation 
species. Changes in biodiversity are mainly related to the 
complementary niche effects (Huang et al. 2018). Specifi-
cally, forests with complex structures increase the utili-
zation of light and space resources by trees and promote 
niche complementarity of species in the forest (Gough 
et al. 2019; LaRue et al. 2019).

Fig.3 Eight ecosystem functions of different plantation types and weighted multifunctionality of the different types of plantation. Data are shown 
as average ± standard error. The differing letters represent significant difference between different stand types (p < 0.05). BT: biomass of trees; BH: 
biomass of herbs; BS: biomass of shrubs; BL: biomass of litter; NAG: N-acetylglucosaminidase; GC: β-glucosidase; ACP: Acid phosphatase; SOD: Soil 
organic carbon density
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Mixed plantations promote higher diversity and rich-
ness by providing a heterogeneous undergrowth environ-
ment that affects microbial community structure (Chen 
et al. 2019). Soil microbial diversity (fungal and bacterial 
alpha diversity) of the mixed plantations exceeded that of 
the monoculture plantations, but only the Shannon indi-
ces of bacteria and fungi significantly exceeded those of 
the monoculture plantations. No significant differences 
were noted in the remaining microbial diversity indices. 
Ding et al. (2023) found no significant differences in the 
soil bacteria alpha diversity when studying changes in soil 
microbial communities in monoculture Cunninghamia 
lanceolata plantations and mixed plantations. Previous 
results showed that differences in the soil microbial com-
munity were related to soil carbon and nitrogen cycling 
(Pereira et al. 2019). Rivest et al. (2019) studied the effect 
of tree diversity on soil microbial diversity in Quebec 
and show that trees are not a strong driving force of soil 
biodiversity, as soil characteristics such as pH and total 
nitrogen are more important than vegetation in shaping 
soil microbial community composition. Soil microbes 
play important roles in soil N and C cycles (Zhang 
et  al. 2019b). Mixture of tree species may enhance soil 
bacterial community stability by increasing bacterial 

phylogenetic diversity (Zhang et al. 2019a). The soil pH of 
the mixed plantations significantly exceeded that of the 
monoculture plantations, consistent with the results of 
previous studies (Ding et al. 2023; Xu et al. 2023). Litter is 
a key factor affecting soil nutrients (Liu et al. 2023). After 
litter decomposition, plant residues with high nitrogen 
enter the soil, which inhibits nitrifying bacteria activity 
and promotes the ammonization of mineral nitrogen, 
thus increasing the pH (Xu et al. 2006). The  CWMMH of 
the mixed plantations significantly exceeded monocul-
ture plantations, and crown stratification was the key fac-
tor in niche separation, which led to the complementary 
utilization of resources and ensured species coexistence. 
Tree species with elevated  CWMSLA usually show strate-
gies of resource acquisition, and their leaves have higher 
resource acquisition and growth rates, higher water and 
nutrient use efficiencies, and characteristic values related 
to productivity (Qin and Shangguan 2019).

Single and multiple ecosystem functions
When compared to monoculture plantations, the single 
functions of mixed plantations were greatly improved, 
with BH, BS, and GC being significantly greater, but the 
BL of mixed plantations is not significantly higher than 

Fig. 4 Relationships between forest ecosystem multifunctionality (Z-scores) and environmental factors (SWC: soil water content, C:NS: ratio of C 
to N in soil, C:NL: ratio of C to N in litter, pH: Soil pH), biodiversity  (CWMSLA: average community-weighted specific leaf area,  CWMMH: average 
community-weighted maximum height,  CVD: DBH coefficient of variation, SH1, SH2: Two principal components of shrub and herb species diversity, 
BF1, BF2: Two principal components of soil microbial alpha diversity)
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that of any monoculture plantations. This result posi-
tively supports our hypothesis H2. Studies have shown 
that Eucalyptus monoculture  plantations in Brazil have 
a limited ability to provide ecosystem functions and 
biodiversity conservation (Bellink and Verburg 2023). 
The biomass and biodiversity of understory vegetation 
in mixed forests are greater than those in monoculture 
forests, while the biomass of the trees remains compa-
rable, possibly because of the relatively weak interac-
tions among tree species in young forests. However, as 
forest stands mature, interactions between species and 
canopy strengthen, resulting in significant differences 
in stand biomass (Grossiord et  al. 2013). Different tree 
species compositions will result in varying degrees of 
canopy structure complexity. Forest structural diversity 
can increase species diversity and aboveground biomass 
accumulation by optimizing the allocation of interspe-
cific resources and increasing the capacity of vegetation 
to obtain and utilize light (Yuan et al. 2020). Niche com-
plementary effects are produced among multiple species 
and promote the utilization of resources and improve 
stand productivity. In the present study, the single below-
ground function of the mixed plantations changed. For 
example, for enzymes participating in soil nitrogen, 

phosphorus, and carbon cycles, except for NAG, the 
GC of the mixed plantations significantly exceeded the 
monoculture plantations, whereas the ACP of the mixed 
plantations was significantly lower than that of the mono-
culture plantations. SOD in PF significantly exceeded LF 
and PL. This may be because of the indecomposable nee-
dles in the litter of mixed plantations, making it harder to 
decompose than the litter of PF (Guo et al. 2021). Also, 
in mixed plantations, the roots of different species may 
occupy different soil layers over time, resulting in more 
efficient use of soil nutrients and water resources (Li et al. 
2020a).

The averaging method is the main method used to eval-
uate the ecosystem functions and can analyze changes in 
single ecosystem functions (Maestre et  al. 2012; Byrnes 
et al. 2014; Chen et al. 2020). Here, weighted multifunc-
tionality demonstrated that the EMF of the mixed planta-
tions significantly exceeded the monoculture plantations. 
This was consistent with most previous studies showing 
in relation to monoculture plantations, mixed plantations 
can provide more ecosystem functions (Xu et  al. 2021). 
However, not all mixed plantations can enhance the 
EMF; this depends on the tree species (Li et  al. 2022b). 
The mixture of two coniferous species (Norway spruce 

Fig. 5 Influences of diversity and environmental factors on ecosystem functions. The figure shows the average parameter estimates of model 
predictors (normalized regression coefficients), relevant 95% confidence intervals, and proportional importance of each factor shown as the % 
of variance explained. After model adjustment, the R2 and p values of each predictor were *p < 0.05; **p < 0.01; ***p < 0.001
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and Scots pine) did not exhibit significant mixing effects 
(Blaško et  al. 2020). This indicates that selecting appro-
priate mixtures of tree species is crucial for enhancing 
the EMF. Compared to L. olgensis monoculture planta-
tions, F. mandshurica monoculture plantations have 
higher soil nutrient contents and biodiversity. Our study 
showed that the establishment of L. olgensis–F. mand-
shurica mixed plantations can improve the ecosystem’s 
ecological functions, which should be considered in the 
establishment of mixed plantations in the future.

Predictors of weighted ecosystem multifunctionality
Improving the EMF is the key objective in establishing 
a mixed plantation. In different ecosystems, the driving 
factors of EMF differ, and maintaining a higher level of 
EMF requires multiple driving factors. We analyzed the 
importance of biodiversity and environmental factors 
in driving the EMF in monoculture and mixed planta-
tions. The results showed that EMF was most strongly 
affected by tree diversity, followed by environmental 
factors, soil microbial alpha diversity, and shrub and 
herb species diversity, consistent with our hypoth-
esis H3. Generally, high trophic level diversity is a key 
driver of forest ecosystems (Schuldt et  al. 2018; Luo 
et al. 2022). In plantations, tree species composition is 
relatively simple, and species diversity is concentrated 
in the understory vegetation layer. We found that niche 
complementary effects and mass ratio hypothesis have 
a synergistic effect on the EMF (Xu et al. 2023). In envi-
ronments with limited resources, gradually-growing 
conservative species (such as those with a small spe-
cific leaf area and elevated content of leaf dry matter) 
determine the high biomass of stands and promote the 
ecological function of forests (Ali and Yan 2017). How-
ever, not only can species diversity affect the EMF, but 
the relationship between them is more complex, which 
can promote ecosystem functions by promoting envi-
ronmental change and biodiversity (Hong et  al. 2022). 
The C:NL ratio reflects the litter decomposition rate 
and drives the changes in soil nutrients (Zhang et  al. 
2019b). Changes in soil  pH determine the diversity of 
soil microorganisms, which is negatively correlated 
with EMF (Li et al. 2020b). They are also key indicators 
that affect the EMF (Ouyang et al. 2023). Fungal alpha 
diversity is more important than bacterial alpha diver-
sity in maintaining EMF (Ouyang et  al. 2023; Wang 
et al. 2023). This may be related to the increase in fun-
gal diversity, which not only accelerates litter decom-
position but also leads to an increase in saprophytic 
and pathogenic fungi, thus affecting forest growth (Li 
et  al. 2022a). Also, maximum height is an important 
index of light capture ability and interspecific compe-
tition. The positive correlation between the  CWMMH 

and EMF suggested that the selection effect plays an 
important role in increasing the EMF of monoculture 
and mixed plantations (Ouyang et  al. 2023). The rela-
tively high complexity of stand structures can improve 
the efficient use of resources and space, especially the 
biodiversity and productivity of species in the forest, 
because it affects light availability and absorption (Ali 
2019). Notably, EMF is often driven by both biological 
and abiotic factors; thus, it is worth exploring to com-
prehensively consider the joint effects of aboveground 
and belowground biodiversity and environmental fac-
tors (Zhang 2023). In addition, weighing more forest 
functions rather than just considering wood production 
would be more beneficial for EMF during plantation 
planting and management (Yuan et al. 2020).

Conclusions
In this study, we found that mixed plantations have 
higher understory biodiversity. In addition, mixed planta-
tions can effectively alleviate the problem of soil acidifi-
cation present in monoculture Larix olgensis plantations, 
accelerate litter decomposition rates, and improve soil 
nutrient contents. The establishment of mixed planta-
tions can increase the biodiversity of forest stands and 
improve the ecosystem function. Biodiversity is the main 
reason for the multifunctionality of ecosystems. These 
results show the advantages of multi-species mixed 
plantation and the necessity of planting. In contrast to 
monoculture plantations, the establishment of mixed 
plantations can improve the ecological functions of forest 
ecosystems and enhance stand stability, which is impor-
tant for forests to cope with climate change. Therefore, 
suitable mixed tree species should be selected when 
establishing plantations. When assessing the effects of 
tree species mixtures, the influence of both aboveground 
and belowground biodiversity and environmental factors 
on enhancing EMF should be considered.
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