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Abstract

Background Agricultural irrigation is an important practice to safeguard crops against drought and enhance grain
yield in arid regions. The Hexi Corridor, known as a classic arid region, faces significant pressure on agricultural pro-
duction and food security due to the scarcity of water resources. There is an urgent need to investigate agricultural
water use of the irrigated regions. Water use efficiency (WUE), defined as the ratio of gross primary productivity (GPP)
to actual evapotranspiration (ET), serves as a valuable indicator linking carbon assimilation and water loss. It enables
the quantification of areas where water can be utilized more effectively. However, the long-term spatiotemporal
dynamics of WUE and driving mechanism in the irrigated areas of the Hexi Corridor remain unclear.

Results This study used GPP calculated by a light use efficiency model (EF-LUE), ET estimated by an ETMonitor
model and irrigated cropland maps across China (IrriMap_CN) to examine the spatiotemporal dynamics of irrigated
cropland WUE and its controlling factors in the Hexi Corridor from 2001 to 2018. The results are as following: (1) The
average annual WUE was approximately 1.34+0.38 g C kg™ H,O yr!, with an increasing trend of 0.012 g Ckg™" H,0
yr‘w, and faster growth observed during 2011-2018 compared to 2001-2010. (2) The contribution of GPP to WUE
trends and WUE interannual variability (IAV) was greater than that of ET. (3) The dominant climatic factors of WUE IAV
in the Hexi Corridor were SPEI, precipitation, and soil moisture. (4) The standardized Structural Equation Model (SEM),
incorporating the relationship between WUE and factors such as water, energy, NDVI, and water-saving irrigation,
explained 81% of the variation in irrigated cropland WUE. Here, biological factors (GPP and NDVI) were the primary
factors influencing WUE variability, and water-saving irrigation had a stronger indirect effect than climate factors
(water and energy) on variation in WUE.

Conclusions Our findings offer valuable theoretical insights into the mechanisms governing the interaction
between the carbon and water of irrigated cropland, guiding the management of water resources and land in agricul-
tural practices within the Hexi Corridor.
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Background

Agriculture is a significant consumer of water, and its
use continues to increase globally with a growing world
population. According to the Food and Agricultural
Organization’s (FAO) report, agricultural water demand
is projected to increase by approximately 35% to sustain
the needs of an estimated 10 billion people worldwide
by 2050 (FAO 2021). Besides, climate change has exac-
erbated the frequency and intensity of droughts, con-
tributing to the depletion of freshwater resources over
the past few decades (Grafton et al. 2013). Because of
increasing demands and significant reductions for fresh-
water resources, water disputes persist in many parts of
the world, especially in arid regions. Water efficiency for
food production remains low and unsatisfactory, lead-
ing to environmental degradation such as groundwater
over-exploitation, reduced river runoff, wildlife habitat
destruction and environmental pollution (United Nations
2021). Therefore, achieving water savings in current agri-
cultural practices is imperative for addressing global food
and water security (Zhou et al. 2021).

Water use efficiency is a vital indicator for evaluating
water consumption and dry matter production (Keenan
et al. 2013; Sun et al. 2018). Initially, crop physiologists
defined water use efficiency (WUE) at leaf-scale as the
quantity of carbon assimilation and crop yield per unit
transpiration (Linderson et al. 2012; Reichstein et al.
2007). At the ecosystem level, WUE is generally described
as the ratio of gross primary productivity (GPP) to actual
evapotranspiration (ET) (Bonan 2008; Fischer and Turner
1978; Ji et al. 2023). Cropland WUE describes the rela-
tionship between water use and crop production, and it
is a widely used indicator for decision-making in agricul-
tural water management (Zhou et al. 2021). Over the past
decade, numerous studies have examined the WUE of
cropland for various crop types and the changes in WUE
under different agronomic practices (e.g., irrigation, ferti-
lization, conservation tillage, plastic film mulching, etc.)
at the field scale. Pan et al. (2024) investigated how water-
nitrogen interaction impacts water and nitrogen use
efficiency in seed maize. Zhang et al. (2019b) examined
the effect of water stress on photosynthesis and WUE
of common reed. Fan et al. (2019) studied whether film
fully-mulched ridge—furrow water harvesting sustainably
improves WUE of corn.

With the advancement of information and remote sens-
ing technologies, an increasing number of researchers
have conducted some global comprehensive and mod-
eling endeavors to evaluate the spatial distribution, trend
and drivers of agroecosystem WUE in the long-term con-
tinuous scale using remote sensing data (Ai et al. 2020;
Wang et al. 2021). The study from Wang et al. (2018a)
revealed the great potential in remotely retrieving
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variability in cropland WUE using time-series MODIS
NDVI data across large regions. The study by Zhao et al.
(2021) characterized the spatial temporal variability of
cropland WUE in China using the satellite-retrieved
data, and discovered the significantly increasing trend
between 1982 and 2017. Bai et al. (2020) found WUE in
dryland ecosystems in China was strongly influenced by
precipitation based on eddy covariance and remote sens-
ing data. Remote sensing-based ecosystem models have
provided powerful tools for monitoring the dynamics of
cropland WUE at regional and global scales.

Variations in WUE are the combined result of changes
in GPP and ET. It is well known that climate change has
significantly affected the relationship between GPP and
ET, thus impacting WUE (Huang et al. 2015). Circum-
stances such as water resource shortages and extreme
environmental conditions, like drought and intense pre-
cipitation, affect regional carbon and water cycles (Wang
et al. 2017). For example, Zhu et al. (2011) showed that
water resource restriction affected WUE, with WUE
decreasing in different ecosystems as the evaporation
ratio increases. Besides, the trend of WUE in relation
to climate change will likely vary under different condi-
tions, such as dry and wet environments (Liu et al. 2015;
Yu et al. 2007; Zhang et al. 2012). In addition to climate,
anthropogenic activities, such as urbanization, irriga-
tion, and fertilization, could also directly impact ecosys-
tem GPP and ET (Yang et al. 2022a). Discrepancies in
agricultural management practice for crops among arid
and highly arid climate zones can lead to the discrepan-
cies of WUE (Wang et al. 2021). Previous studies have
shown that cropland WUE is influenced by various fac-
tors such as climate, environmental conditions, crop
type, and agronomic management practices (Hu and Lei
2021). However, most studies investigating interannual
variations in cropland WUE and their driving mecha-
nisms over a large-scale, long-term continuous period
have primarily focused on climate factors, while often
overlooking agronomic management practices, particu-
larly the impact of irrigation. Yang et al. (2022b) inves-
tigated the interannual dynamics of cropland WUE and
its response to climate variations in single and double
cropping systems across China, without distinguish-
ing rainfed and irrigated regions. The study from Yang
et al. (2023) analyzed the impact of cropland change on
WUE in the Hexi Corridor, but their study did not con-
sider the change in irrigated area. By using Global Food
Security Support Analysis Data (GFSAD) to obtain global
rainfed and irrigated regions for the nominal year 2015,
Aj et al. (2020) assessed WUE in rainfed and irrigated
cropland during 2000-2014. However, their study did not
account for annual changes in irrigated areas. Irrigation
is an important agronomic management practice that
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simultaneously regulates photosynthesis and ET. There
is a general imperative to conduct on the dynamics of
irrigated cropland WUE and its driving factors in dry-
land cropland ecosystems, not only because it is critically
important for improving water-saving irrigation manage-
ment of the dryland cropland ecosystems, and also for
future food security in light of frequent climate anoma-
lies (Bai et al. 2020; Wang et al. 2018a; Yu et al. 2018).
The Hexi Corridor is a typical arid region that expe-
riences abundant light and heat but has limited water
resources, receiving less than 200 mm of rainfall annually
with significant variation throughout the year (Fig. 1).
Due to climate change, extreme environmental condi-
tions (e.g., drought, heat wave and extreme precipita-
tion) are becoming increasingly frequent (Su et al. 2007).
Agriculture in the region relies heavily on irrigation,
mainly sourced from streamflow and groundwater (Bao
and Fang 2007). The human-made agricultural oases are
essential regions for food production in the Hexi Corri-
dor (Wang et al. 2021; Yang et al. 2020). Meanwhile, the
region faces severe water scarcity issues, posing a limit-
ing factor for regional prosperity and economic develop-
ment (Kang et al. 2017). In particular, the government
has launched several water-saving irrigation projects in
the past 20 years, involving expanding water-saving irri-
gation areas in large and medium-sized irrigation areas
(Tian et al. 2020), as well as adjusting planting structures
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based on local conditions (GPWRB 2007). Tian et al.
(2020) showed how climatic factors and human activities
simultaneously regulated photosynthesis and ET in the
Shiyang River basin, and found the relative contribution
of human activities in the water-saving project (WSP) to
ET was 77.5%, while that of climate factors was 22.5%.
Nevertheless, research on the long-term interannual var-
iation of WUE in irrigated areas of the Hexi Corridor and
its response to climatic factors, as well as the water-sav-
ing irrigation, is scare. This has limited our comprehen-
sion of water-carbon interactions in the region, especially
regarding the potential application of effective cropland
management and efficient water utilization protocols.

For this study, we utilized GPP and ET data previously
estimated by the EF-LUE and ETMonitor models, which
have demonstrated superior performance in capturing
the spatial variation of GPP and ET in irrigated cropland
regions than other global GPP and ET products, e.g., the
MODIS and PML-V2 products. The annual irrigated
cropland maps across China (IrriMap_CN) were used to
determine the irrigated area. The main aims of this study
are to (1) evaluate temporal and spatial dynamics of irri-
gated cropland WUE in the Hexi Corridor; (2) quantify
the roles of GPP and ET in controlling cropland WUE;
(3) analyze dominant factors of cropland WUE interan-
nual variability (IAV); (4) illustrate driving mechanism of
WUE based on Bayesian structural equation model.

i e

Fig. 1 The subregions and pattern of unchanged irrigated cropland in the Hexi Corridor during 2001-2018
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Materials and Methods

Study area

The Hexi Corridor positioned in northwest of China
(37°17"—42°48" N, 93°23"-104°12" E), west of the Yel-
low River, between the Qilian Mountains and the Badain
Jaran Desert (Fig. 1). It is a narrow strip of land running
northwest-southeast. This region has a typical arid cli-
mate and falls under the temperate and warm temper-
ate continental climate zones. The Qilian Mountains
are the origin of three significant inland rivers, namely,
the Shiyang River, the Heihe River, and the Shule River,
which give rise to oasis irrigation areas of approximately
2.2x10° km? (Li et al. 2016). The human-made agricul-
tural oases are vital regions for food production, with
the main crops cultivated including wheat, corn, oil-
bearing crops, vegetables, orchards, cotton, and tubers.
According to the 2019 Gansu Water Resources Bulletin,
irrigation cropland accounts for 72.58% of the entirety
of cultivated land in the inland river basin, and irri-
gation water use accounts for more than 80% of total
water consumption (HBGP 2019). In order to meet the
large water demand, groundwater is used to supplement
water resources to irrigate croplands in the Hexi Corri-
dor. Nevertheless, over-exploitation of groundwater has
resulted in severe ecological degradation of oases (Feng
et al. 2015, 2019). The Chinese government has launched
a variety of comprehensive rehabilitation projects within
inland river basins such as water-saving irrigation pro-
jects to preserve the regional ecological environment and
support sustainable economic and social development.

Data
The details of several datasets used in this study are
described in the following sections (Table 1).

Table 1 The details of several datasets used in this study
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ET and GPP data

In this study, we used ET data based on a combined
model with multi-process parameterizations retrieved
from satellite observations (Named ETMonitor), with
a spatial resolution of 0.0083°x0.0083°, covering the
period 2001-2019 (Zheng et al. 2022, 2016). The ETMon-
itor has been calibrated against ground flux observations
and has performed significantly better in capturing the
spatial variations of ET in irrigated cropland regions than
other global ET products (Hu and Jia 2015; Sriwongsi-
tanon et al. 2020; Weerasinghe et al. 2020).

The GPP data utilized in this research were derived
using a light-use-efficiency model specifically designed
for estimating GPP in agroecosystems, known as EF-LUE.
This model incorporates the evaporative fraction (EF)
estimated from the ETMonitor model as a constraining
factor and the model parameters were optimized for dif-
ferent climatic zones using CO, flux measurements from
crop sites (Du et al. 2022).

Irrigated cropland data

Irrigated cropland data utilized in this study were
sourced from Zhang et al. (2022). They obtained annual
irrigated cropland maps across China (IrriMap_CN)
at a resolution of 500 m spanning from 2000 to 2019 by
using a machine-learning method (Zhang et al. 2022).
It achieved high accuracy, ranging from 77.2% to 85.9%,
based on the validation of more than 3000 ground truth
points. We extracted GPP, ET and WUE in irrigated
croplands derived from the annual crop cover data pro-
vided by IrriMap_CN.

Climate, soil moisture and other auxiliary data
Annual 1 km resolution average temperature and accu-
mulated precipitation data in China from National Earth

Variable Dataset/model Resolution Data availability Reference

GPP EF-LUE model 1 km 2001-2019 (Du et al. 2022)

ET ETMonitor model 1km 2000-2019 (Zheng et al. 2022)
Irrigated cropland IrriMap_CN 500 m 2000-2019 (Zhang et al. 2022)
Temperature Bilinear interpolation 1 km 1982-2022 (Peng et al. 2019)
Precipitation

Radiation GLASS 0.05° 2000-2022 (Zhang et al. 2016)
SPEI Random forest 1km 2001-2020 (Xia et al. 2023)
Soil moisture Random forest 1 km 2000-2020 (Zheng et al. 2023)
Wind speed CFMD 0.1° 1979-2018 (He et al. 2020)
Humidity

Pressure

NDVI MOD13A2 1 km 2000-Present (Didan and Bar-

reto Munoz 2019)




Du et al. Ecological Processes (2024) 13:72

System Science Data Center, National Science & Tech-
nology Infrastructure of China (http://www.geodata.
cn accessed 8 March 2024). It adjusted a monthly tem-
perature and precipitation dataset from Peng et al. (2019)
to an annual scale. The original monthly dataset was
spatially downscaled from the 300 Climatic Research
Unit (CRU) dataset using the climatology dataset of
WorldClim.

Downward Shortwave Radiation (DSR) data from the
Global Land Surface Satellite (GLASS) DSR product,
which has a resolution of 0.05 and global DSR based on
MODIS and AVHRR data (Zhang et al. 2014, 2019a). The
AVHRR data were calculated using an improved lookup
table algorithm, while the MODIS data were calculated
using a hybrid algorithm (Zhang et al. 2016). We resa-
mpled data to 1 km using bilinear interpolation method
(Wong et al. 2004).

A resolution of 1 km/monthly soil moisture data from
National Tibetan Plateau/Third Pole Environment Data
Center. The dataset was derived from the European Space
Agency-Climate Change Initiative (ESA-CCI) surface soil
moisture combined product at a resolution of 0.25° by
using Random Forest algorithm (Zheng et al. 2023).

The standardized precipitation evapotranspiration
index (SPEI) data used in this study were obtained from
Xia et al’s (2023) research. They developed a high-pre-
cision machine learning algorithm to calculate grid-
based SPEI at a 1 km resolution across multiple time
scales (1 month, 3 months, 6 months, 12 months, and
24 months) over a large regional area, spanning from
2001 to 2020.

Other meteorological data like wind speed, humid-
ity and pressure were taken from China Meteorological
Forcing Dataset (CFMD), which provides near-surface
meteorological data over China with a temporal/spatial
resolution of three hours/0.1°, covering the period of
1979-2018. This dataset was constructed by fusing mul-
tisource data, including remote sensing products, rea-
nalysis datasets, and station observation data. The CFMD
has undergone a validation against station observations,
which demonstrated its superior performance compared
to the Global Land Data Assimilation System (GLDAS)
(He et al. 2020). Because of the relative coarse resolution
of the data, we just used the statistical values with the
temporal and spatial scales of year/0.1° at the basin level
rather than pixel level.

The study utilized MOD13A2 Normalized Difference
Vegetation Index (NDVI) data, which offer continuity
indices on a per-pixel basis at a spatial resolution of 1 km
(km) (https://search.earthdata.nasa.gov/ accessed 14
March 2024).

Additionally, water-saving irrigation area data from
2001 to 2018 in the Hexi Corridor were taken from the
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Water Resources Bulletin of Gansu Province. The water-
saving irrigation area refers to the area where water-sav-
ing measures such as drip irrigation, micro-irrigation,
and low-pressure pipe irrigation are implemented. By
using the advanced equipment and means during crop
irrigation, water consumption can be reduced while still
meeting the water requirements of crops. Interannual
variation of water-saving irrigation area can reflect the
variation of local irrigation level in the context of imple-
menting water-saving irrigation projects to a certain
extent. Therefore, we used the total area of water-sav-
ing irrigation as the irrigation factor in the SEM model.
Data on the area of major crops in different regions were
sourced from the Gansu Development Yearbook 2019.

Methods

At the ecosystem level, WUE was typically described as
the ratio of GPP to actual ET, as expressed by (Sun et al.
2018):

GPP
ET

WUE = (1)

Trend analysis and mutation test

Trend analysis were performed using the Theil-Sen esti-
mator (Sen 1968) which calculates the slopes of all lines
between each pair of points. Subsequently, the median of
all computed slopes is utilized for the line-fitting process.
This method is highly robust and has greater resilience
against outliers than the simple linear regression method
(Wilcox 2010).

X
9::Aden< / ‘l)%c>i )

J—1

where X is the value of variable in the year, i and j repre-
sent the serial number of years. The result (6), which is
greater than 0, indicates an increase in the variable. Con-
versely, a value less than O represents a decrease in the
variable.

To identify the abrupt change points of the WUE time
series from 2001-2018, the non-parametric Mann—Ken-
dall (M—K) mutant test was employed. This entails find-
ing the intersection between a forward sequence (UF) of
annual WUE and a backward sequence (UB) of the inver-
sion of annual WUE with a confidence level indicating
statistical significance at P<0.05. This approach is useful
in detecting abrupt changes (Wang et al. 2020; Xu et al.
2018; Yang and Yang 2012; Yang et al. 2022a).

Roles of GPP and ET in controlling cropland WUE
This study used a differential equation to quantify the
contribution of GPP and ET to the long-term trend
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of WUE (Yang et al. 2022b). According to Eq. (1), the
first-order differential approximation can be estimated
as follows:

dWUE _ dWUE 5 dGPP  9WUE 5 dET
dt ~ 3GPP dt QET dt

+¢

3)

OWUE/0GPP and oWUE/OET represent WUE changes
resulted from per unit of GPP or ET, respectively (Wang
et al. 2020). ¢ is the system error in the contribution
estimation. The relative contributions of GPP and ET

to WUE trend can be expressed as follows (Yang et al.
2022b):

C(GPP) dWUE  dGPP @)
= X
dGPP dt
dWUE dET
C(ET) = — —_— 5
ED =% % & ©)
dvgi,us , d?ifp and dﬁ—f are estimated as the slopes of linear

regression for WUE, GPP, and ET against time (¢) based
on the least square method, respectively.

Furthermore, the individual proportional contribution
of GPP (Eq. (4)) and ET (Eq. (5)) to the WUE trends can
be represented as follows (Yang et al. 2022b):

Repp = — 2P 00% 6

GPP = C(GPP) + C(ET) 0 (©)
ET

Rer = — SED 00w 7)

C(GPP) + C(ET)

Relative importance analysis

The Lindeman—Merenda—Gold (LMG) method is a
recommended method which has been used in many
published papers to evaluate the relative importance
of correlated input regressors by R* decomposition in
a multiple linear model (Groemping 2006). By utiliz-
ing unweighted averages across sequential R* values
for each variable in all permutations of regressors, this
metric mitigates order effects. Furthermore, the total
R?* is decomposed into non-negative components (Yao
et al. 2017). We used calc.relimp function in R pack-
age to calculate relative importance metrics for the lin-
ear model. The recommended metric is ‘Img; vector of
relative contributions obtained from the LMG method,
which is the contribution averaged over orderings
among regressors (Lindeman et al. 1981). In this study,
we first standardized the data and applied LMG method
to differentiate the contribution of GPP and ET to WUE
IAV in irrigated croplands. And then we further inves-
tigated driving factors of cropland WUE IAV based on
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LMG method. The climatic factors including tempera-
ture, precipitation, radiation, soil moisture, drought
index (SPEI), and biological factor (NDVI) were consid-
ered during the relative importance analysis.

Bayesian structural equation modeling

Bayesian structural equation models (SEMs) are power-
ful models to access interrelationships among observed
and latent variables (Lee and Song 2014). SEM offers a
method to partition the net effect into direct and indi-
rect effects. It allows environmental variables to inter-
act, rather than isolating a single controlling factor
from others like other traditional regression analysis
(Wang et al. 2018b). Many variables affect WUE as an
offset or correlation to its impact on both GPP and ET.
To avoid collinearity among variables, we used precipi-
tation, soil moisture and SPEI to reflect water condi-
tion while temperature, solar radiation, humidity, wind
speed and pressure to reflect energy condition. NDVI
was used to reflect biological factors such as the condi-
tion of crops, and NDVI was also affected by water and
energy. In addition, water-saving irrigation area data
were considered to reflect the effect of human irriga-
tion management to WUE. In the Hexi Corridor, low
precipitation levels often fail to meet water require-
ments of crops, making irrigation essential for crop
growth and production. Additionally, irrigation water
losses from evaporation occurring on bare soil, which
are not correlated with productivity, tend to decrease
WUE (Sun et al. 2015). Irrigation is primarily regu-
lated by anthropogenic water-saving measures aimed
at reducing water loss (Tian and Zhang 2020). Agricul-
ture irrigation management has modified the allocation
of water resources and adjust strategies for water uti-
lization in drylands, thereby influencing the cropland
WUE (Wang et al. 2021).

Before constructing and analyzing the Bayesian SEM
model, the data were standardized to ensure that the
influences of different variables on the model results
have equal weights. Bayesian SEM was created using
PyMC3 package in Python and run with four Markov
chain Monte Carlo (MCMC) chains with 1000 itera-
tions. The MCMC results indicated that Gelman-Rubin
values (R_hat, the ratio of the effective sample size to
the overall number of iterations) were close to one, sug-
gesting convergence of the MCMC chain. The larger
effective sample sizes (ESS) (ess_mean>2000 for all
coefficient estimates) ensure adequate estimation of
the parameters. The estimate of coefficient represents
direct effects (also called path coefficient) and indirect
effects were estimated by multiplying the direct effects
(Yan et al. 2023).
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Results

Spatial pattern of WUE

The spatial distribution of mean annual WUE of irri-
gated cropland for 2001-2018 in the Hexi Corridor
are presented in Fig. 2 (left). The multiyear mean WUE
showed apparent regional heterogeneity and varied
from 0.07 g C kg~* H,0 yr™* to 2.42 g C kg~! H,0 yr™,
with mean value of 1.34+0.38 g C kg™! H,O yr™!. The
high value of WUE (>2 g C kg~! H,O yr™!) occurred in
the Heihe River basin (Ganzhou District), which only
accounted for 3.36% of croplands. The area of high WUE
had high GPP (>1250 g C m™* yr™') but moderate ET
(600-700 mm yr— ) (Figure S1). The relatively high WUE
(>1.6 g C kg™! H,O yr™') mainly distributed in the Heihe
River basin (Linze County, Gaotai County, Suzhou Dis-
trict) and the Shiyang River basin (Liangzhou District,
Yongchang County). The area of low WUE (<0.8 g C kg™
H,O yr ') account for 9.25%, mainly distributed in the
upper Heihe River basin and the Shiyang River basin.
About 42.68% of the total irrigated croplands had WUE
values ranging from 1.2 to 1.6 g C kg™ H,O yr .

At the basin level (Fig. 2 right), the Heihe River basin
had the highest WUE (1.41+0.41 g C kg™ H,0 yr ™)
which attributed to the higher mean value of GPP but
lowest ET. The Shule River basin and the Shiyang River
basin had the similar WUE values, with mean WUE of
1.2840.29 g C kg™! H,O yr ! and 1.29+0.36 g C kg!
H,0O yr~!, respectively. The Shiyang River basin had
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relatively higher GPP and ET. The Shule River basin had
highest ET among three basins.

Temporal trend of WUE

The temporal trend of irrigated cropland WUE from
2001 to 2018 in the Hexi Corridor showed spatial varia-
tions (Fig. 3a). Overall, approximately 80.83% of the total
irrigated cropland area showed an increase in WUE. The
area of Theil-Sen slope higher than 0.03 accounted for
27.06%, which indicated larger increasing trends of WUE,
primarily observed in the middle reaches of the Heihe
River basin (such as Shandan County, Minle County,
Ganzhou District) and the Shiyang River basin (such as
Jinchuan County, Gulang County). The negative trend in
WUE was primarily observed in the Shiyang River basin
(Liangzhou District and Mingin County), a few areas in
the upper-middle reaches of the Heihe River basin (Gan-
zhou District and Gaotai County), and the Shule River
basin (Dunhuang City).

Additionally, the M—K test method was used to iden-
tify the point of change of annual WUE from 2001 to
2018, we found that WUE underwent a significant shift
in 2011 (Fig. 3b). Thus, the whole period was separated
into two period which WUE showed an increasing
trend of 0.004 g C kg H,O yr~! from 2001 to 2011 and
0.006 g C kg H,O yr! from 2011 to 2018, respectively
(Fig. 3¢). In general, WUE experienced a mean increasing
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trend of 0.012 g C kg H,O yr™', which resulted in an  basin (0.016 g C kg H,O yr') being higher than that in
overall increase of 7.89% from 2001 to 2018. the Shiyang River basin (0.009 g C kg™! H,0 yr~') and

As shown in Fig. 3d, WUE varied significantly between  the Shule River basin (0.008 g C kg™! H,0 yr™!). Over
the basins, with the average WUE in the Heihe River the 18-year period, the rate of increase in WUE was
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highest in the Heihe River basin (12.87%), followed by
the Shiyang River basin (4.07%) and the Shule River basin
(3.04%).

Roles of GPP and ET in controlling cropland WUE

In general, irrigated cropland GPP and ET showed
increasing trends in the Hexi Corridor during the
period of 2001-2018, with the average trend of
10937 ¢ C m™2 yr ! and 2785 mm yr~!, respec-
tively (Fig. 4). The contribution of GPP to WUE
trends [C(GPP)=0.026] was greater than that of ET
[C(ET)=0.009]. The similar result was also found at the
basin level. However, the contributions of GPP and ET
to WUE trends were different among basins. The highest
contribution of ET to WUE trend occurred in the Shule
River basin [C(ET)=0.010] while the highest contribu-
tion of GPP to WUE trend occurred in the Heihe River
basin [C(GPP) =0.032], and both GPP and ET showed the
lowest contribution values to WUE trend in the Shiyang
River basin [C(GPP)=0.021, C(ET)=0.006]. In addition,
the Heihe River basin had a highest WUE increasing
trend (0.023 g C kg H,O yr™?!) induced by a significantly
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increasing trend of GPP (13.078 g C m™2 yr') and rela-
tively weakly increasing trend of ET (2.783 mm yr™?).

In order to analyze the roles of GPP and ET in deter-
mining the spatial pattern of irrigated cropland WUE
trends, a composite map of WUE, GPP and ET trends
was created (Fig. 5a). Among irrigated croplands with
increasing trends of WUE, approximately 61.86% of
the irrigated croplands had increasing trends of both
GPP and ET (light green in Fig. 5a) while 13.33% of
irrigated croplands had increasing trends of GPP but
decreasing trends of ET (blue in Fig. 5a), which mainly
occurred in the middle reaches of the Heihe River basin.
About 12.54% of irrigated croplands showed decreasing
trends of WUE, GPP and ET which mainly distributed
in the middle reaches of the Heihe River (Ganzhou Dis-
trict and Gaotai County) and part of the Shiyang River
Basin (Liangzhou District, Minqin County, etc.) (pink
in Fig. 5a). Irrigated croplands with decreasing trends
of WUE but increasing trends of ET and GPP only
accounted for about 4.13% which mainly observed in the
Shule River basin (red in Fig. 5a).

We further compared the contribution of GPP and ET
to irrigated cropland WUE trends (Fig. 5b). The most

B WUE trend
C(GPP)+C(ET)

| C(ET)
mEE C(GPP)

ET trend
GPP trend
Shulehe —
Shiyanghe —
Heihe —
Hexi Corridor
0 5 10

15 0.00

0.02 0.04

GPP trend (g C m? yrfl) ET trend (mm yrfl) WUE trend (g C mm | H,O0 yrfl)
Fig.4 GPP trend, ET trend, WUE trend as well as the contributions of GPP [C(GPP)] and ET [C(ET)] to WUE trend in irrigated croplands during 2001-

2018 in the whole Hexi Corridor and three basins
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area of irrigated croplands (about 86.79%) were con-
trolled by GPP (JR(GPP)| >|R(ET)|), which indicated that
GPP played dominant roles in the temporal trends of
WUE in most regions. Contributions of GPP and ET to
WUE IAV also estimated by LMG method and the rela-
tive importance metrics are normalized to sum to 1 (the
sum of contributions of GPP and ET to WUE IAV is 1).
The relative contribution of GPP to WUE IAV was shown
in Fig. 5¢. There were about 73.7% irrigated cropland area
where WUE IAV was controlled by GPP variation, indi-
cating that GPP also predominantly influenced WUE IAV
in most regions. Area where ET dominated WUE trends

and IAV were primarily concentrated in small regions
within the Heihe River basin (Ganzhou District, Linze
County).

Dominant factors of cropland WUE 1AV

Temperature, precipitation and solar radiation are
critical climatic driving factors for both photosynthe-
sis and transpiration that can affect changes in WUE.
In order to illustrate their impacts on irrigated crop-
land WUE IAV, pixel-wise relative importance analy-
sis was adopted in this study. The relative importance
metrics were depicted in a cyan-magenta-yellow
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(CMY) triangular figure, representing precipitation
(cyan), radiation (magenta) and temperature (yel-
low) (Fig. 6a). The dominant climatic factors of WUE
IAV varied across the Hexi Corridor. There were rela-
tive more areas where precipitation was the predomi-
nant factor of WUE IAV. Temperature dominated area
mainly occurred in Minqin County of the Shiyang River
basin while radiation dominated area mainly occurred
the middle reaches of the Heihe River basin (Shandan
County, Minle County) and Yongchang County of the
Shiyang River basin.
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However, the overall proportion of variance (the coef-
ficients of determination for multiple linear models)
explained by model based on three regressors (precipita-
tion, radiation and temperature) were low in most regions
(Fig. 6b). In addition, we further added SPEI indices and
soil moisture data to consider the impact of drought and
wet conditions on WUE IAV. SPEI indices were calcu-
lated with mean of multiple time scales (see Sect. “Cli-
mate, soil moisture and other auxiliary data” for data
description). Besides, NDVI was used to reflect biologi-
cal factors such as the condition of crops. The coefficients
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of determination were improved with the addition of
SPEI indices, soil moisture and NDVI data (Fig. 6c). It
is indicated that these factors also played an important
role on WUE IAV. The pixel-wise importance of pre-
cipitation, radiation, temperature, NDVI, SPEI and soil
moisture on irrigated cropland WUE IAV shown in the
Fig. 7a, the WUE IAV of 38.14% irrigated croplands was

Page 12 0f 18

controlled by NDVI. This is because water and radia-
tion factors can affect WUE through NDVI. SPEI and
soil moisture were also the influencing factors of WUE
IAV, accounting for approximately 14.2% and 7.34% of
the total irrigated croplands, respectively. Meanwhile,
we input all pixel values of the whole Hexi Corridor as
observations in the model and the relative importance
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metrics were normalized to sum to 1 (Fig. 7b). Overall,
proportion of variance explained by model was 44.69%.
SPEI demonstrated the highest relative importance (0.25)
in influencing irrigated cropland WUE IAV, followed by
precipitation (0.20), soil moisture (0.17), NDVI (0.16),
temperature (0.13), and radiation (0.10). These findings
suggest that climate-related factors accounted for less
than half of the IAV changes in WUE and water-related
factors were more sensitive than energy-related factors to
WUE variation in the Hexi Corridor.

At the basin level, we input all pixel values of each basin
area as observations in the model (Fig. 7b). The dominant
factors varied among different basins. The dominant
driver of WUE IAV was temperature in the Heihe River
basin while radiation dominated WUE IAV in the Shi-
yang River basin. For the Shule River basin, the WUE IAV
was mainly affected by NDVL

Driving mechanism of WUE

We constructed an SEM model to illustrate four main
categories of influencing factors (water, energy, NDVI
and water-saving irrigation area) on WUE variability at
the regional scale (see Sect. “Bayesian structural equa-
tion modeling” for method description). The standard-
ized SEM explained 81% of the variation in irrigated
cropland WUE (Fig. 8), thereinto, GPP had the highest
direct effect (0.806) whereas NDVI exerted the highest
indirect effect on WUE (0.325) (Table 2). Notably, energy
and water-saving irrigation management had a positive
indirect effect on WUE (0.033 and 0.189), but water had

Hexi Corridor

5 Y
‘Water-saving Q’,Lb‘
irrigation

Heihe River basin

|Water-saving|
irrigation

Fig. 8 Structural equation model revealing the driving mechanism of the temporal dynamics of irrigated cropland WUE based on cascade
relationships in the Hexi Corridor, the Shiyang River basin, the Heihe River basin and the Shule River basin
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Table 2 The indirect effects of water, energy, NDVI and water-
saving irrigation to WUE variations for 2001-2018 in different
basins

Subregions Water Energy NDVI Water-
saving
irrigation

Shule River -0.117 —0.048 0318 0.262

Heihe River 0.010 0.181 0.142 —-0.270

Shiyang River 0.051 0.021 0.295 0.242

Hexi Corridor —0.033 0.033 0.325 0.189

a negative indirect effect (— 0.033) on variation in WUE
because of a higher direct effect on ET. Water mainly
affected WUE indirectly via ET. NDVI was influenced by
water and energy (0.047 and 0.255). These results indi-
cated that biological factors (NDVI and GPP) were the
primary factors influencing WUE variability. Apart from
biological factors, water-saving irrigation measures also
played an important role in increasing WUE, which had
strong indirect effect than climate factors (water and
energy) on variation in WUE.

At the basin level, water had a wreaker positive effect
on WUE IAV in the Heihe River (0.01) basin and the Shi-
yang River basin (0.051), while it had a negative effect in
the Shule River basin (- 0.117) (Table 2). Energy showed
relatively strong positive indirect effect on WUE vari-
ability in the Heihe River basin (0.181) than the Shiyang
River basin (0.021), but negative indirect effect (— 0.048)
in the Shule River basin. Besides, water-saving irrigation

Shiyang River basin

™
Q
\Water-savin;
irrigation
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had strong positive indirect effect on variation in WUE
in the Shulehe River basin and the Shiyanghe River basin
(0.262 and 0.242), which was just lower than NDVI (0.318
and 0.295). This can be attributed to positive direct effect
to GPP and negative effect to ET (Fig. 8). But in the Heihe
River basin, water-saving irrigation measures had nega-
tive direct effect on variation in WUE (— 0.270) because
of the strong positive effect to ET.

Discussion

Comparison of WUE characteristics

In this study, the mean value of irrigated cropland WUE
in the Hexi Corridor was 1.34+0.38 g C kg™! H,O yr™},
and WUE showed spatial heterogeneity. A study reported
that global irrigated cropland WUE based on MODIS
GPP and ET data was 1.62 g C kg™ ! H,O (Ai et al. 2020),
which is higher than WUE value in this study. The study
in China from Yang et al. (2022b) found the irrigated
croplands in the Gansu-Xinjiang area had the lowest
WUE values, but in the Huang—Huai—Hai Plain crop-
lands with irrigation produced the highest WUE. We
further compared WUE values with the regional study.
Tian et al. (2020) found that the mean annual cropland
WUE in the Shiyang River Basin from 2000 to 2014 was
1.575 g C kg™! H,0 yr™}, higher than our result in the
Shiyang River Basin (1.29+0.36 g C kg™! H,O yr™!). A
possible reason for the lower value in our study is that
we extracted the WUE of the irrigated area. The rain-
fed croplands usually had higher WUE than irrigated
croplands (Ai et al. 2020). Besides, this study found the
Heihe River basin had the highest WUE, followed by
the Shiyang River basin and Shule River basin. Based
on the composition of major crop planting areas among
the three basins (Figure S2), we found the Heihe River
basin has the highest rate of corn cultivation, with maize
being identified as the most water-efficient crop (Mbava
et al. 2020). Our result also showed the relatively high
WUE (>1.6 g C kg™ H,O yr™!) in Linze County, Gaotai
County, Suzhou and Liangzhou District. This is consist-
ent with the study by Niu et al. (2018), which found that
areas of high crop WUE occurred in the Gaotai and Linze
Counties based on the Soil and Water Assessment Model
(SWAT).

This study demonstrated that the majority of irri-
gated cropland area WUE had a positive trend during
2001-2018 and larger increasing trends of WUE mainly
occurred in middle reaches of the Heihe River basin
(Shandan County, Minle County, Ganzhou District) and
Shiyang River basin (Jinchuan County, Gulang County).
A previous study detected an increasing pattern of crop-
land WUE in the Shiyang River basin during the period
of 2000-2014, and the relative increase occurred mostly
in the middle and lower oasis (Tian and Zhang 2020; Tian
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et al. 2020). Besides, WUE underwent a significant shift
in 2011 and interannual change was larger in the second
stage (2001-2011) than the first stage (2011-2018) in this
study. Tian and Zhang’s (2020) study also indicated that
the cropland WUE time series in the Shiyang River basin
increased more during 2011-2014 than during 2006—
2010 as the first stage of water-saving projects (Shiyang
River Basin Management Plan) including Hongyashan
and 7 other irrigation districts completed by 2010. Apart
of that, for the Shule River basin, Comprehensive Plan-
ning of Rational Utilization of Water Resources and
Ecological Protection in Dunhuang from 2011 to 2020
gradually completed water-saving transformation in
irrigation district. For the Heihe River basin, Ecological
Water Transfer Project from 2000 to 2015 implemented
water-efficient agricultural practices (Huang et al. 2017).
It appears that the relative increase after 2011 is attrib-
uted to the implementation of water-saving projects.

Driving process of irrigated cropland WUE

In general, the contribution of GPP to WUE trends and
WUE IAV was greater than that of ET. This is consistent
with the findings of Wang et al. (2018b), which indicated
that the IAV of WUE in cropland ecosystems was pri-
marily attributed to GPP, based on data from several typi-
cal crop flux tower sites. Yang et al. (2022a) also found
that GPP dominated the increase in WUE in Northwest
China in terms of the directly influencing factors. How-
ever, Tian and Zhang (2020) found cropland WUE in the
Shiyang River basin was mainly controlled by ET rather
than GPP based on MODIS products. A low correlation
between WUE and GPP was also observed in their study,
which probably because of underestimation of MOD17
GPP in cropland (Tian and Zhang 2020). Site-level
evaluation of MOD17 GPP based on eddy covariance
measured GPP indicated that MODIS underestimated
cropland GPP (Liu et al. 2014; Turner et al. 2005).

The dominant climatic factors of WUE IAV in irrigated
croplands varied greatly across the Hexi Corridor. Apart
from temperature, precipitation and radiation, SPEI and
NDVI had significant effects on WUE IAV. Overall, mul-
tiple linear models based on climatic variables explained
44.69% of cropland WUE IAV, supporting the general
assertion that agricultural management practices such
as agricultural inputs and irrigation efficiency have a
greater impact on the variations of cropland WUE than
climatic factors (Sun et al. 2017). At the basin level, WUE
IAV is dominated by temperature in the Heihe River
basin, which is consistent with the previous study that
maximum temperature dominated the crop WUE varia-
tions in the Heihe River basin, especially at the long-term
scales (Niu et al. 2018).
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In contrast to studies focusing solely on individual
influencing factors affecting water use efficiency (WUE),
the structural equation model considered a comprehen-
sive relationship about ecosystem to introduce drivers on
WUE systematically and distinguish direct and indirect
effects. Apart from the climatic variables, the irrigation
practice in the field, particularly water-saving irrigation
measures, played important roles in improving irrigated
cropland WUE (Du et al. 2010; Farooq et al. 2019; Li
et al. 2016). Thus, our SEM considers the effect of irriga-
tion management on WUE variations by integrating the
water-saving irrigation area. The results found that GPP
was the dominant direct factor and NDVI was the domi-
nant indirect factor of WUE variability. This is consistent
with the study conducted in China using flux site data,
which found that biological factors (leaf area index (LAI),
fractional vegetation coverage (FVC) and GPP) were the
primary factors influencing WUE variability (Dou et al.
2024). Besides, water-saving irrigation exerted a stronger
effect than water and energy in the Hexi Corridor. The
significant positive effect of water-saving irrigation on
cropland WUE was observed in the Shiyang River basin
and the Shule River basin whereas the negative case was
found in the Heihe River basin. The negative impact of
water-saving irrigation on WUE in the Heihe River basin
was mainly due to the strong positive effect to ET. Irri-
gation water losses from evaporation tend to decrease
WUE. This indicated there remained water-saving irri-
gation potential to improve the WUE in the Heihe River
basin, and less water should be supplied to maintain a
relatively high WUE, without reducing crop GPP. Liu and
Song (2020) found that water consumption by the crop
far exceeded the actual water requirement in the Heihe
River basin.

Analysis of uncertainty

In this study, WUE was derived by GPP data from EF-
LUE model and ET data from ETMonitor model. Com-
pared with WUE data calculated from the MODIS GPP
and ET, ETMonitor ET demonstrates superior perfor-
mance in irrigated croplands (Zheng et al. 2022, 2023),
and EF-LUE GPP proves to be more effective in captur-
ing significant negative GPP anomalies during drought
or heat-wave events (Du et al. 2022). Nevertheless, there
are still some uncertainties in cropland WUE estima-
tion from GPP and ET model structure and input data.
Moreover, both GPP and ET model did not integrate
agronomic practices like irrigation and fertilizer applica-
tion. These indices directly or indirectly affect the range
of WUE. Additionally, we calculated WUE without dis-
tinguishing the types of crops and accumulated annual
WUE over a full year rather than just during growing sea-
sons. This was due to insufficient information regarding
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crop types, planting, and harvesting times, all of which
could introduce bias in estimating WUE for irrigated
croplands. Apart from that, the study tried to consider
possible influencing factors like climatic factors and
water-saving irrigation measures, but some limitations
still exist. For example, we did not consider the effects of
other environmental factors including rising CO,, N dep-
osition on WUE changes and changes in planting struc-
ture. Besides, water-saving measures were not considered
in the pixel relative importance reanalysis because we
just obtained statistic water-saving irrigation area data at
the basin level rather than pixel level.

Conclusions

This study evaluated the spatial-temporal dynamics of
irrigated cropland WUE and its driving factors in the
Hexi Corridor during 2001-2018. The average annual
WUE of irrigated cropland WUE varied from 0.07 g C
kg™ H,O yr* to 2.42 g C kg™' H,0 yr!, with mean value
of 1.34+0.38 g C kg™! H,O yr~. The temporal dynamics
of WUE exhibited significantly increasing trends in most
areas, with a faster growth observed during 2011-2018
compared to 2001-2010, primarily due to water-saving
projects. Overall, GPP contributed more to WUE trends
and IAV than ET across most of the Hexi Corridor. Cli-
matic variables including temperature, precipitation and
radiation, SPEI and NDVI explained 44.69% of cropland
WUE IAV. SPE], precipitation, and soil moisture were the
three dominant factors of WUE IAV in the Hexi Corri-
dor. Additionally, the standardized SEM based on water,
energy, NDVI, water-saving irrigation area explained 81%
of the variation in irrigated cropland WUE. Biological
factors (NDVI and GPP) were the primary factors influ-
encing WUE variability. Water-saving irrigation meas-
ures had strong indirect effect than climate factors (water
and energy) on variation in WUE. The significant posi-
tive effect of water-saving irrigation on cropland WUE
was observed in the Shiyang River basin and the Shule
River basin whereas the negative case was found in the
Heihe River basin. These findings offer valuable theoreti-
cal insights into the mechanisms governing the interac-
tion between carbon and water of irrigated croplands
and guide the management of water resources and land
in agricultural practices within the Hexi Corridor. How-
ever, further research is needed to explore the effects of
other environmental factors such as rising CO, levels
and nitrogen deposition, as well as planting structure, on
changes in WUE.

Abbreviations

WUE Water use efficiency

GPP Gross primary productivity
ET Evapotranspiration

AV Interannual variability
SEM Structural equation model
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SPEI Standardized precipitation evapotranspiration index
NDVI Normalized Difference Vegetation Index

DSR Downward Shortwave Radiation

GLASS Global Land Surface Satellite

ESA-CCI  European Space Agency-Climate Change Initiative
CFMD China Meteorological Forcing Dataset

GLDAS Global Land Data Assimilation System

LMG Lindeman-Merenda-Gold
MCMC Markov chain Monte Carlo

SWAT Soil and Water Assessment Model
MY Cyan-magenta-yellow
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