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Abstract

Introduction: The emergent wetland species Typha domingensis (cattail) is a native Florida Everglades
monocotyledonous macrophyte. It has become invasive due to anthropogenic disturbances and is out-competing
other vegetation in the region, especially in areas historically dominated by Cladium jamaicense (sawgrass). There is
a need for a quantitative, deterministic model in order to accurately simulate the regional-scale cattail dynamics in
the Everglades.

Methods: The Regional Simulation Model (RSM), combined with the Transport and Reaction Simulation Engine
(TARSE), was adapted to simulate ecology. This provides a framework for user-defineable equations and
relationships and enables multiple theories with different levels of complexity to be tested simultaneously. Five
models, or levels, of increasing complexity were used to simulate cattail dynamics across Water Conservation Area
2A (WCA2A), which is located just south of Lake Okeechobee, in Florida, USA. These levels of complexity were
formulated to correspond with five hypotheses regarding the growth and spread of cattail. The first level of
complexity assumed a logistic growth pattern to test whether cattail growth is density dependent. The second
level of complexity built on the first and included a Habitat Suitability Index (HSI) factor influenced by water depth
to test whether this might be an important factor for cattail expansion. The third level of complexity built on the
second and included an HSI factor influenced by soil phosphorus concentration to test whether this is a
contributing factor for cattail expansion. The fourth level of complexity built on the third and included an HSI factor
influenced by (a level 1–simulated) sawgrass density to determine whether sawgrass density impacted the rate of
cattail expansion. The fifth level of complexity built on the fourth and included a feedback mechanism whereby the
cattail densities influenced the sawgrass densities to determine the impact of inter-species interactions on the
cattail dynamics.

Results: All the simulation results from the different levels of complexity were compared to observed data for the
years 1995 and 2003. Their performance was analyzed using a number of different statistics that each represent a
different perspective on the ecological dynamics of the system. These statistics include box-plots, abundance-area
curves, Moran’s I, and classified difference. The statistics were summarized using the Nash-Sutcliffe coefficient. The
results from all of these comparisons indicate that the more complex level 4 and level 5 models were able to
simulate the observed data with a reasonable degree of accuracy.
(Continued on next page)
* Correspondence: gkiker@ufl.edu
1Frazier Rogers Hall, University of Florida, PO Box 110570, Gainesville, FL
32611-0570, USA
Full list of author information is available at the end of the article

© 2012 Lagerwall et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:gkiker@ufl.edu
http://creativecommons.org/licenses/by/2.0


Lagerwall et al. Ecological Processes 2012, 1:10 Page 2 of 21
http://www.ecologicalprocesses.com/content/1/1/10
(Continued from previous page)

Conclusions: A user-defineable, quantitative, deterministic modeling framework was introduced and tested against
various hypotheses. It was determined that the more complex models (levels 4 and 5) were able to adequately
simulate the observed patterns of cattail densities within the WCA2A region. These models require testing for
uncertainty and sensitivity of their various parameters in order to better understand them but could eventually be
used to provide insight for management decisions concerning the WCA2A region and the Everglades in general.

Keywords: Typha, Modeling, Ecology, Dynamics, Model complexity, Water conservation area 2A, Transport and
reaction simulation engine, Regional simulation model
Introduction
The Everglades, commonly known as the “River Of
Grass” Douglas (1947), in southern Florida, USA, once
covered some 28,500 km2. This wetland ecosystem was
sustained by the Kissimmee River, flowing through Lake
Okeechobee and southwards as a shallow, slow-moving
sheet of water flowing freely to the estuaries of Biscayne
Bay, Ten Thousand Islands, and Florida Bay. The chan-
nelization of the Everglades around 1948 caused the re-
duction of the original wetland areas by up to 50%, with
related declines in dependent wildlife. In addition to the
changes in hydrology, continuous mining, agriculture,
and urbanization activities have resulted in invasive and
exotic plants becoming established in place of the ori-
ginal vegetation, altering habitats and often forming
mono-crop stands (single species environments) (Odum
et al. 2000).
The Comprehensive Everglades Restoration Plan (CERP)

was implemented in 2000 (USACE, S.F.R.O 2010a) with
the explicit goal of restoring some of the Everglades’ former
extent and ecosystem functioning. The main focus of
CERP has been on improved management of water quan-
tity and water quality with the assumption that if the water
quantity and quality are adequate, the ecology will follow
suit. There is, however, an increasing focus on the eco-
logical impacts of various management decisions, and
these efforts center on improving species diversity and pro-
tecting existing habitats (USACE, S.F.R.O 2010b). In an
effort to achieve these goals, stormwater treatment areas
(STA) were constructed just south of the Everglades agri-
cultural area (EAA) to filter out phosphorus from the
water before releasing it into the water conservation areas
(WCA). The WCAs act as impoundments for water
storage and flood control as well as serving as wildlife habi-
tat. Water flows from these WCAs into the Everglades
National Park (Guardo et al. 1995).
Typha domingensis as an invasive species
The emergent wetland species Typha domingensis (cattail)
is a native Everglades monocotyledonous macrophyte,
typically occurring as a sparse complement alongside
Cladium jamaicense (sawgrass) stands. These two species
have significantly different morphology, growth, and life
history characteristics (Miao and Sklar 1998), and this has
enabled the cattail to expand prolifically under the altered
conditions in the Everglades. In the 1980s, the area
covered by cattail stands in WCA2A doubled, expanding
southward into the sawgrass marshes (Willard 2010).
Cattail has hence been labeled as an indicator species, or
species of concern, and its distribution is used to deter-
mine the effectiveness of various water management deci-
sions. Cattail expansion has been studied extensively
(Miao 2004; Wu et al. 1997; Newman et al. 1998), and it
has been determined that there are four main external fac-
tors that affect its growth and aid in cattail’s dominance
over sawgrass. These factors include water depth, hydro-
period, soil phosphorus concentration, and disturbance
(Newman et al. 1998). It was determined that the
optimum water depth at which cattail grows is between
24 and 95 cm (Grace 1989), with a hydroperiod of 180–
280 days (Wetzel 2001). In terms of soil phosphorus
concentration, cattail has been found to be invading the
natural sawgrass habitats of WCA2A along a soil phos-
phorus gradient running from the northwest (high con-
centrations) to the southeast (low concentrations). Urban
et al. (1993) mention that, given an adequate water depth,
soil phosphorus concentration is the next most important
factor in determining cattail expansion/invasion. In creat-
ing their water quality model for simulating soil phos-
phorus concentrations downstream of the Everglades
STAs, Walker and Kadlec (1996) determined that the
lower bound soil phosphorus concentration for the
optimum growth of cattail was 540 mg/kg. Fires and other
disturbances such as hurricanes were also found to affect
the colonization of areas by cattail by altering local topog-
raphy and nutrient concentrations (Newman et al. 1998).
Ecological model designs to address everglades systems
In order to assess these various influences on cattail and
other ecological components, a variety of computation
models were designed and implemented. These models
aid our understanding of complex systems and allow
scientists and managers to evaluate different ecological
outcomes of decisions before the more costly task of their
implementation (Fitz et al. 2011). To ensure numerical
efficiency, most spatially distributed models have their
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equations, laws, and assumptions “hard-coded” into their
programming code. This creates a “fixed-form” model,
with changes in the functioning coming through extensive
code re-writes and careful redesign around logical struc-
tures. Dynamic “free-form” simulation models, such as
STELLA (Costanza and Voinov 2001), QnD (Kiker and
Linkov 2006; Kiker et al. 2006), and the Kepler system
(Ludascher et al. 2006) are generally written using an
object-oriented programming (OOP) language such as
C++ (Stroustrup 2000) or Java (Arnold and Gosling 1998),
as opposed to a linear language such as FORTRAN (Cary
et al. 1998). When interacting with free-form models and
their algorithms, designers do not interact directly with the
program code. Rather, they influence objects through
placing data, storage, and logical structures into either a
graphical user interface (STELLA, Kepler) or within a
meta-code structure such as the eXtensible Markup
Language (XML) (Harold 1998).
There are a number of fixed-form ecological models

currently in use across the Everglades region. Of these,
the Across Trophic Level System Simulation (ATLSS)
(Gross 1996) and the Everglades Landscape Model
(ELM) (Fitz and Trimble 2006b) are probably the most
well-known. These and most other models available for
modeling cattail in the Everglades are entirely qualita-
tive, that is, they involve switching between one species
and another. The majority of these current ecological
models are also stochastic, that is, based on probabilities
and a degree of randomness and uncertainty. They gen-
erally run as post-process models, using hydrological
data output by other models such as the South Florida
Water Management Model (SFWMM) (Fitz et al. 2011).
The ATLSS vegetation succession model is used to deter-

mine the succession of one habitat type to another
(e.g., sawgrass to cattail). The ATLSS model simulates with
an annual time step on square 500 m cells and uses a sto-
chastic cellular automata model to switch between vegeta-
tion types. Currently there is no way to determine vegetation
densities within vegetation types (Duke-Sylvester 2005).
The ELM model uses a counter to switch between spe-

cies by accumulating days of water level and soil phos-
phorus concentration above certain limits. The model then
switches between species based on their preferred hydro-
period and historical soil phosphorus concentrations (Fitz
and Trimble 2006a). The ELM model is the only currently
available simulation tool for evaluating water quality across
the Everglades landscape and does not simulate detailed
ecological features (Fitz et al. 2011).
Another modeling effort by Wu et al. (1997) used

Markov chain probabilities to switch between Cladium and
Typha species. This model was in fact used to inform the
ATLSS nutrient and fire disturbance model (Wetzel 2003).
Again, this is a stochastic, species-specific, presence/ab-
sence-type model.
A modeling effort by Tarboton et al. (2004) developed
a set of habitat suitability indices (HSI) for evaluating
water management alternatives. These HSIs provided a
range of probabilities for a particular species occurring
across the landscape and were based predominantly on
local hydrological conditions such as depth (maximum,
minimum, and mean), hydroperiod, velocity, and flow
direction.
Given that water quantity (depth) and quality (soil

phosphorus concentration) affect cattail (and other
plants) growth and distribution, there is a need to inte-
grate these components to determine the more detailed
biological outcomes of an Everglades ecological model.
There is also a need for a quantitative model to provide
continuous density values for specific vegetation rather
than simply presence/absence information. Given that
the Everglades restoration includes a large and ongoing
research effort, there is a need to efficiently test and
explore potentially useful algorithms in an adaptable,
ecological modeling engine.

The RSM/TARSE ecological model
A combined effort of the University of Florida, the South
Florida Water Management District (SFWMD), and the
US Geological Survey created the Transport and Reac-
tion Simulation Engine (TARSE) (Jawitz et al. 2008),
which was originally designed to run in line with the
SFWMD-developed Regional Simulation Model (RSM)
(SFWMD 2005c) to simulate soil phosphorus dynamics
in the Everglades system. The OOP structure of this
coupled hydrologic/water quality model, along with the
user-definable inputs and interactions, allowed for the
extension of this model beyond its original purpose into
ecological processes and features. The coupled RSM/
TARSE (henceforth referred to as RTE) model, imple-
mented with the goal of modeling ecological features
within the southern Florida landscape and presented in
this paper, is a spatially distributed, free-form model simu-
lating cattail biomass distribution and dynamics across
WCA2A. Using the RTE model to couple vegetation
dynamics with phosphorus dynamics has been alluded to
by Jawitz et al. (2008), Muller (2010), and Perez-Ovilla
(2010) during their respective TARSE-influenced, WQ
simulations. Zajac (2010) used vegetation types to
influence Manning’s n and evapotranspiration coefficients.
These parameters were informed by initial vegetation
types and not by changing vegetation distribution and
density over time.
There is therefore a definite need for the RTE model,

which allows one to model a vegetation species quantita-
tively and ultimately determine the ecological impact of
various management scenarios falling under the CERP ini-
tiative. This new engine would accommodate different
algorithms or new species as available data or new
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knowledge becomes available. It would allow for interac-
tions and feedback effects within species as well as among
different species and with other environmental factors.

Objectives and hypotheses
The primary objective of this paper is to test and apply a new
spatially distributed, deterministic, free-form (user-definable),
quantitative ecological model of cattail dynamics. A signifi-
cant advantage of this free-form modeling approach is that
multiple ecological algorithms of differing complexity can
be quickly implemented and tested simultaneously, instead
of through time-consuming code additions. As a first step
of our objective, we tested the influence of increasing cattail
model complexity on reducing uncertainty in simulated
output (Lindenschmidt 2006). Five levels of increasing
complexity were selected to model the cattail densities.
These five levels of complexity were chosen to correspond
with various hypotheses regarding the growth and spread
of cattail in the Everglades, namely:

1. Whether cattail growth is density dependent.
2. Whether water depth is an important factor for
cattail expansion.

3. Whether soil phosphorous is a contributing factor
for cattail expansion.

4. Whether sawgrass density impacts the rate of cattail
expansion.

5. Whether inter-species interactions between cattail and
sawgrass contribute to the observed cattail dynamics.

Following the methodology used by Jawitz et al.
(2008), a simple logistic function (Keen and Spain 1992)
formed the base of the complexities with water depth and
soil phosphorus concentration [the two most important
factors influencing cattail growth according to Newman
et al. (1998)] and sawgrass interaction influencing the
higher levels of complexity. A second step in our objective
was to use an existing ecosystem and its monitoring data
to analyze performance of our five candidate models. The
entire WCA2A vegetation dataset (1991, 1995, and 2003),
obtained from Rutchey et al. (2008), was chronologically
divided into model training and testing sections. Training
of the model was conducted for the years 1991–1995,
where the growth factor (found in Equation 3) was fitted
to the level 1 complexity. As a third step in our objective,
model testing was conducted on the two time periods of
1991–2003 (testing 1) and 1995–2003 (testing 2), respect-
ively, with the testing 2 time period being equivalent to a
blind test (due to different initial conditions). The 1991
and 1995 vegetation maps were used to initialize the
training, testing 1, and testing 2 simulations, respectively.
Model output from the training, testing 1, and testing
2 simulations was compared with the 1995 and 2003
vegetation maps. Model output was compared to
observed patterns, and the most accurate level of
complexity thus determined.

Methods
In order to reproduce the observed cattail patterns, both
hydrological and water quality data were used as inputs
for the ecological model. To this end, it was decided to
use the Regional Simulation Model (RSM), which was
developed by the South Florida Water Management Dis-
trict (SFWMD) to replace the popular SFWMM, coupled
with the Transport and Reaction Simulation Engine
(TARSE) to provide the base structure for modeling
cattail dynamics across the test site.

The Regional Simulation Model (RSM)
Developed by SFWMD, the RSM simulates hydrology
over the South Florida region. It is often thought of as the
successor to the successful SFWMM, referred to as the
“2-by-2” model for its 2 mile resolution (SFWMD 2005a).
The RSM operates over a variable triangular mesh grid, in
contrast to the 3.22 km (2 mile) square grid of the
SFWMM; this enables higher resolution in areas of con-
cern as well as the ability to delineate canals (SFWMD
2005c). The RSM uses a weighted, implicit, finite volume
method to simulate two-dimensional diffusional flow and
hence implicitly simulates groundwater flow and surface
water flow (SFWMD 2005c). The OOP design structure of
RSM allows for the abstraction and modularity of various
components (SFWMD 2005b). A result of this is that
there are two engines that comprise the RSM, namely the
Hydrologic Simulation Engine (HSE) and the Manage-
ment Simulation Engine (MSE). The HSE simulates all the
hydrological processes, while the MSE simulates various
management or control regimes. These two engines
interact at runtime to provide an accurate representation
of the hydrodynamics of the region (SFWMD 2005c).

Simulating transport and reactions using TARSE
The TARSE was recently developed to simulate water
quality (WQ) components within the RSM model for areas
in the Everglades system (Jawitz et al. 2008). The TARSE
model was designed to be as generic as possible, to allow
multiple water quality components to be simulated with a
simple change in the input file. It was first implemented as
another engine to be incorporated within the RSM frame-
work, along with the HSE and MSE, called the Water
Quality Engine (WQE). Due to its structure, the WQE
does not simulate hydrology and requires a hydrologic
driver to feed it values of flow and depth at every time step
(SFWMD 2008b). TARSE has since been decoupled from
RSM and implemented with other hydrologic drivers such
as Flow and Transport in a Linked Overland-Aquifer
Density Dependent System (FTLOADDS) (Wang et al.
2007; Muller 2010) and VFSMOD (Muñoz-Carpena et al.
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1999; Perez-Ovilla 2010). TARSE solves the advection-
dispersion-reaction equations (ADRE) over an unstruc-
tured triangular mesh (James and Jawitz 2007). The ADRE
is represented by Equation 1, and every term is a function
of a two-dimensional spatial coordinate x, with compo-
nents (x1, x2), and time, t.

d Φhcð Þ
dt

þ ∇ chu� hD�⋅∇cð Þ þ hf2c ¼ hf1c1 ð1Þ

Where t is time [T], c(x,t) is the concentration [M/L3],
and Φ(x,t) is the porosity of the medium (which may be
1 for surface water) [L3/L3]. h(x,t) is the water depth [L]
or thickness of the saturated zone in groundwater flow,
u(x,t) is the specific discharge [L/T] of water (either sur-
face or groundwater), and D*=D*(u(x,t)) is the dispersion
tensor (a function of u). f1(x,t) is a source rate [M/L3.T]
with associated concentration c1, and f2(x,t) is a first-
order decay rate [M/L3.T]. The density [M/L3] of the
water is assumed to be constant.
The basis of TARSE involves transfers (e.g., settling,

diffusion, growth) between various stores, such as soil
water column solutes, pore water solutes, macrophytes,
and suspended solids. The specifics of these stores, and
the transfers among them are user-definable in the XML
input file (Jawitz et al. 2008). TARSE equations are com-
posed of pre-equations, equations, and post-equations.
Pre- and post-equations are used for implementing con-
ditional (“if-then-else”) statements as part of pre- and
post-processing after the main processing in the equa-
tions. For example, pre-processing could be used to de-
termine if the current water depth [m] is above the
threshold for cattail optimum growth and thus reduce
the depth influence factor accordingly. If the depth is
less than the optimum growing depth, then the influence
factor decreases accordingly. The logic just described is
represented by Equation 2, as described by Grace (1989),
where cattail optimum depth is 70 cm.

If depth > cattail optimum depthð Þ
Then

depthHSI ¼ 1� depth� cattail optimum depth
109

� �
Else

depthHSI ¼ 1� cattail optimum depth� depth
112

� �
ð2Þ

The main equations are structured as ordinary differ-
ential equations (ODE) (SFWMD 2008a).
The RSM/TARSE coupling represents possibly the first

time that a free-form dynamic system model has been
integrated with a fixed-form, spatially distributed, hydro-
logic model (Muller 2010). This unique coupling,
with user-defined interactions operating across a
spatially distributed domain, lends itself to simulating
ecological behaviors (growth, death, movement, and
feeding) as well as the original WQ interactions. The
model can currently only solve ADRE movement and
as such is insufficient for ecological/animal move-
ment. Attempts to include some form of Lagrangian-
type movement in this model are discussed by
Lagerwall (2011).

Model application
In order to test the influence of increasing complexity on
reducing uncertainty in model output (Lindenschmidt
2006), five levels of increasing complexity were selected to
model the cattail densities. Following the methodology
used by Jawitz et al. (2008), a logistic function (Keen and
Spain 1992) was used for the most basic, level 1
complexity, due to its density dependent growth and rapid
(exponential) early stages of growth. The logistic function
is represented in Equation 3.

dP
dt

¼ GF � P � 1� P
K

� �
ð3Þ

Where P is the population density [M/L2], t is time
[T], GF is the constant growth rate [T-1], and K is the
carrying capacity or maximum population density [M/L2].
Level 2 is a water-depth-influenced level 1 complexity.

A water depth factor (habitat suitability index) ranging
from 0 to 1 is multiplied by the carrying capacity in the
logistic function. The depth factor decreases linearly
from 1 as the current depth either rises above or drops
below the optimum (70 cm) growing depth. This depth
factor can be seen in Equation 4.

dP
dt

¼ GF � P � 1� P
K � DepthF

� �
ð4Þ

Where P is the population density [M/L2], t is time
[T], GF is a constant growth rate [T-1], DepthF is the
water depth factor [L/L], K is the carrying capacity or
maximum population density [M/L2].
Level 3 is a soil-phosphorus-influenced level 2 com-

plexity, with the soil phosphorus factor being incorpo-
rated in a similar fashion to the depth factor and can be
seen in Equation 5.

dP
dt

¼ GF � P � 1� P
K � DepthF þ phosphorusFð Þ=2

� �
ð5Þ

Where P is the population density [M/L2], t is
time [T], GF is a constant growth rate [T-1], DepthF
is the water depth factor [L/L], phosphorusF is the
soil phosphorus factor [M/L3/M/L3], and K is the
carrying capacity or maximum population density
[M/L2]. The soil phosphorus factor behaves like a lo-
gistic function, increasing from 0 to 1 as soil phos-
phorus concentration increases to 1,800 from 200
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mg/kg, as described by Walker and Kadlec (1996),
and can be seen in Equation 6.

phosphorusF ¼ 1þ e�
phosphorus�1034

144

!�1 
ð6Þ

Where phosphorusF is the soil phosphorus HSI, ran-
ging from 0 to 1, and phosphorus is the current soil
phosphorus concentration (mg/kg).
Level 4 builds on a level 3 complexity with an added

sawgrass interaction factor, much like the soil phos-
phorus and depth factors. It decreases linearly from 1 to
0.16 as sawgrass densities increase to 1,958 from 0 g/m2

(Doren et al. 1999), which is their reported maximum
density (Miao and Sklar 1998). The sawgrass is set to
grow according to a level 1 complexity as in Equation 4,
thus the level 4 complexity is represented by Equation 7.

dP
dt

¼ GF � P � 1� P
K DepthF þ phosphorusF þ sawgrassFð Þ=3

� �

ð7Þ
Where P is the population density [M/L2], t is time

[T], GF is a constant growth rate [T-1], DepthF is the
water depth factor [L/L], phosphorusF is the soil phos-
phorus factor [M/L3/M/L3], sawgrassF is the sawgrass
influence factor [M/L2/M/L2], and K is the carrying cap-
acity or maximum population density [M/L2]. The saw-
grass factor varies according to Equation 8.

sawgrassF ¼ 1þ �0:84� sawgrass=KSAWð Þð Þ ð8Þ

Where sawgrassF is the sawgrass HSI ranging from 0
to 1, sawgrass is the current sawgrass density, and KSAW

is the sawgrass carrying capacity.
The level 5 complexity is the same as level 4, but with

a density-dependent influence on the level 1 sawgrass
model, which is represented by Equations 9 and 10, re-
spectively.

dP
dt

¼ GF � P � 1� P
K � cattailF

� �
ð9Þ

Where P is the population density [M/L2], t is time
[T], GF is a constant growth rate [T-1], cattailF is the
cattail factor ranging from 0 to 1, and K is the carrying
capacity or maximum population density [M/L2].

cattailF ¼ 1þ �0:84� cattail=KCATð Þð Þ ð10Þ
Where cattailF is the cattail HSI ranging from 0 to 1,

cattail is the current cattail density, and KCAT is the cat-
tail carrying capacity.
The depth, soil phosphorus, and sawgrass interaction
factors are all calculated using the pre-equations, similar
to that presented in Equation 2. These factors are then
incorporated into the main growth equations, presented
in Equations 4, 5, 7 and 9 representing levels of com-
plexity 2 through 5, respectively.
In TARSE, components are listed as either mobile or

stabile. Mobile components are moved in the water
using the ADRE equations, while the stabile components
do not move and only undergo the reaction part of the
ADRE. Given the complexities associated with simulat-
ing wind-borne or water-borne transportation of seeds
and rhizome expansion—which is another mode of ex-
pansion noted by Miao (2004)—all mesh elements were
initialized (seeded) with cattail, with areas originally not
containing cattail being seeded with the minimum value
of 10 g(dry weight)/m2. This assumption represents the
presence of a seed bank, providing cattail the opportun-
ity to colonize an area as soon as conditions become fa-
vorable. Vegetation then is modeled as a stabile
component, with no means for dispersal, or in another
way we assume “infinite dispersal.” The latter assump-
tion is supported by very high values of dispersal for
seeds in the Everglades, enhanced by the diffused pres-
ence of biotic (animals) and abiotic (water, wind) disper-
sal vectors (Miao and Sklar 1998). Also, as a result of
this current inability for modeled dispersal, the max-
imum influence that the aforementioned factors such as
phosphorusF, sawgrassF, and cattailF can have has been
limited so that they reduce the cattail population to 1%
of its maximum density.

Test site
The test site used for ecological model development and
testing was the WCA2A (Figure 1). WCA2A is a 547
km2 managed wetland just south of Lake Okeechobee,
FL, and accounts for about 6.5% of the total area of the
Everglades. It came into existence in 1961 with the con-
struction of the L35-B canal and receives inflow from
the Stormwater Treatment Areas (STAs), before dischar-
ging into downstream water conservation areas, and
eventually into the Everglades National Park (Urban
et al. 1993). According to Rivero et al. (2007b), the re-
gion has an average annual temperature of 20°C, and
precipitation between 1,175 and 1,550 mm. The eleva-
tion range in WCA2A is between 2.0 and 3.6 m above
sea level, which generates a slow sheet flow from the
northwest to the southwest of the region. The hydrology
is controlled by the SFWMD at a number of inlet and
outlet structures (green squares in Figure 1) along the
surrounding canals (blue lines in Figure 1). The land-
scape is composed of dominant sawgrass marshes, shrub
and tree island communities, and invasive cattail com-
munities (van der Valk and Rosburg 1997). WCA2A has



Figure 1 Test site, Water Conservation Area 2A (WCA2A), in the northern Everglades. Green squares represent inlet and outlet control
structures; blue lines represent canal structures. Triangles represent the mesh used for simulation, with green triangles representing the border
cells used in the central difference method. The red squares fall on zonal elements 209, 244, and 380, representing regions of typically high,
medium, and low cattail densities, respectively.

Lagerwall et al. Ecological Processes 2012, 1:10 Page 7 of 21
http://www.ecologicalprocesses.com/content/1/1/10
been used extensively as a research site by the
SFWMD, with extensive trial and monitoring pro-
grams for a number of biogeochemical components,
especially soil phosphorus and vegetative structure
(Rivero et al. 2007a). The triangular mesh grid used
for simulation is also displayed in Figure 1, with the
green border cells used for numerical stability of the
hydrological RSM component. An overview of the
HSE setup for WCA2A, which provides the
hydrological operating conditions, can be found in
SFWMD (2008c).

Initial conditions, boundary conditions, and time
series data
Cattail vegetation maps (Figure 2) are used for the initial
conditions as well as for comparing model output with
measured data. Hydrological time series are used for initial
and boundary conditions along the surrounding canals.



Figure 2 Formatting of cattail input maps. (a) 1991, (b) 1995, (c) 2003 from Rutchey et al. (2008). Rasterized raw data on the left, overlaid with
the WCA2A triangular mesh in the middle, and the final triangular mesh cattail input map on the right.
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Table 1 Cattail class and density values for formatting
data maps

Vegetation class Cattail density
value (g/m2)

Sawgrass density
value (g/m2)

1 - High density cattail 1,000 10

2 - Medium density cattail 600 600

3 - Low density cattail 200 1,000

4 - Other 10 1,600
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Using RSM, the hydrological boundary conditions are con-
verted into depth values across the domain, which are then
used as inputs in the level 2 complexity algorithm. Soil
phosphorus concentration maps provide initial conditions
and an influence factor for the level 3 complexity algo-
rithm. Sawgrass vegetation maps are used as initial condi-
tions for the level 1 complexity sawgrass model, which
serves as an influence factor for the level 4 and level 5
complexity cattail algorithms. The following sections pro-
vide additional detail on these model inputs.

Hydrological time series
The hydrology of WCA2A is controlled primarily by the
operation of control points along the S10 and L35-B
canals. The hydrology data were obtained from the
SFWMD, which uses the WCA2A site as a test site for the
RSM. The average depth for the region ranges from 60 to
90 cm (SFWMD, 2008c). The input dataset consisted of a
daily time series of hydraulic head values (m) at the inlet
and outlet control structures of WCA2A (represented by
the green squares in Figure 1) for the years 1979–2000
(Wang 2009). The time series have since been updated to
2008 for all control structures using data collected from
the DBHYDRO website (SFWMD 2009).

Soil phosphorus
A gradient of soil phosphorus exists along WCA2A, with
a high concentration near the inlets at the north, and a
low concentration at the outlets in the south. This soil
phosphorus gradient has been widely documented and
studied (DeBusk et al. 1994; Grunwald et al. 2004, 2008;
Rivero et al. 2007a,b; Grunwald 2010). Given the unavail-
ability of spatial soil phosphorus data beyond map classifi-
cations (Grunwald 2010), soil phosphorus input maps
were created by overlaying the WCA2A mesh on the
existing maps obtained from Grunwald et al. (2004, 2008).
The soil phosphorus map of 1990 was used for the model
training period of 1991–1995, while the soil phosphorus
map of 2003 was used for both the testing 1 (1991–2003)
and testing 2 (1995–2003) simulation periods. Due to the
poor quality of these soil phosphorus input maps and the
inability of TARSE to adequately simulate phosphorus dy-
namics in the WCA2A region (as it is still in develop-
ment), the soil phosphorus concentration itself was not
simulated, i.e., the static soil phosphorus concentration
provided by the input maps was used to inform the model
throughout the simulation period.

Cattail and sawgrass
Vegetation maps for WCA2A were obtained for the years
1991, 1995 (Rutchey 2011), and 2003 (Wang 2009), which
were all used in Rutchey et al. (2008). These maps pro-
vided density (g/m2) distributions across the test site for
cattail. The negative correlation between sawgrass and
cattail has been reported by Doren et al. (1999) and
Richardson et al. (2008), and various other vegetation
maps of the area, namely 1991 (Jensen et al. 1995), 1995
(SFWMD 1995), 1999 (SFWMD 1999), and 2003 (Wang
2009), confirm this negative correlation. Although saw-
grass density is related to more environmental factors
than only cattail density (Miao and Sklar 1998), a simple
negative correlation with the cattail maps was used in
order to assign densities to the sawgrass maps. For ex-
ample, high sawgrass density values (1,600 g/m2) were
assigned to regions with typically low cattail density
values, and low sawgrass density values (600 g/m2) were
assigned to regions with high cattail density values.
The program ArcMap (ESRI Environmental Systems

Resource Institute 2010) was used to create a uniform
raster map from the original images which had a mini-
mum mapping unit of 50 m2 (Rutchey et al. 2008). The
vegetation class values were converted to density values
according to Table 1, with vegetation class 4 (other) re-
lating to the absolute minimum (residual) cattail density,
representing the seed bank. The input file was created
by overlaying the mesh grid of 385 triangles (510 trian-
gles total—which includes a row of triangles along the
border) on the rasterized vegetation map and calculating
the mean value of all raster cell density values within
each triangular element. This new aggregated map was
used to create the input file. A graphical overview of this
process for the data maps can be seen in Figure 2.
The final sawgrass maps are viewable in Figure 3. The

maximum densities of 1,240 g/m2 for cattail and 1,958 g/m2

for sawgrass were reported by Miao and Sklar (1998). An
overview of the parameter descriptions for the increasing
levels of complexity can be found in Table 2.

Statistical analysis of simulated and monitored biomass
Besides a side-by-side visual comparison of the model
output, there were three sets of statistical analysis tech-
niques that were used to compare the model results and
the raw data. These metrics, commonly used in litera-
ture for comparing both single- and multi-species pat-
terns (Fortin and Dale 2005; Muneepeerakul et al. 2008;
Convertino et al. 2009), analyzed the local, global, and
autocorrelation structure of observed and modeled vege-
tation patterns. All metrics were accompanied by a



Figure 3 Sawgrass input maps for the years 1991, 1995, and 2003, respectively.
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Nash-Sutcliffe coefficient (McCuen et al. 2006), repre-
sented by Equation 11, which provides a singular num-
ber for the comparison of the model statistics and how
they compare to the observed data. The coefficient is a
comparison of model results vwith the mean of the data.

Ef ¼ 1�
Xn

i¼0
yi � ŷð Þ2Xn

i¼0
yi � y�ð Þ2

ð11Þ

Where Ef is the Nash-Sutcliffe coefficient, ŷ is the pre-
dicted variable, yi is the observed variable, �y is the mean
of the observed variable, and n is the sample size. A
Nash-Sutcliffe value of 1 means that the model com-
pletely matches the data, while a value of 0 means
that the model performs no better than the mean of
the data. Any value less than 0 is interpreted as a
poor representation of the data.
A direct comparison between model output and the

data was performed with the use of a classified difference
technique (Kiker 1998). Since the data maps were initia-
lized with a minimum density of 10 g/m2 to account for
movement between triangular elements that is not simu-
lated in this model application, a difference between
model output and the data value falling within 20 g/m2
Table 2 Parameter description for the increasing levels of com

Parameter Parameter description Levels
influenced

A

Cattail Cattail density 1,2,3,4,5 C

CATGF Cattail growth rate 1,2,3,4,5 C

DepthF Water depth influence 2,3,4,5 C

phosphorusF Soil phosphorus concentration influence 3,4,5 C

Sawgrass Sawgrass density 4,5 S

SAWGF Sawgrass growth rate 4,5 S
was considered a “perfect” match. This is loosely based on
the fact that Miao and Sklar (1998) reported a roughly
10% error in measurement of the maximum density of
1,240 g/m2. So, for example, if the data value was 10 g/m2

(representing a typical non-cattail region), and the model
output was 12 g/m2, with a difference of 2 g/m2 (falling
within the 20 g/m2 range), then this would be considered
a “perfect” match. The next class of differences lies within
the 200 g/m2 range, which is the value assigned to the low
cattail density class during the formatting and creation of
the input data maps. This 200 g/m2 range is also half the
range between the successively higher cattail density
classes. The third class of differences lies within 400 g/m2,
which can be thought of as a data class difference (e.g., be-
tween low and medium densities) or also as being within
40% of the maximum possible difference (the maximum
data density is set as 1,000 g/m2). Finally, any difference
above the 400 g/m2 threshold is placed in the fourth class
of differences and represents a significant misrepresenta-
tion of the data by the model.
A box and whiskers plot (Ott and Longnecker 2004)

was created with all model element values compared
with their corresponding data element values. The
desired figure is a plot with the means and ranges
plexity studied

ffected variables Parameter
equation/logic

attail Population density

attail Rate of increase of population

attail carrying capacity, Cattail Equation 2

attail carrying capacity, cattail Equation 6

awgrass, cattail carrying capacity, cattail Population density

awgrass Rate of increase of population
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corresponding to the associated data ranges. The box
and whiskers plots cover the entire range of possible
values from 0 to 1,240 g/m2.
Moran’s I statistic (Cliff and Ord 1970; Paradis 2010)

was used to determine the spatial autocorrelation be-
tween cells separated by an increasing distance. Moran’s
I is represented by Equation 12.

I ¼
Xn

i¼1

Xn

j¼1
xi � xð Þ xj � x

� �
W
Xn

i¼1
xi � x�ð Þ2

ð12Þ

Where xi is the current cell value, xj is the value of the
cell separated by a given distance, x(bar) is the mean,
and W is the number of cells surrounding the current
one and found within the given distance. These values
are plotted against an increasing cell-pairwise distance,
Figure 4 Results for (a) training (1991–1995), (b) testing 1 (1991–2003
4, and 5 complexities. The historical patterns these results are compared
classes for visual comparison only.
as in Marani et al. (2006), to determine the trend in
spatial autocorrelation across the entire region.
A landscape-scale abundance-area plot (Martin 1980;

Michalski and Peres 2007) was used to measure the
average change in density across the test site. One hun-
dred randomly distributed cells are used as base cells.
From these, the densities of all cells falling within a
given radius are summed. This total is then divided by
the number of base cells and plotted against the area of
circles with an increasing radius as in Martin (1980).
A trend in the regional mean density was plotted with

a daily timestep for a visual comparison of the trends be-
tween the different levels of complexity. This was
repeated for the individual levels of complexity and
selected zones (elements) within the region, for a more
detailed view of the effect of external parameters on dif-
ferent areas of the region. Elements 209, 244, and 380,
), and (c) testing 2 (1995–2003) simulations for the level 1, 2, 3,
to are in the first column. Densities have been aggregated into eight



Figure 5 Regional and zonal trends for (a) training, (b) testing 1, and (c) testing 2 simulation periods, for all five levels of complexity.
The points at the beginning and end of the trends represent the observed data densities.
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located in the northeast, central, and southwest, were
selected as representative elements for typically high,
medium, and low cattail densities, respectively. These
elements are marked by red squares in Figure 1 and are
useful for evaluating local vegetation indicators.

Model training and testing
There were three time periods over which the model
was simulated using the available data maps of 1991,
1995, and 2003. Training was performed for the time
period 1991–1995 using the level 1 complexity to es-
tablish the growth rate (6.7 × 10-9 g/g.s), and results
from the other levels will be due solely to the effect
of their included external parameters. It is therefore
expected that the results of the other levels of com-
plexity will not be as accurate as the level 1 com-
plexity for this time period. Testing of the model
was performed for the time period 1991–2003. This
provides an extended forecast based on the original
calibration time period and initial data. Finally the
1995–2003 time period was used as a blind test of
the model, using different initial conditions and de-
termining its ability to accurately predict the density
distribution of the 2003 cattail map.
Figure 6 Regional statistics for training period (1991–1995) and all fiv
initial and final data values), (b) abundance-area (the black line represents t
black line represents the data).
Results and discussion
From the cattail maps of Figure 2 and those in Rutchey
et al. (2008), a trend in cattail distribution over the years
is observable. It appears that cattail density and distribu-
tion increased from 1991 to 1995. From 1995 to 2003
the general distribution continued to increase but with
more dispersed patches of high-density cattail. This may
be related to a reduction in the overall dispersal or to an
increased local speciation. Through the use of best
management practices, the total phosphorus load
entering WCA2A for the period 1995–2004 was reduced
by roughly 36% (Richardson et al. 2008), which may have
also had a role in the dispersal noted above.
The results of the simulations and analyses are dis-

played in Figures 4, 5, 6, 7, and 8. Figure 4 shows the
model output maps for the different simulation periods,
and all five levels of complexity, compared to the final
data maps. These density maps have had their values
aggregated into eight classes for visual comparison only.
A better depiction of these trends is found in the classi-
fied difference maps of Figure 9 below. Figure 5 shows a
time series plot for the five levels of complexity across
all three simulation periods. It provides added insight
into the trends of the model, without relying purely on
e levels of complexity. (a) Regional mean trend (red dots represent
he data), (c) box plot (data plot on the left), and (d) Moran’s I (the



Figure 7 Regional statistics for testing 1 period (1991–2003) and all five levels of complexity. (a) Regional mean trend (red dots represent
initial and final data values), (b) abundance-area (the black line represents the data), (c) box plot (data plot on the left), and (d) Moran’s I (the
black line represents the data).
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the end points. The plots are for the regional mean
density (R), in red, and elements 209 (blue), 244 (green),
and 380 (cyan). The three statistics and comparison time
series for the calibration period 1991–1995 can be found
in Figure 6. The regional mean time series plot for all
five levels of complexity can be found in Figure 6a, the
abundance-area plot in Figure 6b, the boxplot in
Figure 6c enables a comparison of the spread of model
densities with that of the observed data, and the Moran’s
I plot is found in Figure 6d. Figures 7 and 8 display the
same three statistics and regional mean density trends as
in Figure 6 for the other two simulation periods, namely
1991–2003 and 1995–2003.
When considering the first hypothesis, or level of

complexity, that cattail growth is density dependent, we
note the following points. For the training (1991–1995)
time period, the level 1 complexity’s spatial density dis-
tribution (Figures 4 and 9) is the most similar to the
observed 1995 data. The density trend (Figure 5) is
smooth and slowly increasing for all observed points
(red dots). The regional trend ends directly on the data
density. The southwest (element 380) and central
(element 244) trends over-predict the data points. The
abundance-area statistic (Figure 6b) follows the data
trend (black line) the closest. The mean and distribution
of densities (Figure 6c) are relatively close to the data.
The Moran’s I statistic follows the data (black line) trend
relatively closely (Figure 6d). All of these results from
the training period are expected because this level of
complexity was used for calibration over this time
period. For the two testing simulation periods, the level
1 complexity clearly overestimates the historical data
(Figures 4 and 9). The density trend (Figure 5b,c)
remains smooth but overestimates the observed data, ex-
cept for element 380 in Figure 5c which remains low,
possibly due to the low initial starting density and rela-
tively short time period. The abundance-area statistic
(Figures 7b and 8b) shows significant over-prediction of
the data trend (black line). The mean density is still low,
but the distribution is significantly skewed toward the
higher densities (Figures 7c and 8c). This is evidence
that a spatial distribution of densities is more inform-
ative than simply using the mean for the area or a pres-
ence/absence type model. Moran’s I statistic follows the
data (black line) trend relatively closely (Figures 7d and
8d). The results of these analyses confirm that although



Figure 8 Regional statistics for testing 2 period (1995–2003) and all five levels of complexity. (a) Regional mean trend (red dots represent
initial and final data values), (b) abundance-area (the black line represents the data), (c) box plot (data plot on the left), and (d) Moran’s I (the
black line represents the data).
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cattail may indeed have a density-dependent/logistic
growth pattern as we are able to simulate observed data
during the training period, our inability to simulate
observed data for the two training periods indicates that
there are certainly other parameters affecting the growth
and distribution of this species.
When considering the second hypothesis, or level of

complexity, that cattail growth/expansion is dependent
on water depth, we note the following points. For all
time periods (training, testing 1, and testing 2), the level
2 complexity’s spatial density distribution (Figures 4 and 9)
is consistently lower than the observed values. This is
confirmed in the trend analysis (Figure 5a,b,c), where all
the observed elements (209, 244, and 380) and the re-
gional trend are consistently below the observed values.
The only exception is element 380 in Figure 5a, where
there is hardly any change in the element’s density, and
this is possibly due to the low initial density value of that
element. The abundance-area statistic for all time periods
(Figures 6b, 7b, 8b) is significantly lower than the
observed trend. Similarly, the distribution of densities for
all time periods (Figures 6c, 7c, 8c) is much reduced. For
the Moran’s I statistic, the model is relatively close to the
data trend but consistently has a longer (the longest) tail.
This implies that cells further away have an observable
impact on the density of any other cell. This would be
due to the fact that the water depth in every cell has an
effect/influence on every other cell in the region. We
know that water depth is an influential factor in cattail
growth (Newman et al. 1998; Miao and Sklar 1998), how-
ever the results of these analyses indicate that the current
model (level 2 complexity) is overly influenced by this
parameter. It is expected that the influence of this param-
eter will be reduced as it is “diluted” with other para-
meters in the higher complexity models.
When considering the third hypothesis, or level of

complexity, that cattail growth/expansion is dependent
on soil phosphorus concentration, we note the following
points. The spatial density distribution (Figures 4 and 9)
for level 3 lies somewhat in-between that for level 1 and
level 2. Except for the training period, which slightly
under-predicts the observed values, the two testing peri-
ods appear to more accurately predict the observed
density distribution. This is confirmed with the trend
analysis (Figure 5a,b,c), where at least the regional trend
is at or relatively close to the observed values. As with



Figure 9 Classified difference maps for (a) training (1991–1995), (b) testing 1 (1991–2003), and (c) testing 2 (1995–2003) simulations
for the level 1, 2, 3, 4, and 5 complexities. The classified differences of the data maps these results are compared to are in the first column
(historical patterns).
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the level 2 complexity, element 380 tends to under-
predict the observed value. However, element 209 tends
to predict the observed value better than either of the
previous two levels of complexity. The abundance-area
statistic (Figures 6b, 7b, 8b) shows consistent under-
prediction of the observed trend, but also shows consist-
ently higher values than the level 2 trend and is closer to
the data than the level 1 trend. The distribution of dens-
ities for all time periods (Figures 6c, 7c, 8c), although
greater than the level 2 complexity, is still significantly
lower than the observed distribution. The Moran’s I
trend is followed closely for all time periods (Figures 6d,
7d, 8d). The results of these analyses confirm that soil
phosphorus is a significant influencing factor in the dis-
tribution of cattail, although the water depth parameter
remains highly influential. The level 3 complexity is
better able to predict cattail in areas of typically high
phosphorus or of high cattail density than the previous
two levels of complexity.
When considering the fourth hypothesis, or level of

complexity, that sawgrass density may impact the rate
of cattail expansion, we note the following points.
The spatial density distribution (Figures 4 and 9) is
closer to the observed values than the previous levels
of complexity. This is confirmed in the trend analysis
(Figure 5 a,b,c), where most notably all of the ele-
ments tend to better predict the observed values,
except for element 244 in Figure 5c, which over-
predicts the observed density and in turn raises the
regional trend above the observed value as well. The
abundance-area statistic only slightly under-predicts
the observed trend during the training time period



Lagerwall et al. Ecological Processes 2012, 1:10 Page 17 of 21
http://www.ecologicalprocesses.com/content/1/1/10
(Figure 6b). During the two testing time periods, the
statistic indicates a slight over-prediction of the
observed trend, but results show better predictions
than any of the previous levels of complexity. The
density distribution (Figures 6c, 7c, 8c) is significantly
higher than the level 2 and level 3 complexities, and
equal to (Figure 6c; training) or less than (Figures 7c,
8c; testing) the level 1 complexity. This means that
the level 4 complexity consistently approximates the
observed densities for the region better than the other
levels of complexity for all time periods, albeit with
slightly elevated minimum densities. The Moran’s I
statistic (Figures 6d, 7d, 8d) follows the observed
trend relatively well for all time periods. Although the
Figure 10 Classified difference summary. Percentage of cells occurring
training (1991–1995), (b) testing 1 (1991–2003), and (c) testing 2 (1995–200
level 4 complexity tends to have slightly elevated
minimum densities, like the level 1 complexity, the
general result from these analyses is that the level 4
complexity is able to simulate the cattail densities
through the region consistently better than any of the
previous levels of complexity. We can thus conclude
that including a simulated sawgrass density does in-
deed impact the rate of cattail expansion and improve
simulation results.
When considering the fifth hypothesis, or level of

complexity, that inter-species interactions between
cattail and sawgrass contribute to the observed cattail
dynamics, we find the following: The spatial density
distribution (Figures 4 and 9) does not predict the
within each class, for all levels of complexity and time periods (a)
3).



Table 3 Summary of Nash-Sutcliffe values comparing
model and observed data for box plot, Moran’s I, and
abundance-area statistics (represented by Figures 6, 7,
and 8, respectively) for level 1, level 2, level 3, level 4,
level 5, training (199–1995), testing 1 (1991–2003), and
testing 2 (1995–2003) simulations

Year level 1-to-1 Box plot Moran’s I Abundance

1991-1995 1 0.74 0.98 0.98

2 0.13 0.99 −0.94

3 0.49 0.95 0.23

4 0.74 0.98 0.96

5 0.74 0.98 0.96

1991-2003 1 −0.75 0.97 −1.89

2 0.02 0.86 −0.35

3 0.23 0.98 0.44

4 0.49 0.98 0.77

5 0.49 0.98 0.76

1995-2003 1 −0.95 0.99 −0.80

2 0.14 0.94 −0.29

3 0.36 0.97 0.51

4 0.39 0.99 0.77

5 0.39 0.99 0.77
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observed values significantly better than the level 4
complexity. The trend analysis (Figure 5a,b,c) is al-
most identical to that of the level 4 complexity in
every respect. All of the statistical analyses and distri-
butions for all time periods (Figures 6b,c,d; 7b,c,d; 8b,
c,d) are almost identical to those of the level 4 com-
plexity. The result of these analyses is that the level 5
complexity does not predict the observed values with
greater success than the level 4 complexity. While
inter-species interactions might well have an effect
with a different model structure, the current modeling
arrangement has shown the beginning of diminishing
returns with respect to model complexity and
predictive capability.
With regard to the Moran’s I statistic, all the complexity

levels followed the same basic trend as the data (repre-
sented by the black line) and were all 0 by around the
18,240 m mark. This distance corresponds approximately
to the width of the region, while the total distance of
36,480 m in the plot corresponds to the longest north–
south distance of the region. It is believed that the statistic
drops to 0 by the 18,240 m mark due to overlapping and
boundary effects and that this elevates the Nash-Sutcliffe
coefficient for all levels of complexity in this statistic.
A summary of the Figure 9 classified difference maps

can be found in the bar chart of Figure 10, which shows
the percentage of triangular elements falling within each
class for all five levels of complexity and simulation peri-
ods. Upon further inspection of these plots, the level
4 and level 5 complexities consistently outperform the
other levels of complexity, with either the highest
percentage of combined classes 0 (< 20 g/m2) and 1
(< 200 g/m2), or the lowest percentage of combined
classes 2 (< 400 g/m2) and 3 (> 400 g/m2).
A summary of the three statistics found in Figures 6b,c,d;

7b,c,d; and 8b,c,d is provided by the Nash-Sutcliffe coeffi-
cients in Table 3 and can be visually compared in Figure 11,
with the box plots (or 1-to-1 comparisons) located in
Figure 11a, abundance-area in Figure 11b, and Moran’s I in
Figure 11c. From Figure 11 it can be noted that the level 4
and 5 complexities, which include depth, soil phosphorus,
and sawgrass interactions, consistently perform better than
the other levels of complexity. A point to note regarding
the level 5 complexity is that despite the fact that it does
not offer a significant improvement in predictive capability
over the level 4 complexity, it does not predict the observed
values any worse than the level 4 complexity either.

Conclusions
The methods of modeling cattail for ecological models cur-
rently in use were compared, their similarities and differ-
ences were noted, and a knowledge gap identified: there
doesn’t yet exist a method of quantitatively and determinis-
tically determining the spatial distribution of cattail in the
Everglades. A coupled free-form/fixed-form model was
introduced to solve this problem. An added benefit of the
free-form nature of the RSM/TARSE coupled model is the
user-definable equations of interaction, which can be
modified as data and/or new theories become available.
This new ecological implementation of the model (RTE)
was successfully applied towards modeling cattail dynamics
across the WCA2A test site for training (1991–1995),
testing (1991–2003), and blind test (1995–2003) simu-
lation periods. Five algorithms, with increasing com-
plexity, were used to match the historical data. Upon
analysis of the performance of these different levels, it
can be concluded that the level 4 and 5 complexities,
which include depth, soil phosphorus, and sawgrass
interaction parameters, are the most suitable models for
matching the historical data. The Nash-Sutcliffe coefficient
was used to distinguish the success of different models.
Both local and landscape-scale indicators were used to

perform the comparison between historical and modeled
cattail patterns. The average local cattail density was
estimated with a box-plot analysis; the pairwise-cell
comparison of local cattail densities was analyzed with
Moran’s I; and, the regional increase with area of the
local cattail density was estimated through the
abundance-area relationship. The box-plot and the
abundance-area were the most meaningful patterns to
discriminate models in terms of their ability to represent
the observed patterns.



Figure 11 Nash-Sutcliffe summary of statistics. A graphical representation of Table 3. The level 4 and 5 complexity models perform
consistently well in comparison with all the other models.
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The autocorrelation structure of the cattail patterns were
well represented by all the models at each complexity level.
This is possibly due to the fact that through overlapping
and boundary effects, cattail densities leveled off after
roughly half the distance (top to bottom) that was used to
calculate the statistic. It may be more representative if fu-
ture calculations considered only half this maximum dis-
tance, where the variations would carry a greater weighting.
Our simulation results would be in agreement with the
studies of Newman et al. (1998) and Miao and Sklar
(1998), in which water depth and soil phosphorus concen-
tration were the most important factors aiding in cattail ex-
pansion. Our results also include an interaction parameter
with sawgrass, which is of interest in the region. Thus, we
confirm the importance of considering species dependen-
cies or interactions in reproducing the cattail patterns even
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in water-controlled areas in which the anthropic-driven
variables would be expected to dominate the species
processes and the resulting patterns.
Limitations of our current modeling approach may in-

clude the element/triangle size, with a range of 0.5–1.7
km2 (Wang 2009). This constraint was dictated by the
choice of the RSM that simulates hydrological processes.
Although the imposed grid-unit has a relatively coarse
size in which there is still considerable heterogeneity of
the environmental features (Zajac 2010), RTE has
proven to be capable of reproducing the dynamics of
cattail and sawgrass at the landscape scale using the level
4 and level 5 complexities. This makes it a valuable tool
for exploring potential management scenarios in water
conservation areas in the Everglades and possibly in
other water-controlled wetlands.
Further investigations would consider the quantifica-

tion of the importance of water-controlled drivers and
species traits (dispersal) for vegetation patterns, the sta-
bility/instability states of species under varying stressors,
the prediction of future management scenarios, and the
comparison with neutral-based models.
In terms of further model development and added com-

plexity, efforts have been made towards more accurate rep-
resentation of fauna movement through the use of
Eulerian–Lagrangian (grid-independent) particle move-
ment (Lagerwall 2011), as well as using vegetation types/
densities to influence the hydrology with a dynamically
linked Manning’s n parameter (Zajac 2010). While creating
more dynamically linked parameters is an ongoing task,
these linkages remain a challenge to implement due to the
difficulties associated with parameterizing (training) a
model with feedback effects. This feedback relationship be-
tween ecological and hydrological model components may
be quite important to the function and resilience of these
ecosystems and is certainly a subject of further research.
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