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Abstract 

Bcakground Soil respiration (Rs), as the second largest  CO2 emissions of terrestrial ecosystems, is sensitive to distur-
bance and consequent environmental changes. Mowing is strategically implemented as an management approach 
and has the potential to influence carbon cycling in meadow steppes. However, it remains unclear how and why Rs 
and its heterotrophic (Rh) and autotrophic (Ra) components respond to consecutive mowing and associated ecologi-
cal consequences. Here, we conducted a field mowing experiment in a meadow steppe in 2018 and monitored Rs, 
Rh, and Ra from 2019 to 2022.

Results We observed a significant reduction in Rs by 4.8% across four years, primarily attributed to a decrease 
in Rh. This decline in Rs intensified over time, indicating an accumulative effect of mowing. In addition, mowing 
induced an generally increasing Ra/Rs ratio over the experimental years with a simultaneous increase in the ratio 
of belowground to aboveground biomass (BGB/AGB). Furthermore, structural equation modeling results 
revealed that the decline in Rs was largely ascribed to reduced microbial biomass carbon (MBC) under mowing, 
while the increased Ra/Rs was primarily explained by the enhanced BGB/AGB. Partial regression analysis suggested 
that the biotic factor of microbial biomass dominated changes in soil respiration induced by mowing rather than abi-
otic soil temperature.

Conclusions Our findings showed that consecutive mowing decreased Rs and raised Ra/Rs in meadow steppe 
by decreasing plant biomass and altering the proportion of biomass allocation. This observed decline in Rs would 
help to reduce  CO2 concentration in atmosphere as well as alleviate global warming. However, considering the con-
current lower microbial biomass, the potential positive impacts of mowing on climate and ecosystem function should 
be reevaluated in future grassland management practices.
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Introduction
Grassland covers approximately 40% of the world’s land 
and stores 30% of the world’s soil carbon (Raich et  al. 
2002; Dlamini et al. 2016). The massive soil carbon stor-
age plays an important role in regulating carbon exchange 
between the atmosphere and the earth’s surface (Raich 
et al. 1992; Carey et al. 2016; Mou et al. 2024). Most of 
global grasslands have experienced human disturbance 
and management (Bardgett et al. 2021; Zhang et al. 2024). 
Mowing, as a common management practice, is strategi-
cally implemented to maintain the balance between veg-
etation growth and herbivore consumption in grasslands 
and therefore has a potential impact on grassland carbon 
cycling (Detling 1998; Pykälä 2000; Erb et  al. 2017; Gil-
mullina et al. 2023). Soil respiration (Rs) is second of the 
largest carbon fluxes between terrestrial ecosystems and 
the atmosphere and is sensitive to disturbance (Raich 
et al. 1992; Lei et al. 2021). Thus, exploring changes in Rs 
and their underlying mechanisms in response to mowing 
would improve our understanding of grassland carbon 
cycling.

Over the past two decades, a growing body of research 
has demonstrated that mowing has an impact on Rs 
through abiotic and biotic pathways (Wan et  al. 2002; 
Garavani et  al. 2023; Kohler et  al. 2024). By harvesting 
vegetation, mowing generally exposes soils to direct sun-
light and increases evaporation, raising soil temperature 
and reducing soil moisture. However, the effect of mow-
ing on Rs varies inconsistently depending on its impacts 
on soil temperature and moisture. For example, the 
removal of vegetation and subsequent increased expo-
sure to sunlight can elevate soil temperature, inhabiting 
root growth and decreasing Rs in water-limited tem-
perate steppe. Additionally, mowing can enhance soil 
moisture by decreasing evapotranspiration, leading to 
increased Rs in semi-arid grassland ecosystems (Wang 
et al. 2016).

Apart from soil abiotic factors, mowing also affects 
Rs through biological processes. Specifically, mowing 
directly removes plant biomass available for decomposi-
tion and disrupts the natural decomposition processes, 
leading to lower Rs rates compared to unmanaged 
grasslands (Wan et al. 2005; Simpson et al. 2012; Zhang 
et  al. 2023). Moreover, this disruption of decomposi-
tion potentially decreases nutrient availability, exerting 
a negative effect on plant growth and Rs (Heet al. 2021; 
Zhang et  al. 2022). On the other hand, mowing aids in 
improving plant biomass, microbial activity and seed ger-
mination by enhancing sunlight exposure to promote Rs 
(Bush and Van Auken 1995; Luo et al. 2021). Moreover, 
mowing can lead to a reduction in plant diversity (Chiste 
et al. 2018; Zhao et al. 2022). The reduced plant diversity 
can decrease Rs because different plant species exhibit 

different contributions on  CO2 emission (Busch et  al. 
2018; Zhu et  al. 2020; Moulin et  al. 2021). Given these 
contradictory results and complex ecological processes, 
it remains unclear how and why mowing influences Rs in 
grassland ecosystems.

Rs consists of heterotrophic (Rh) and autotrophic (Ra) 
components according to the differences in mechanism 
processes and carbon resources (Bhupinderpal‐Singh 
et  al. 2003; Ren et  al. 2018; Nissan et  al. 2023). Rh is 
involved in microbial decomposition of organic mat-
ter, producing  CO2 as a byproduct while Ra is the pro-
cess by which plants and other photosynthetic organisms 
release  CO2 during cellular respiration (Hanson et  al. 
2000; Bond-Lamberty et  al. 2004; Han and Zhu 2021). 
Mowing has been reported to exert different influences 
on Rh, Ra, as well as the proportion of these two compo-
nents across various grassland ecosystems. For example, 
mowing could promote Rh and subsequent Rh/Rs due to 
the increased soil temperature and microbial activities in 
alpine meadow (Yan et  al. 2022a, b) or tallgrass prairie 
(Zhou et  al. 2007). By contrast, mowing could suppress 
Rh owing to the reduced substrate supply in semi-arid 
grassland (Zhang et  al. 2022). Moreover, mowing had 
no effect on Rh and therefore had no effect on Rh/Rs 
(Li et al. 2013). The differences in Rs response to mow-
ing might associate with mowing practice duration. Spe-
cifically, on the one hand, short-term mowing has been 
reported to not alter soil microenvironment and conse-
quently has no impact on Rs (Francioni et al. 2020). On 
the other hand, Rs can be changed by alteration in plant 
biomass or nutrients (Du et al. 2018; Mao et al. 2023) or 
continuous loss of plant litter owing to long-term mow-
ing (Hassan et al. 2023). However, we still lack an under-
standing of how Rh and Ra contribute to changes in Rs 
in response to consecutive mowing and the underlying 
mechanisms. Hulunbuir grassland is an important part 
of the Eurasian continent and performs important pas-
toral and ecological functions. Mowing has become a 
local management approach to store feed for livestock 
(Pongratz et al. 2018; Yang et al. 2020). Here, we aim to 
address the following three questions: (1) How does 
consecutive annual mowing influence Rs and what are 
the underlying mechanisms? (2) Whether annual mow-
ing has consistent effects on the two components of Rh 
and Ra and affects their relative contributions to Rs? (3) 
Would the impact of annual mowing on Rs change over 
time?

Materials and methods
Site description and experimental design
This study was conducted at the National Hulunber 
Grassland Ecosystem Observation and Research Station, 
Chinese Academy of Agricultural Sciences (49°23′13″N; 
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120°02′47″E, 628 m a.s.l.). The study site is characterized 
by a mean annual temperature of 2.4 °C and mean annual 
precipitation (MAP) of 390 mm, with the growing season 
from May to September. The soil is classified as Chestnut 
soil. Vegetation is dominated by Leymus chinensis, Stipa 
baicalensis, Cleistogenes squarrosa, Poa pratensis, and 
Vicia amoena.

The experiment was a part of the multi-factor experi-
ment conducted in the Hulunber Grassland Ecosystem 
in 2018. Twenty 5  m × 6  m blocks were allocated into 4 
rows and 5 columns with an interval buffer of 2 m. Each 
block was split into mowing and control plots with a 1 m 
buffer zone. Mowing was performed in the middle of 
August with peak plant biomass each year using a light 
lawn mower (Yard-Man 160CC, USA). We performed 
mowing twice on May 30 and August 15, 2018. After 
that, the mowing was applied once in mid-to-late August 
each year (Fig. S1). The height of the mowing stubble was 
5  cm. In addition to mowing, five simulated precipita-
tion regimes including unchanged precipitation were also 
applied in every block. Therefore, we had 40 plots with 10 
treatments with 4 replicates. We obtained measurements 
only in the 4 blocks with unchanged precipitation.

Measurements of Rs and its components
Rs was divided into Rh and Ra by the method described 
by Luo et al. (2001). In each plot, two PVC collars (inner 
diameter 11 cm, height 5 cm) were permanently inserted 
into the soil at a depth of 2–3  cm at the two opposite 
corners to measure soil respiration. In addition, the 
other two deep PVC collars were inserted into 20 cm to 
exclude plant roots to measure microbial Rh given that 
more than 90% of plant roots were distributed in the top-
soil of 20  cm (Jobbagy and Jackson 2021). Ra was then 
calculated by subtracting Rh from Rs. Plants in the col-
lars were clipped to the ground level the day before we 
measured respiration to eliminate the aboveground plant 
respiration during the measurement. Rs was measured 
using a portable, automated soil C flux system (Li-8100A, 
Li-Cor Biosciences Lincoln, NE, USA) during consecu-
tive four years (2019–2022). The measurements were 
taken between 8:30 am and 11:30 am (local time). From 
2019 to 2022, Rs was measured at least twice a month 
in June, July, and August during the growing season. 
The measurement of Rs was lack in June 2022 due to the 
instrument damage.

Soil temperature and soil moisture
Soil temperature  (ST) at 10  cm depth in each plot was 
measured using a thermocouple probe (Li-8100-201), 
while the soil volume moisture  (SM) at the same depth 
was measured using a portable SM device (Diviner 2000; 
Sentek Pty Ltd., Balmain, Australia). All measurements 

were performed adjacent to the PVC collars simultane-
ously with the Rs measurement.

Soil sampling and microbial biomass carbon
Soil samples were collected at 0–10  cm in depth from 
all the plots in the middle of August of each year. After 
removing roots and stones by sieving with 2 mm mesh, 
the soil samples were placed on an icebox and immedi-
ately transported to the laboratory. Microbial biomass 
carbon (MBC) was measured using the chloroform fumi-
gation-extraction method (Vance et  al. 1987). Briefly, 
each fresh sample (10  g dry weight equivalent) was 
fumigated with chloroform for 24  h along with a con-
trol soil sample that was not fumigated. The soils were 
extracted with 100  ml 0.5  mol  L−1  K2SO4 after 30  min 
shaking. Total concentrations of carbon in the extracts 
were analyzed using an elemental analyzer (liquiTOC, 
Analysensystem, Germany). MBC was calculated using 
the differences between extractable C with a conversion 
factor of 0.45.

Aboveground biomass and belowground biomass
Aboveground biomass (AGB) was measured using the 
harvesting method in the middle of August. A sample 
quadrat of 0.25 m × 0.25 m was set and all vegetation tis-
sues above ground in the sample quadart were sampled in 
a clockwise direction. The obtained vegetation was oven-
dried at 65 °C for more than 72 h and weighed to get bio-
mass. The belowground biomass (BGB) was determined 
by collecting 0–20 cm depth of roots using a 7-cm diam-
eter soil corer at the end of August in 2021 and 2022. The 
soil cores were transported to the laboratory immediately 
and carefully washed on a 60-mesh sieve to separate the 
roots from the soil. The washed roots were oven-dried at 
65  °C for 72 h to constant weight. The unit of AGB and 
BGB is g  m−2.

Statistical analysis
Repeated measures  analysis of variance (ANOVA) 
was performed to assess the effects of mowing and 
year on ST, SM, Rs, Rh, and Ra across the four years. 
Then the mean values of these variables were calcu-
lated across the sampling dates for each year. These 
mean values were used to analyze the effects of mow-
ing and year on MBC, AGB, BGB, and BGB/AGB 
with two-way ANOVA. Linear regression was used to 
analyze changes in Rs, Rh, Ra, the proportion of Rh 
(Rh/Rs) and Ra (Ra/Rs) along the experimental year. 
To discover the pathways to influence Rs and Ra/Rs, 
we applied piecewise structural equation modeling 
(SEM) to reveal the driving factors of Rh and Ra/Rs in 
response to mowing. Due to the lack of data on plant 
and soil microbial biomass in 2019 and 2020, we used 
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the mean data across 2021 and 2022 to perform SEM. 
The Fisher’s C statistic (Fisher’s C), degrees of free-
dom (df), P values, and the root mean square errors 
of approximate (RMSEA) were used to determine the 
adequacy of the fit of the model. The standardized 
effects of each factor on Rh were calculated by calcu-
lating their direct and indirect path effects.

Results
Soil microenvironment and respiration
There were substantial inter-annual variations in ST, 
SM, Rs, Rh, and Ra (Figs. 1 and 2). Mowing significantly 
increased ST and SM by 1.06  °C and 0.94% across the 
four years. The effects of mowing on SM varied across 
different years. The main effects of mowing on Rs, Rh, 
and Ra were significant. On average, mowing decreased 
Rs, Rh, and Ra by 4.8%, 5.3%, and 0.6%, respectively. In 
addition, the interaction of mowing and year significantly 
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affected Rh and Ra. Ra was decreased by mowing only in 
2019. Note that the lack of Rs in June in 2022 may result 
in the overestimation of absolute Rs. 

Soil microbial and plant biomass
Across years 2021 and 2022, mowing promoted MBC 
and AGB by 24.7% and 9.14%, respectively (Fig.  3a, b). 
Mowing did not significantly influence BGB (Fig.  3c), 
but increased BGB/AGB (Fig.  3d). There was a positive 
relationship between Rs and MBC (Fig. 3e). Rh positively 
correlated with both MBC and AGB (Fig. 3f, g), while Ra 
positively correlated with BGB/AGB (Fig. 3h).

Changes in respiration and the proportions 
over the experimental years
The magnitude of decrease in Rs increased along the 
mowing years (Fig.  4a). However, there were no signifi-
cant relationships between changes in Rh or Ra with the 
years (Fig.  4b, c). The relative contribution of Rh to Rs 
(Rh/Rs) was higher in mowed than control plots in 2019, 
while it was lower in mowed than control plots in 2022. 
Rh/Rs negatively declined along with the experimental 
years under mowing plots (Fig. 5a). Correspondingly, Ra/
Rs positively increased along with the experimental years 
under mowing plots (Fig.  5b). However, neither Rh/Rs 
nor Ra/Rs changed along with the experimental years. 
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Explanations to Rs and Ra/Rs
The SEM results showed that mowing had a direct nega-
tive effect on AGB (Fig. 6a, P < 0.0001). AGB had a direct 
positive effect on MBC (P < 0.01), while ST had a direct 
negative effect on MBC. AGB did not directly affect Rs. 
ST directly affected Rs (P < 0.05). MBC had a significant 
direct influence on Rs (P < 0.05). Together, MBC and ST 
accounted for 65% of the variation in Rs. The standard-
ized total effects exhibited that the decreased Rs induced 
by mowing was mainly attributable to the negative effects 
of mowing on MBC.

Mowing had a positive effect on BGB/AGB (Fig.  6c, 
P < 0.05). Both BGB/AGB and MBC positively affected 
Ra/Rs (P < 0.05). Together, BGB/AGB account for 43% 
of the variation in Ra/Rs under mowing (Fig.  6d). The 
standardized total effects exhibited that the increased Ra/
Rs induced by mowing was mainly ascribed to the posi-
tive effects of mowing on BGB/AGB.

Discussion
The response of Rs and its components to mowing 
and the underlying mechanisms
Consistent with the results from a tallgrass prairie in 
North America (Zhou et  al. 2007) and a natural grass-
land in India (Mukhopadhyay and Maiti 2014), our 
results show that continuous annual mowing reduced 
Rs in the meadow steppe. The observed decrease in Rs 
can be attributed to a concomitant decrease in Rh rather 
than Ra, given that mowing did not affect Ra in all the 
four years except 2019. This reduction in Rs and Rh could 
be predominantly linked to diminished carbon input and 
the subsequent attenuation of microbial activity. Indeed, 
various studies have documented the suppressive effect 
of mowing on plant growth, attributing it to nutrient loss 
and insufficient nutrient supply (Simpson et  al. 2012). 

The suppression of plant growth could diminish the 
supply of photosynthetic products to support microbial 
growth and inhibit microbial activities (Yang et al. 2023). 
Consistent with these observations, our study reveals a 
reduction in both plant biomass and microbial biomass 
under mowed plots (Fig. 3a, b). The structural equation 
model showed that the lower MBC and positive rela-
tionship with Rs further supports the above explanation 
(Fig. 6a).

The empirical function is commonly used to describe 
the relationship between Rs and temperature, which 
means that Rs increases with increasing temperature 
(Luo et  al.  2021;  Davidson et  al. 2006; Liu et  al. 2009; 
Moinet et  al. 2019; Oestmann et  al. 2024). Accordingly, 
mowing-induced stimulation of microbial respiration was 
observed in Mediterranean grassland and was attributed 
to increased sunlight exposure and elevated soil tempera-
ture (Gavrichkova et al. 2010). In our study, we also found 
elevated soil temperature induced by mowing. However, 
we found a reduction in Rs and its negative relationship 
with soil temperature did not conform to the empirical 
function. This discrepancy may be ascribed to a simul-
taneous reduction in substrate quantity and microbial 
biomass, indicating that the positive effects of mowing-
induced increased temperature on Rs could be counter-
acted and impeded by the negative effects of decreased 
plant and microbial biomass. Indeed, when accounting 
for MBC, the partial correlations exhibited significant 
positive associations between both Rs (Fig.  S2) and Rh 
(Fig.  S3) with soil temperature. This finding emphasizes 
that the positive effects of mowing-induced elevation of 
temperature on Rs are contingent upon the concurrent 
dynamics of substrate quantity and microbial biomass.

SM has been shown to substantially affect Rs poten-
tially via influencing either the growth of soil microbes 
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Fig. 5 Linear regression between the relative contributions of Rh (Rh/Rs, a) and Ra (Ra/Rs, b) to Rs with experimental years, respectively. Solid line 
indicates statistical significance (P < 0.05), while dotted lines indicate statistical insignificance (P > 0.05)
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or the diffusion of substrates (Tang et  al. 2020; Wang 
et  al. 2020). Different from the positive effects of SM 
on Rs in some manipulative experiments (Steen-
werth et  al.  2010) or spatial investigation (Boonriam 
et al. 2021) across grassland ecosystems, we found the 
greater SM but the lower Rs under mowing. On the one 
hand, the removal of vegetation and lower plant bio-
mass could weaken transpiration and maintain greater 
moisture in soils, stimulating Rs under mowing (Gong 
et al. 2014). On the other hand, the reduced plant bio-
mass suppresses microbial activity and inhibites Rs 
(Koncz et  al. 2015), offsetting the positive effects of 
moisture on Rs. The contrary responses of SM and Rs 
to mowing implies the importance of carbon inputs in 
regulating Rs under mowing.

The accumulative effects of mowing and the proportion 
of Rh and Ra
Our results revealed that the magnitude of reduction in 
Rs amplified with increasing experimental years, sug-
gesting an accumulative effect of annual mowing on Rs. 
We speculate that this accumulative effect on Rs may be 
due to an exacerbation of the negative effects of sequen-
tial plant removal on plant and microbial biomass. We 
acknowledge that we could not verify this assumption 
due to the lack of biomass in 2019. However, previ-
ous research has shown that Rs remains unaffected by 
low-frequency mowing (Han et  al. 2012), while high-
frequency mowing inhibits Rs due to reduced photo-
synthetic carbon inputs (Francioni et  al. 2020). This 
discrepancy related to the frequency of mowing may 
partially support our above speculation regarding the 

Fig. 6 Piecewise structural equation modeling showing the effects of mowing on soil respiration (Rs) (a) and Ra/Rs (c), and the standardized 
effects on Rs (b) and Ra/Rs (d). Numbers above the arrows indicate the standardized path coefficients, the width of the path indicates the strength 
of the causal relationship, and R2 values denote the proportion of variation explained. Blue and orange arrows indicate positive and negative paths, 
respectively. Solid and dashed arrows indicate significant and non-significant relationships with asterisks representing the significance: *P < 0.05; 
**P < 0.01; ***P < 0.001. RMSEA root mean square error of approximation. ST soil temperature. The other abbreviations follow Fig. 3
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accumulative effect of mowing on Rs. Note that the lack 
of measurement for June in 2022 would lead to an over-
estimation of the absolute value of Rs. To eliminate the 
impact of missing data on the results of accumulative 
effect, we analyzed the data from July to August across 
four years and found the same pattern (Figs. S5, S6), 
demonstrating the accumulative effect of mowing on 
Rs.

We found that Rh contributed approximately 70% 
to Rs in this meadow steppe. The proportion of Rh 
was promoted by mowing in 2019, primarily driven 
by decreased Ra this year. This aligns with the findings 
of Yan et  al. (2022a, b), who reported that mowing-
induced promotion of Rh/Rs was due to the reduction 
of Ra associated with diminished belowground biomass. 
However, the proportion of Rh was decreased by mow-
ing in 2022 indicating a progressive decline in the rela-
tive contribution of Rh to Rs over time. This decreasing 
trend suggests that mowing alters the proportions of Rs 
components toward decreasing the contribution of Rh 
as well as increasing the contribution of Ra over time. 
Given that continuous annual mowing results in nutri-
ent limitation due to plant and litter removal, plants 
would allocate more carbon to root growth to acquire 
nutrients to meet their demands (Prescott et al. 2020). 
The higher ratios of BGB/AGB indicated a higher dis-
tribution of carbon to belowground (Figs.  3 and S4), 
supporting the above explanation. As Ra is associated 
with belowground carbon allocation in terrestrial eco-
systems (HoÈgberg et  al. 2001;  Gao et  al. 2020; Tang 
et al. 2020), the increased belowground carbon alloca-
tion would facilitate the proportionally larger Ra caused 
by mowing, resulting in higher Ra/Rs (Fig. 6).
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