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Abstract 

Background Agricultural irrigation is an important practice to safeguard crops against drought and enhance grain 
yield in arid regions. The Hexi Corridor, known as a classic arid region, faces significant pressure on agricultural pro-
duction and food security due to the scarcity of water resources. There is an urgent need to investigate agricultural 
water use of the irrigated regions. Water use efficiency (WUE), defined as the ratio of gross primary productivity (GPP) 
to actual evapotranspiration (ET), serves as a valuable indicator linking carbon assimilation and water loss. It enables 
the quantification of areas where water can be utilized more effectively. However, the long-term spatiotemporal 
dynamics of WUE and driving mechanism in the irrigated areas of the Hexi Corridor remain unclear.

Results This study used GPP calculated by a light use efficiency model (EF-LUE), ET estimated by an ETMonitor 
model and irrigated cropland maps across China (IrriMap_CN) to examine the spatiotemporal dynamics of irrigated 
cropland WUE and its controlling factors in the Hexi Corridor from 2001 to 2018. The results are as following: (1) The 
average annual WUE was approximately 1.34 ± 0.38 g C  kg−1  H2O  yr−1, with an increasing trend of 0.012 g C  kg−1  H2O 
 yr−1, and faster growth observed during 2011–2018 compared to 2001–2010. (2) The contribution of GPP to WUE 
trends and WUE interannual variability (IAV) was greater than that of ET. (3) The dominant climatic factors of WUE IAV 
in the Hexi Corridor were SPEI, precipitation, and soil moisture. (4) The standardized Structural Equation Model (SEM), 
incorporating the relationship between WUE and factors such as water, energy, NDVI, and water-saving irrigation, 
explained 81% of the variation in irrigated cropland WUE. Here, biological factors (GPP and NDVI) were the primary 
factors influencing WUE variability, and water-saving irrigation had a stronger indirect effect than climate factors 
(water and energy) on variation in WUE.

Conclusions Our findings offer valuable theoretical insights into the mechanisms governing the interaction 
between the carbon and water of irrigated cropland, guiding the management of water resources and land in agricul-
tural practices within the Hexi Corridor.

Keywords Irrigated cropland, Water use efficiency, Hexi Corridor, Interannual variability, Dominant factor, Driving 
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Background
Agriculture is a significant consumer of water, and its 
use continues to increase globally with a growing world 
population. According to the Food and Agricultural 
Organization’s (FAO) report, agricultural water demand 
is projected to increase by approximately 35% to sustain 
the needs of an estimated 10 billion people worldwide 
by 2050 (FAO 2021). Besides, climate change has exac-
erbated the frequency and intensity of droughts, con-
tributing to the depletion of freshwater resources over 
the past few decades (Grafton et  al. 2013). Because of 
increasing demands and significant reductions for fresh-
water resources, water disputes persist in many parts of 
the world, especially in arid regions. Water efficiency for 
food production remains low and unsatisfactory, lead-
ing to environmental degradation such as groundwater 
over-exploitation, reduced river runoff, wildlife habitat 
destruction and environmental pollution (United Nations 
2021). Therefore, achieving water savings in current agri-
cultural practices is imperative for addressing global food 
and water security (Zhou et al. 2021).

Water use efficiency is a vital indicator for evaluating 
water consumption and dry matter production (Keenan 
et  al. 2013; Sun et  al. 2018). Initially, crop physiologists 
defined water use efficiency (WUE) at  leaf-scale as the 
quantity of carbon assimilation and crop yield per unit 
transpiration (Linderson et  al. 2012; Reichstein et  al. 
2007). At the ecosystem level, WUE is generally described 
as the ratio of gross primary productivity (GPP) to actual 
evapotranspiration (ET) (Bonan 2008; Fischer and Turner 
1978; Ji et  al. 2023). Cropland WUE describes the rela-
tionship between water use and crop production, and it 
is a widely used indicator for decision-making in agricul-
tural water management (Zhou et al. 2021). Over the past 
decade, numerous studies have examined the WUE of 
cropland for various crop types and the changes in WUE 
under different agronomic practices (e.g., irrigation, ferti-
lization, conservation tillage, plastic film mulching, etc.) 
at the field scale. Pan et al. (2024) investigated how water-
nitrogen interaction impacts water and nitrogen use 
efficiency in seed maize. Zhang et  al. (2019b) examined 
the effect of water stress on photosynthesis and WUE 
of common reed. Fan et  al. (2019) studied whether film 
fully-mulched ridge–furrow water harvesting sustainably 
improves WUE of corn.

With the advancement of information and remote sens-
ing technologies, an increasing number of researchers 
have conducted some global comprehensive and mod-
eling endeavors to evaluate the spatial distribution, trend 
and drivers of agroecosystem WUE in the long-term con-
tinuous scale using remote sensing data (Ai et  al. 2020; 
Wang et  al. 2021). The study from Wang et  al. (2018a) 
revealed the great potential in remotely retrieving 

variability in cropland WUE using time-series MODIS 
NDVI data across large regions. The study by Zhao et al. 
(2021) characterized the spatial temporal variability of 
cropland WUE in China using the satellite-retrieved 
data, and discovered the significantly increasing trend 
between 1982 and 2017. Bai et al. (2020) found WUE in 
dryland ecosystems in China was strongly influenced by 
precipitation based on eddy covariance and remote sens-
ing data. Remote sensing-based ecosystem models have 
provided powerful tools for monitoring the dynamics of 
cropland WUE at regional and global scales.

Variations in WUE are the combined result of changes 
in GPP and ET. It is well known that climate change has 
significantly affected the relationship between GPP and 
ET, thus impacting WUE (Huang et  al. 2015). Circum-
stances such as water resource shortages and extreme 
environmental conditions, like drought and intense pre-
cipitation, affect regional carbon and water cycles (Wang 
et  al. 2017). For example, Zhu et  al. (2011) showed that 
water resource restriction affected WUE, with WUE 
decreasing in different ecosystems as the evaporation 
ratio increases. Besides, the trend of WUE in relation 
to climate change will likely vary under different condi-
tions, such as dry and wet environments (Liu et al. 2015; 
Yu et al. 2007; Zhang et al. 2012). In addition to climate, 
anthropogenic activities, such as urbanization, irriga-
tion, and fertilization, could also directly impact ecosys-
tem GPP and ET (Yang et  al. 2022a). Discrepancies in 
agricultural management practice for crops among arid 
and highly arid climate zones can lead to the discrepan-
cies of WUE (Wang et  al. 2021). Previous studies have 
shown that cropland WUE is influenced by various fac-
tors such as climate, environmental conditions, crop 
type, and agronomic management practices (Hu and Lei 
2021). However, most studies investigating interannual 
variations in cropland WUE and their driving mecha-
nisms over a large-scale, long-term continuous period 
have primarily focused on climate factors, while often 
overlooking agronomic management practices, particu-
larly the impact of irrigation. Yang et  al. (2022b) inves-
tigated the interannual dynamics of cropland WUE and 
its response to climate variations in single and double 
cropping systems across China, without distinguish-
ing rainfed and irrigated regions. The study from Yang 
et al. (2023) analyzed the impact of cropland change on 
WUE in the Hexi Corridor, but their study did not con-
sider the change in irrigated area. By using Global Food 
Security Support Analysis Data (GFSAD) to obtain global 
rainfed and irrigated regions for the nominal year 2015, 
Ai et  al. (2020) assessed WUE in rainfed and irrigated 
cropland during 2000–2014. However, their study did not 
account for annual changes in irrigated areas. Irrigation 
is an important agronomic management practice that 
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simultaneously regulates photosynthesis and ET. There 
is a general imperative to conduct on the dynamics of 
irrigated cropland WUE and its driving factors in dry-
land cropland ecosystems, not only because it is critically 
important for improving water-saving irrigation manage-
ment of the dryland cropland ecosystems, and also for 
future food security in light of frequent climate anoma-
lies (Bai et al. 2020; Wang et al. 2018a; Yu et al. 2018).

The Hexi Corridor is a typical arid region that expe-
riences abundant light and heat but has limited water 
resources, receiving less than 200 mm of rainfall annually 
with significant variation throughout the year (Fig.  1). 
Due to climate change, extreme environmental condi-
tions (e.g., drought, heat wave and extreme precipita-
tion) are becoming increasingly frequent (Su et al. 2007). 
Agriculture in the region relies heavily on irrigation, 
mainly sourced from streamflow and groundwater (Bao 
and Fang 2007). The human-made agricultural oases are 
essential regions for food production in the Hexi Corri-
dor (Wang et al. 2021; Yang et al. 2020). Meanwhile, the 
region faces severe water scarcity issues, posing a limit-
ing factor for regional prosperity and economic develop-
ment (Kang et  al. 2017). In particular, the government 
has launched several water-saving irrigation projects in 
the past 20 years, involving expanding water-saving irri-
gation areas in large and medium-sized irrigation areas 
(Tian et al. 2020), as well as adjusting planting structures 

based on local conditions (GPWRB 2007). Tian et  al. 
(2020) showed how climatic factors and human activities 
simultaneously regulated photosynthesis and ET in the 
Shiyang River basin, and found the relative contribution 
of human activities in the water-saving project (WSP) to 
ET was  77.5%, while that of climate factors was 22.5%. 
Nevertheless, research on the long-term interannual var-
iation of WUE in irrigated areas of the Hexi Corridor and 
its response to climatic factors, as well as the water-sav-
ing irrigation, is scare. This has limited our comprehen-
sion of water-carbon interactions in the region, especially 
regarding the potential application of effective cropland 
management and efficient water utilization protocols.

For this study, we utilized GPP and ET data previously 
estimated by the EF-LUE and ETMonitor models, which 
have demonstrated superior performance in capturing 
the spatial variation of GPP and ET in irrigated cropland 
regions than other global GPP and ET products, e.g., the 
MODIS and PML-V2 products. The annual irrigated 
cropland maps across China (IrriMap_CN) were used to 
determine the irrigated area. The main aims of this study 
are to (1) evaluate temporal and spatial dynamics of irri-
gated cropland WUE in the Hexi Corridor; (2) quantify 
the roles of GPP and ET in controlling cropland WUE; 
(3) analyze dominant factors of cropland WUE interan-
nual variability (IAV); (4) illustrate driving mechanism of 
WUE based on Bayesian structural equation model.

Fig. 1 The subregions and pattern of unchanged irrigated cropland in the Hexi Corridor during 2001–2018
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Materials and Methods
Study area
The Hexi Corridor positioned in northwest of China 
(37°17′−42°48′ N, 93°23′−104°12′ E), west of the Yel-
low River, between the Qilian Mountains and the Badain 
Jaran Desert (Fig. 1). It is a narrow strip of land running 
northwest-southeast. This region has a typical arid cli-
mate and falls under the temperate and warm temper-
ate continental climate zones. The Qilian Mountains 
are the origin of three significant inland rivers, namely, 
the Shiyang River, the Heihe River, and the Shule River, 
which give rise to oasis irrigation areas of approximately 
2.2 ×  105   km2 (Li et  al. 2016). The human-made agricul-
tural oases are vital regions for food production, with 
the main crops cultivated including wheat, corn, oil-
bearing crops, vegetables, orchards, cotton, and tubers. 
According to the 2019 Gansu Water Resources Bulletin, 
irrigation cropland accounts for 72.58% of the entirety 
of cultivated land in the inland river basin, and irri-
gation water use accounts for more than 80% of total 
water consumption (HBGP 2019). In order to meet the 
large water demand, groundwater is used to supplement 
water resources to irrigate croplands in the Hexi Corri-
dor. Nevertheless, over-exploitation of groundwater has 
resulted in severe ecological degradation of oases (Feng 
et al. 2015, 2019). The Chinese government has launched 
a variety of comprehensive rehabilitation projects within 
inland river basins such as water-saving irrigation pro-
jects to preserve the regional ecological environment and 
support sustainable economic and social development.

Data
The details of several datasets used in this study are 
described in the following sections (Table 1).

ET and GPP data
In this study, we used ET data based on a combined 
model with multi-process parameterizations retrieved 
from satellite observations (Named ETMonitor), with 
a spatial resolution of 0.0083° × 0.0083°, covering the 
period 2001–2019 (Zheng et al. 2022, 2016). The ETMon-
itor has been calibrated against ground flux observations 
and has performed significantly better in capturing the 
spatial variations of ET in irrigated cropland regions than 
other global ET products (Hu and Jia 2015; Sriwongsi-
tanon et al. 2020; Weerasinghe et al. 2020).

The GPP data utilized in this research were derived 
using a light-use-efficiency model specifically designed 
for estimating GPP in agroecosystems, known as EF-LUE. 
This model incorporates the evaporative fraction (EF) 
estimated from the ETMonitor model as a constraining 
factor and the model parameters were optimized for dif-
ferent climatic zones using  CO2 flux measurements from 
crop sites (Du et al. 2022).

Irrigated cropland data
Irrigated cropland data utilized in this study were 
sourced from Zhang et al. (2022). They obtained annual 
irrigated cropland maps across China (IrriMap_CN) 
at a resolution of 500 m spanning from 2000 to 2019 by 
using a machine-learning method (Zhang et  al. 2022). 
It achieved high accuracy, ranging from 77.2% to 85.9%, 
based on the validation of more than 3000 ground truth 
points. We extracted GPP, ET and WUE in irrigated 
croplands derived from the annual crop cover data pro-
vided by IrriMap_CN.

Climate, soil moisture and other auxiliary data
Annual 1  km resolution average temperature and accu-
mulated precipitation data in China from National Earth 

Table 1 The details of several datasets used in this study

Variable Dataset/model Resolution Data availability Reference

GPP EF-LUE model 1 km 2001–2019 (Du et al. 2022)

ET ETMonitor model 1 km 2000–2019 (Zheng et al. 2022)

Irrigated cropland IrriMap_CN 500 m 2000–2019 (Zhang et al. 2022)

Temperature Bilinear interpolation 1 km 1982–2022 (Peng et al. 2019)

Precipitation

Radiation GLASS 0.05° 2000–2022 (Zhang et al. 2016)

SPEI Random forest 1 km 2001–2020 (Xia et al. 2023)

Soil moisture Random forest 1 km 2000–2020 (Zheng et al. 2023)

Wind speed CFMD 0.1° 1979–2018 (He et al. 2020)

Humidity

Pressure

NDVI MOD13A2 1 km 2000–Present (Didan and Bar-
reto Munoz 2019)
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System Science Data Center, National Science & Tech-
nology Infrastructure of China (http:// www. geoda ta. 
cn accessed 8 March 2024). It adjusted a monthly tem-
perature and precipitation dataset from Peng et al. (2019) 
to an annual scale. The original monthly dataset was 
spatially downscaled from the 300 Climatic Research 
Unit (CRU) dataset using the climatology dataset of 
WorldClim.

Downward Shortwave Radiation (DSR) data from the 
Global Land Surface Satellite (GLASS) DSR product, 
which has a resolution of 0.05 and global DSR based on 
MODIS and AVHRR data (Zhang et al. 2014, 2019a). The 
AVHRR data were calculated using an improved lookup 
table algorithm, while the MODIS data were calculated 
using a hybrid algorithm (Zhang et  al. 2016). We resa-
mpled data to 1 km using bilinear interpolation method 
(Wong et al. 2004).

A resolution of 1 km/monthly soil moisture data from 
National Tibetan Plateau/Third Pole Environment Data 
Center. The dataset was derived from the European Space 
Agency-Climate Change Initiative (ESA-CCI) surface soil 
moisture combined product at a resolution of 0.25° by 
using Random Forest algorithm (Zheng et al. 2023).

The standardized precipitation evapotranspiration 
index (SPEI) data used in this study were obtained from 
Xia et  al.’s (2023) research. They developed a high-pre-
cision machine learning algorithm to calculate grid-
based SPEI at a 1  km resolution across multiple time 
scales (1  month, 3  months, 6  months, 12  months, and 
24  months) over a large regional area, spanning from 
2001 to 2020.

Other meteorological data like wind speed, humid-
ity and pressure were taken from China Meteorological 
Forcing Dataset (CFMD), which provides near-surface 
meteorological data over China with a temporal/spatial 
resolution of three hours/0.1°, covering the period of 
1979–2018. This dataset was constructed by fusing mul-
tisource data, including remote sensing products, rea-
nalysis datasets, and station observation data. The CFMD 
has undergone a validation against station observations, 
which demonstrated its superior performance compared 
to the Global Land Data Assimilation System (GLDAS) 
(He et al. 2020). Because of the relative coarse resolution 
of the data, we just used the statistical values with the 
temporal and spatial scales of year/0.1° at the basin level 
rather than pixel level.

The study utilized MOD13A2 Normalized Difference 
Vegetation Index (NDVI) data, which offer continuity 
indices on a per-pixel basis at a spatial resolution of 1 km 
(km) (https:// search. earth data. nasa. gov/ accessed 14 
March 2024).

Additionally, water-saving irrigation area data from 
2001 to 2018 in the Hexi Corridor were taken from the 

Water Resources Bulletin of Gansu Province. The water-
saving irrigation area refers to the area where water-sav-
ing measures such as drip irrigation, micro-irrigation, 
and low-pressure pipe irrigation are implemented. By 
using the advanced equipment and means during crop 
irrigation, water consumption can be reduced while still 
meeting the water requirements of crops. Interannual 
variation of water-saving irrigation area can reflect the 
variation of local irrigation level in the context of imple-
menting water-saving irrigation projects to a certain 
extent. Therefore, we used the total area of water-sav-
ing irrigation as the irrigation factor in the SEM model. 
Data on the area of major crops in different regions were 
sourced from the Gansu Development Yearbook 2019.

Methods
At the ecosystem level, WUE was typically described as 
the ratio of GPP to actual ET, as expressed by (Sun et al. 
2018):

Trend analysis and mutation test
Trend analysis were performed using the Theil-Sen esti-
mator (Sen 1968) which calculates the slopes of all lines 
between each pair of points. Subsequently, the median of 
all computed slopes is utilized for the line-fitting process. 
This method is highly robust and has greater resilience 
against outliers than the simple linear regression method 
(Wilcox 2010).

where X is the value of variable in the year, i and j repre-
sent the serial number of years. The result (θ), which is 
greater than 0, indicates an increase in the variable. Con-
versely, a value less than 0 represents a decrease in the 
variable.

To identify the abrupt change points of the WUE time 
series from 2001–2018, the non-parametric Mann–Ken-
dall (M–K) mutant test was employed. This entails find-
ing the intersection between a forward sequence (UF) of 
annual WUE and a backward sequence (UB) of the inver-
sion of annual WUE with a confidence level indicating 
statistical significance at P < 0.05. This approach is useful 
in detecting abrupt changes (Wang et al. 2020; Xu et al. 
2018; Yang and Yang 2012; Yang et al. 2022a).

Roles of GPP and ET in controlling cropland WUE
This study used a differential equation to quantify the 
contribution of GPP and ET to the long-term trend 

(1)WUE =
GPP

ET

(2)θ = Median

(

Xj − Xi

j − i

)

∀j > i

http://www.geodata.cn
http://www.geodata.cn
https://search.earthdata.nasa.gov/
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of WUE (Yang et  al. 2022b). According to Eq.  (1), the 
first-order differential approximation can be estimated 
as follows:

∂WUE/∂GPP and ∂WUE/∂ET represent WUE changes 
resulted from per unit of GPP or ET, respectively (Wang 
et  al. 2020). ε is the system error in the contribution 
estimation. The relative contributions of GPP and ET 
to WUE trend can be expressed as follows  (Yang et  al. 
2022b):

dWUE
dt

 , dGPP
dt

 and dET
dt

 are estimated as the slopes of linear 
regression for WUE, GPP, and ET against time (t) based 
on the least square method, respectively.

Furthermore, the individual proportional contribution 
of GPP (Eq. (4)) and ET (Eq. (5)) to the WUE trends can 
be represented as follows (Yang et al. 2022b):

Relative importance analysis
The Lindeman–Merenda–Gold (LMG) method is a 
recommended method which has been used in many 
published papers to evaluate the relative importance 
of correlated input regressors by R2 decomposition in 
a multiple linear model (Groemping 2006). By utiliz-
ing unweighted averages across sequential R2 values 
for each variable in all permutations of regressors, this 
metric mitigates order effects. Furthermore, the total 
R2 is decomposed into non-negative components (Yao 
et  al. 2017). We used calc.relimp function in R pack-
age to calculate relative importance metrics for the lin-
ear model. The recommended metric is ‘lmg’, vector of 
relative contributions obtained from the LMG method, 
which is the contribution averaged over orderings 
among regressors (Lindeman et al. 1981). In this study, 
we first standardized the data and applied LMG method 
to differentiate the contribution of GPP and ET to WUE 
IAV in irrigated croplands. And then we further inves-
tigated driving factors of cropland WUE IAV based on 

(3)

dWUE

dt
=

∂WUE

∂GPP
×

dGPP

dt
−

∂WUE

∂ET
×

dET

dt
+ ε

(4)C(GPP) =
∂WUE

∂GPP
×

dGPP

dt

(5)C(ET ) = −
∂WUE

∂ET
×

dET

dt

(6)RGPP =
C(GPP)

C(GPP)+ C(ET)
× 100%

(7)RET =
C(ET)

C(GPP)+ C(ET)
× 100%

LMG method. The climatic factors including tempera-
ture, precipitation, radiation, soil moisture, drought 
index (SPEI), and biological factor (NDVI) were consid-
ered during the relative importance analysis.

Bayesian structural equation modeling
Bayesian structural equation models (SEMs) are power-
ful models to access interrelationships among observed 
and latent variables (Lee and Song 2014). SEM offers a 
method to partition the net effect into direct and indi-
rect effects. It allows environmental variables to inter-
act, rather than isolating a single controlling factor 
from others like other traditional regression analysis 
(Wang et al. 2018b). Many variables affect WUE as an 
offset or correlation to its impact on both GPP and ET. 
To avoid collinearity among variables, we used precipi-
tation, soil moisture and SPEI to reflect water condi-
tion while temperature, solar radiation, humidity, wind 
speed and pressure to reflect energy condition. NDVI 
was used to reflect biological factors such as the condi-
tion of crops, and NDVI was also affected by water and 
energy. In addition, water-saving irrigation area data 
were considered to reflect the effect of human irriga-
tion management to WUE. In the Hexi Corridor, low 
precipitation levels often fail to meet water require-
ments of crops, making irrigation essential for crop 
growth and production. Additionally, irrigation water 
losses from evaporation occurring on bare soil, which 
are not correlated with productivity, tend to decrease 
WUE (Sun et  al. 2015). Irrigation is primarily regu-
lated by anthropogenic water-saving measures aimed 
at reducing water loss (Tian and Zhang 2020). Agricul-
ture irrigation management has modified the allocation 
of water resources and adjust strategies for water uti-
lization in drylands, thereby influencing the cropland 
WUE (Wang et al. 2021).

Before constructing and analyzing the Bayesian SEM 
model, the data were standardized to ensure that the 
influences of different variables on the model results 
have equal weights. Bayesian SEM was created using 
PyMC3 package in Python and run with four Markov 
chain Monte Carlo (MCMC) chains with 1000 itera-
tions. The MCMC results indicated that Gelman-Rubin 
values (R_hat, the ratio of the effective sample size to 
the overall number of iterations) were close to one, sug-
gesting convergence of the MCMC chain. The larger 
effective sample sizes (ESS) (ess_mean > 2000 for all 
coefficient estimates) ensure adequate estimation of 
the parameters. The estimate of coefficient represents 
direct effects (also called path coefficient) and indirect 
effects were estimated by multiplying the direct effects 
(Yan et al. 2023).
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Results
Spatial pattern of WUE
The spatial distribution of mean annual WUE of irri-
gated cropland for 2001–2018 in the Hexi Corridor 
are presented in Fig.  2 (left). The multiyear mean WUE 
showed apparent regional heterogeneity and varied 
from 0.07 g C  kg−1  H2O  yr−1 to 2.42 g C  kg−1  H2O  yr−1, 
with mean value of 1.34 ± 0.38  g  C   kg−1  H2O  yr−1. The 
high value of WUE (> 2 g C   kg−1  H2O  yr−1) occurred in 
the Heihe River basin (Ganzhou District), which only 
accounted for 3.36% of croplands. The area of high WUE 
had high GPP (> 1250  g  C   m−1   yr−1) but moderate ET 
(600–700 mm  yr−1) (Figure S1). The relatively high WUE 
(> 1.6 g C  kg−1  H2O  yr−1) mainly distributed in the Heihe 
River basin (Linze County, Gaotai County, Suzhou Dis-
trict) and the Shiyang River basin (Liangzhou District, 
Yongchang County). The area of low WUE (< 0.8 g C  kg−1 
 H2O  yr−1) account for 9.25%, mainly distributed in the 
upper Heihe River basin and the Shiyang River basin. 
About 42.68% of the total irrigated croplands had WUE 
values ranging from 1.2 to 1.6 g C  kg−1  H2O  yr−1.

At the basin level (Fig. 2 right), the Heihe River basin 
had the highest WUE (1.41 ± 0.41  g  C   kg−1  H2O  yr−1) 
which attributed to the higher mean value of GPP but 
lowest ET. The Shule River basin and the Shiyang River 
basin had the similar WUE values, with mean WUE of 
1.28 ± 0.29  g  C   kg−1  H2O  yr−1 and 1.29 ± 0.36  g  C   kg−1 
 H2O  yr−1, respectively. The Shiyang River basin had 

relatively higher GPP and ET. The Shule River basin had 
highest ET among three basins.

Temporal trend of WUE
The temporal trend of irrigated cropland WUE from 
2001 to 2018 in the Hexi Corridor showed spatial varia-
tions (Fig. 3a). Overall, approximately 80.83% of the total 
irrigated cropland area showed an increase in WUE. The 
area of Theil-Sen slope higher than 0.03 accounted for 
27.06%, which indicated larger increasing trends of WUE, 
primarily observed in the middle reaches of the Heihe 
River basin (such as Shandan County, Minle County, 
Ganzhou District) and the Shiyang River basin (such as 
Jinchuan County, Gulang County). The negative trend in 
WUE was primarily observed in the Shiyang River basin 
(Liangzhou District and Minqin County), a few areas in 
the upper-middle reaches of the Heihe River basin (Gan-
zhou District and Gaotai County), and the Shule River 
basin (Dunhuang City).

Additionally, the M−K test method was used to iden-
tify the point of change of annual WUE from 2001 to 
2018, we found that WUE underwent a significant shift 
in 2011 (Fig. 3b). Thus, the whole period was separated 
into two period which WUE showed an increasing 
trend of 0.004  g  C  kg  H2O  yr−1 from 2001 to 2011 and 
0.006  g  C  kg   H2O  yr−1 from 2011 to 2018, respectively 
(Fig. 3c). In general, WUE experienced a mean increasing 

Fig. 2 The spatial distribution of mean annual WUE in irrigated croplands for 2001–2018 and the variation of irrigated cropland GPP, ET and WUE 
among the Heihe River basin (HH), the Shiyang River basin (SY), and the Shule River basin (SL)
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trend of 0.012  g  C  kg  H2O  yr−1, which resulted in an 
overall increase of 7.89% from 2001 to 2018.

As shown in Fig. 3d, WUE varied significantly between 
the basins, with the average WUE in the Heihe River 

basin (0.016 g C kg   H2O  yr−1) being higher than that in 
the Shiyang River basin (0.009  g C   kg−1  H2O  yr−1) and 
the Shule River basin (0.008  g C  kg−1  H2O  yr−1). Over 
the 18-year period, the rate of increase in WUE was 

Fig. 3 a The spatial distribution of annual WUE trends in irrigated croplands for 2001–2018. b M − K mutation test of annual WUE from 2001 to 2018. 
c The time series of irrigated cropland WUE and trends during the period of 2001–2011 and 2011–2018 in the Hexi Corridor. d The time series 
of irrigated cropland WUE in the Heihe River basin, the Shiyang River basin, and the Shule River basin
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highest in the Heihe River basin (12.87%), followed by 
the Shiyang River basin (4.07%) and the Shule River basin 
(3.04%).

Roles of GPP and ET in controlling cropland WUE
In general, irrigated cropland GPP and ET showed 
increasing trends in the Hexi Corridor during the 
period of 2001–2018, with the average trend of 
10.937  g  C   m−2   yr−1 and 2.785  mm   yr−1, respec-
tively (Fig.  4). The contribution of GPP to WUE 
trends [C(GPP) = 0.026] was greater than that of ET 
[C(ET) = 0.009]. The similar result was also found at the 
basin level. However, the contributions of GPP and ET 
to WUE trends were different among basins. The highest 
contribution of ET to WUE trend occurred in the Shule 
River basin [C(ET) = 0.010] while the highest contribu-
tion of GPP to WUE trend occurred in the Heihe River 
basin [C(GPP) = 0.032], and both GPP and ET showed the 
lowest contribution values to WUE trend in the Shiyang 
River basin [C(GPP) = 0.021, C(ET) = 0.006]. In addition, 
the Heihe River basin had a highest WUE increasing 
trend (0.023 g C kg  H2O  yr−1) induced by a significantly 

increasing trend of GPP (13.078 g C  m−2   yr−1) and rela-
tively weakly increasing trend of ET (2.783 mm  yr−1).

In order to analyze the roles of GPP and ET in deter-
mining the spatial pattern of irrigated cropland WUE 
trends, a composite map of WUE, GPP and ET trends 
was created (Fig.  5a). Among irrigated croplands with 
increasing trends of WUE, approximately 61.86% of 
the irrigated croplands had increasing trends of both 
GPP and ET (light green in Fig.  5a) while 13.33% of 
irrigated croplands had increasing trends of GPP but 
decreasing trends of ET (blue in Fig.  5a), which mainly 
occurred in the middle reaches of the Heihe River basin. 
About 12.54% of irrigated croplands showed decreasing 
trends of WUE, GPP and ET which mainly distributed 
in the middle reaches of the Heihe River (Ganzhou Dis-
trict and Gaotai County) and part of the Shiyang River 
Basin (Liangzhou District, Minqin County, etc.) (pink 
in Fig.  5a). Irrigated croplands with decreasing trends 
of WUE but increasing trends of ET and GPP only 
accounted for about 4.13% which mainly observed in the 
Shule River basin (red in Fig. 5a).

We further compared the contribution of GPP and ET 
to irrigated cropland WUE trends (Fig.  5b). The most 

Fig. 4 GPP trend, ET trend, WUE trend as well as the contributions of GPP [C(GPP)] and ET [C(ET)] to WUE trend in irrigated croplands during 2001–
2018 in the whole Hexi Corridor and three basins
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area of irrigated croplands (about 86.79%) were con-
trolled by GPP (|R(GPP)| >|R(ET)|), which indicated that 
GPP played dominant roles in the temporal trends of 
WUE in most regions. Contributions of GPP and ET to 
WUE IAV also estimated by LMG method and the rela-
tive importance metrics are normalized to sum to 1 (the 
sum of contributions of GPP and ET to WUE IAV is 1). 
The relative contribution of GPP to WUE IAV was shown 
in Fig. 5c. There were about 73.7% irrigated cropland area 
where WUE IAV was controlled by GPP variation, indi-
cating that GPP also predominantly influenced WUE IAV 
in most regions. Area where ET dominated WUE trends 

and IAV were primarily concentrated in small regions 
within the Heihe River basin (Ganzhou District, Linze 
County).

Dominant factors of cropland WUE IAV
Temperature, precipitation and solar radiation are 
critical climatic driving factors for both photosynthe-
sis and transpiration that can affect changes in WUE. 
In order to illustrate their impacts on irrigated crop-
land WUE IAV, pixel-wise relative importance analy-
sis was adopted in this study. The relative importance 
metrics were depicted in a cyan-magenta-yellow 

Fig. 5 a The composite map of WUE, GPP and ET trends, b the spatial pattern of the difference in absolute contributions of GPP and ET to WUE 
trends, and c contributions of GPP to WUE IAV for irrigated croplands in Hexi Corridor over 2001–2018. (The symbol ‘ + ’ (or ‘–‘) in (a) means positive 
(or negative) trend of WUE, GPP and ET. The symbol ‘GPP controlled’ in (b) and ‘GPP IAV controlled’ in (c) indicate absolute values of the relative 
contribution of GPP is higher than that of ET
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(CMY) triangular figure, representing precipitation 
(cyan), radiation (magenta) and temperature (yel-
low) (Fig.  6a). The dominant climatic factors of WUE 
IAV varied across the Hexi Corridor. There were rela-
tive more areas where precipitation was the predomi-
nant factor of WUE IAV. Temperature dominated area 
mainly occurred in Minqin County of the Shiyang River 
basin while radiation dominated area mainly occurred 
the middle reaches of the Heihe River basin (Shandan 
County, Minle County) and Yongchang County of the 
Shiyang River basin.

However, the overall proportion of variance (the coef-
ficients of determination for multiple linear models) 
explained by model based on three regressors (precipita-
tion, radiation and temperature) were low in most regions 
(Fig. 6b). In addition, we further added SPEI indices and 
soil moisture data to consider the impact of drought and 
wet conditions on WUE IAV. SPEI indices were  calcu-
lated with mean of multiple time scales (see Sect.  “Cli-
mate, soil moisture and other auxiliary data” for data 
description). Besides, NDVI was used to reflect biologi-
cal factors such as the condition of crops. The coefficients 

Fig. 6 a Cyan-magenta-yellow (CMY) triangular map of relative importance metrics. The contributions of precipitation (cyan), radiation (magenta) 
and temperature (yellow) to WUE IAV during 2001–2018. The coefficient of determination of multiple linear models based on b three regressors 
(precipitation, radiation and temperature) and c six regressors (precipitation, radiation, temperature, NDVI, soil moisture and SPEI)
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of determination were  improved with the addition of 
SPEI indices, soil moisture and NDVI data (Fig.  6c). It 
is indicated that these factors also played an  important 
role on WUE IAV. The pixel-wise importance of pre-
cipitation, radiation, temperature, NDVI, SPEI and soil 
moisture on irrigated cropland WUE IAV shown in the 
Fig. 7a, the WUE IAV of 38.14% irrigated croplands was 

controlled by NDVI. This is because water and radia-
tion factors can affect WUE through NDVI. SPEI and 
soil moisture were also the influencing factors of WUE 
IAV, accounting for approximately 14.2% and 7.34% of 
the total irrigated croplands, respectively. Meanwhile, 
we input all pixel values of the whole Hexi Corridor as 
observations in the model and the relative importance 

Fig. 7 The contributions of precipitation, radiation, temperature, SPEI, NDVI and soil moisture to irrigated cropland WUE IAV a the spatial pattern 
of composite map (The pixels display the climate factor with the highest relative importance metrics), and b the regional contribution values 
of among basins
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metrics were normalized to sum to 1 (Fig.  7b). Overall, 
proportion of variance explained by model was 44.69%. 
SPEI demonstrated the highest relative importance (0.25) 
in influencing irrigated cropland WUE IAV, followed by 
precipitation (0.20), soil moisture (0.17), NDVI (0.16), 
temperature (0.13), and radiation (0.10). These findings 
suggest that climate-related factors accounted for less 
than half of the IAV changes in WUE and water-related 
factors were more sensitive than energy-related factors to 
WUE variation in the Hexi Corridor.

At the basin level, we input all pixel values of each basin 
area as observations in the model (Fig. 7b). The dominant 
factors varied among different basins. The dominant 
driver of WUE IAV was temperature in the Heihe River 
basin while radiation dominated WUE IAV in the Shi-
yang River basin. For the Shule River basin, the WUE IAV 
was mainly affected by NDVI.

Driving mechanism of WUE
We constructed an SEM model to illustrate four main 
categories of influencing factors (water, energy, NDVI 
and water-saving irrigation area) on WUE variability at 
the regional scale (see Sect.  “Bayesian structural equa-
tion modeling” for method description). The standard-
ized SEM explained 81% of the variation in irrigated 
cropland WUE (Fig.  8), thereinto, GPP had the highest 
direct effect (0.806) whereas NDVI exerted the highest 
indirect effect on WUE (0.325) (Table 2). Notably, energy 
and water-saving irrigation management had a positive 
indirect effect on WUE (0.033 and 0.189), but water had 

a negative indirect effect (− 0.033) on variation in WUE 
because of a higher direct effect on ET. Water mainly 
affected WUE indirectly via ET. NDVI was influenced by 
water and energy (0.047 and 0.255). These results indi-
cated that biological factors (NDVI and GPP) were the 
primary factors influencing WUE variability. Apart from 
biological factors, water-saving irrigation measures also 
played an important role in increasing WUE, which had 
strong indirect effect than climate factors (water and 
energy) on variation in WUE.

At the basin level, water had a wreaker positive effect 
on WUE IAV in the Heihe River (0.01) basin and the Shi-
yang River basin (0.051), while it had a negative effect in 
the Shule River basin (− 0.117) (Table 2). Energy showed 
relatively strong positive indirect effect on WUE vari-
ability in the Heihe River basin (0.181) than the Shiyang 
River basin (0.021), but negative indirect effect (− 0.048) 
in the Shule River basin. Besides, water-saving irrigation 

Fig. 8 Structural equation model revealing the driving mechanism of the temporal dynamics of irrigated cropland WUE based on cascade 
relationships in the Hexi Corridor, the Shiyang River basin, the Heihe River basin and the Shule River basin

Table 2 The indirect effects of water, energy, NDVI and water-
saving irrigation to WUE variations for 2001–2018 in different 
basins

Subregions Water Energy NDVI Water-
saving 
irrigation

Shule River − 0.117 − 0.048 0.318 0.262

Heihe River 0.010 0.181 0.142 − 0.270

Shiyang River 0.051 0.021 0.295 0.242

Hexi Corridor − 0.033 0.033 0.325 0.189
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had strong positive indirect effect on variation in WUE 
in the Shulehe River basin and the Shiyanghe River basin 
(0.262 and 0.242), which was just lower than NDVI (0.318 
and 0.295). This can be attributed to positive direct effect 
to GPP and negative effect to ET (Fig. 8). But in the Heihe 
River basin, water-saving irrigation measures had nega-
tive direct effect on variation in WUE (− 0.270) because 
of the strong positive effect to ET.

Discussion
Comparison of WUE characteristics
In this study, the mean value of irrigated cropland WUE 
in the Hexi Corridor was 1.34 ± 0.38 g C   kg−1  H2O  yr−1, 
and WUE showed spatial heterogeneity. A study reported 
that global irrigated cropland WUE based on MODIS 
GPP and ET data was 1.62 g C  kg−1  H2O (Ai et al. 2020), 
which is higher than WUE value in this study. The study 
in China from Yang et  al. (2022b) found the irrigated 
croplands in the Gansu-Xinjiang area had the lowest 
WUE values, but in the Huang–Huai–Hai Plain crop-
lands with irrigation produced the highest WUE. We 
further compared WUE values with the regional study. 
Tian et  al. (2020) found that the mean annual cropland 
WUE in the Shiyang River Basin from 2000 to 2014 was 
1.575  g  C   kg−1  H2O  yr−1, higher than  our result in the 
Shiyang River Basin (1.29 ± 0.36  g  C   kg−1  H2O  yr−1). A 
possible reason for the lower value in our study  is that 
we extracted the WUE of the irrigated area. The rain-
fed croplands usually had higher WUE than irrigated 
croplands (Ai et  al. 2020). Besides, this study found the 
Heihe River basin had the highest WUE, followed by 
the Shiyang River basin and Shule River basin. Based 
on the composition of major crop planting areas among 
the three basins (Figure S2), we found the Heihe River 
basin has the highest rate of corn cultivation, with maize 
being identified as the most water-efficient crop (Mbava 
et  al. 2020). Our result also showed the relatively high 
WUE (> 1.6 g C  kg−1  H2O  yr−1) in Linze County, Gaotai 
County, Suzhou and Liangzhou District. This is consist-
ent with the study by Niu et al. (2018), which found that 
areas of high crop WUE occurred in the Gaotai and Linze 
Counties based on the Soil and Water Assessment Model 
(SWAT).

This study demonstrated that the majority of irri-
gated cropland area WUE had a positive trend during 
2001–2018 and larger increasing trends of WUE mainly 
occurred in middle reaches of the Heihe River basin 
(Shandan County, Minle County, Ganzhou District) and 
Shiyang River basin (Jinchuan County, Gulang County). 
A previous study detected an increasing pattern of crop-
land WUE in the Shiyang River basin during the period 
of 2000–2014, and the relative increase occurred mostly 
in the middle and lower oasis (Tian and Zhang 2020; Tian 

et al. 2020). Besides, WUE underwent a significant shift 
in 2011 and interannual change was larger in the second 
stage (2001–2011) than the first stage (2011–2018) in this 
study. Tian and Zhang’s (2020) study also indicated that 
the cropland WUE time series in the Shiyang River basin 
increased more during 2011–2014 than during 2006–
2010 as the first stage of water-saving projects (Shiyang 
River Basin Management Plan) including Hongyashan 
and 7 other irrigation districts completed by 2010. Apart 
of that, for the Shule River basin, Comprehensive Plan-
ning of Rational Utilization of Water Resources and 
Ecological Protection in Dunhuang from 2011 to 2020 
gradually completed water-saving transformation in 
irrigation district. For the Heihe River basin, Ecological 
Water Transfer Project from 2000 to 2015 implemented 
water-efficient agricultural practices (Huang et al. 2017). 
It appears that the relative increase after 2011 is attrib-
uted to the implementation of water-saving projects.

Driving process of irrigated cropland WUE
In general, the contribution of GPP to WUE trends and 
WUE IAV was greater than that of ET. This is consistent 
with the findings of Wang et al. (2018b), which indicated 
that the IAV of WUE in cropland ecosystems was pri-
marily attributed to GPP, based on data from several typi-
cal crop flux tower sites. Yang et  al. (2022a) also found 
that GPP dominated the increase in WUE in Northwest 
China in terms of the directly influencing factors. How-
ever, Tian and Zhang (2020) found cropland WUE in the 
Shiyang River basin was mainly controlled by ET rather 
than GPP based on MODIS products. A low correlation 
between WUE and GPP was also observed in their study, 
which probably because of underestimation of MOD17 
GPP in cropland (Tian and Zhang 2020). Site-level 
evaluation of MOD17 GPP based on eddy covariance 
measured GPP indicated that MODIS underestimated 
cropland GPP (Liu et al. 2014; Turner et al. 2005).

The dominant climatic factors of WUE IAV in irrigated 
croplands varied greatly across the Hexi Corridor. Apart 
from temperature, precipitation and radiation, SPEI and 
NDVI had significant effects on WUE IAV. Overall, mul-
tiple linear models based on climatic variables explained 
44.69% of cropland WUE IAV, supporting the general 
assertion that agricultural management practices such 
as agricultural inputs and irrigation efficiency have a 
greater impact on the variations of cropland WUE than 
climatic factors (Sun et al. 2017). At the basin level, WUE 
IAV is  dominated by temperature in the Heihe River 
basin, which is  consistent with the previous study that 
maximum temperature dominated the crop WUE varia-
tions in the Heihe River basin, especially at the long-term 
scales (Niu et al. 2018).
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In contrast to studies focusing solely on individual 
influencing factors affecting water use efficiency (WUE), 
the structural equation model considered a comprehen-
sive relationship about ecosystem to introduce drivers on 
WUE systematically and distinguish direct and indirect 
effects. Apart from the climatic variables, the irrigation 
practice in the field, particularly water-saving irrigation 
measures, played important roles in improving irrigated 
cropland WUE (Du et  al. 2010; Farooq et  al. 2019; Li 
et al. 2016). Thus, our SEM considers the effect of irriga-
tion management on WUE variations by integrating the 
water-saving irrigation area. The results found that GPP 
was the dominant direct factor and NDVI was the domi-
nant indirect factor of WUE variability. This is consistent 
with the study conducted in China using flux site data, 
which found that biological factors (leaf area index (LAI), 
fractional vegetation coverage (FVC) and GPP) were the 
primary factors influencing WUE variability (Dou et  al. 
2024). Besides, water-saving irrigation exerted a stronger 
effect than water and energy in the Hexi Corridor. The 
significant positive effect of water-saving irrigation on 
cropland WUE was observed in the Shiyang River basin 
and the Shule River basin whereas the negative case was 
found in the Heihe River basin. The negative impact of 
water-saving irrigation on WUE in the Heihe River basin 
was  mainly due to the strong positive effect to ET. Irri-
gation water losses from evaporation tend to decrease 
WUE. This indicated there remained water-saving irri-
gation potential to improve the WUE in the Heihe River 
basin, and  less water should be supplied to maintain a 
relatively high WUE, without reducing crop GPP. Liu and 
Song (2020) found that  water consumption by the crop 
far exceeded the actual water requirement in the Heihe 
River basin.

Analysis of uncertainty
In this study, WUE was  derived by GPP data from EF-
LUE model and ET data from ETMonitor model. Com-
pared with WUE data calculated from the MODIS GPP 
and ET, ETMonitor ET demonstrates superior perfor-
mance in irrigated croplands (Zheng et  al. 2022, 2023), 
and EF-LUE GPP proves to be more effective in captur-
ing significant negative GPP anomalies during drought 
or heat-wave events (Du et al. 2022). Nevertheless, there 
are still some uncertainties in cropland WUE estima-
tion from GPP and ET model structure and input data. 
Moreover, both GPP and ET model did not integrate 
agronomic practices like irrigation and fertilizer applica-
tion. These indices directly or indirectly affect the range 
of WUE. Additionally, we calculated WUE without dis-
tinguishing the types of crops and accumulated annual 
WUE over a full year rather than just during growing sea-
sons. This was due to insufficient information regarding 

crop types, planting, and harvesting times, all of which 
could introduce bias in estimating WUE for irrigated 
croplands. Apart from that, the study tried to consider 
possible influencing factors like climatic factors and 
water-saving irrigation measures, but some limitations 
still exist. For example, we did not consider the effects of 
other environmental factors including rising  CO2, N dep-
osition on WUE changes and changes in planting struc-
ture. Besides, water-saving measures were not considered 
in the pixel relative importance reanalysis because we 
just obtained statistic water-saving irrigation area data at 
the basin level rather than pixel level.

Conclusions
This study evaluated the spatial-temporal dynamics of 
irrigated cropland WUE and its driving factors in the 
Hexi Corridor during 2001–2018. The average annual 
WUE of irrigated cropland WUE varied from 0.07  g C 
 kg−1  H2O  yr−1 to 2.42 g C  kg−1  H2O  yr−1, with mean value 
of 1.34 ± 0.38 g C  kg−1  H2O  yr−1. The temporal dynamics 
of WUE exhibited significantly increasing trends in most 
areas, with a faster growth observed during 2011–2018 
compared to 2001–2010, primarily due to water-saving 
projects. Overall, GPP contributed more to WUE trends 
and IAV than ET across most of the Hexi Corridor. Cli-
matic variables including temperature, precipitation and 
radiation, SPEI and NDVI explained 44.69% of cropland 
WUE IAV. SPEI, precipitation, and soil moisture were the 
three dominant factors of WUE IAV in the Hexi Corri-
dor. Additionally, the standardized SEM based on water, 
energy, NDVI, water-saving irrigation area explained 81% 
of the variation in irrigated cropland WUE. Biological 
factors (NDVI and GPP) were the primary factors influ-
encing WUE variability. Water-saving irrigation meas-
ures had strong indirect effect than climate factors (water 
and energy) on variation in WUE. The significant posi-
tive effect of water-saving irrigation on cropland WUE 
was observed in the Shiyang River basin and the Shule 
River basin whereas the negative case was found in the 
Heihe River basin. These findings offer valuable theoreti-
cal insights into the mechanisms governing the interac-
tion between carbon and water of irrigated croplands 
and guide the management of water resources and land 
in agricultural practices within the Hexi Corridor. How-
ever, further research is needed to explore the effects of 
other environmental factors such as rising  CO2 levels 
and nitrogen deposition, as well as planting structure, on 
changes in WUE.
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