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Abstract

Introduction: Conceptual hydrological models are useful tools to support catchment water management.
However, the identifiability of parameters and structural uncertainties in conceptual rainfall-runoff modeling prove
to be a difficult task. Here, we aim to evaluate the performance of a conceptual semi-distributed rainfall-runoff
model, HBV-light, with emphasis on parameter identifiability, uncertainty, and model structural validity.

Results: The results of a regional sensitivity analysis (RSA) show that most of the model parameters are highly
sensitive when runoff signatures or combinations of different objective functions are used. Results based on the

generalized likelihood uncertainty estimation (GLUE) method further show that most of the model parameters are

well constrained, showing higher parameter identifiability and lower model uncertainty when runoff signatures or

combined objective functions are used. Finally, the dynamic identifiability analysis (DYNIA) shows different types of
parameter behavior and reveals that model parameters have a higher identifiability in periods where they play a

crucial role in representing the predicted runoff.

values of reduced uncertainty.

Uncertainty analysis

Conclusions: The HBV-light model is generally able to simulate the runoff in the Pailugou catchment with an
acceptable accuracy. Model parameter sensitivity is largely dependent upon the objective function used for the
model evaluation in the sensitivity analysis. More frequent runoff observations would substantially increase the
knowledge on the rainfall-runoff transformation in the catchment and, specifically, improve the distinction of fast
surface-near runoff and interflow components in their contribution to the total catchment runoff. Our results
highlight the importance of identifying the periods when intensive monitoring is critical for deriving parameter
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Introduction

Hydrological models are important tools for water
resource planning and management and in assessing the
effects of climate and land use change on the hydrological
cycles and runoff regimes (Pechlivanidis et al, 2011;
Zhang et al, 2012). Conceptual hydrological models are
widely used to simulate the land phase of hydrological
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cycles since they can capture the dominant catchment
dynamics whilst remaining parsimonious and compu-
tationally efficient whilst requiring input data that are
usually readily available and relatively simple and easy
to use (Thyer et al, 2009; Kavetski and Clark, 2010).
Parameters in conceptual hydrological models need to be
estimated through model calibrations because they cannot
be directly determined from the physical characteristics of
the catchment (Madsen, 2000; Madsen et al., 2002). How-
ever, when parameter calibration is employed, different par-
ameter sets may simulate the observed system behavior
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equally well, which is termed “equifinality” (Beven and
Freer, 2001). Commonly, the calibrated model is tested
against some independent (validation) dataset to ensure the
applicability of the model to situations/periods not used in
the model calibration. Typically, split-sampling or differen-
tial split-sampling are used to divide the entire dataset into
two parts (Xevi et al., 1997; Henriksen et al., 2003; Moriasi
et al,, 2007). Deteriorating model behavior for the validation
dataset may hint at parameter identification problems.
However, with regard to the relatively large number of free
parameters in a rainfall-runoff model, a single measure of
performance is a weak criterion to assess and declare (or
refuse) modeling success against the background of omni-
present equifinality (Beven, 2001). It is difficult to
characterize the different aspects of model performance
for a particular rainfall-runoff model with only one or two
statistical criteria (Shakti et al., 2010). There have been
suggestions that the information from runoff data can be
much better utilized and the information for model cali-
bration is increased when using objective functions based
on hydrological signatures rather than purely statistical
measures (Shamir et al., 2005; Gupta et al., 2008; Wagener
and Montanari, 2011). Hydrological signatures are defined
as hydrologic response characteristics that provide insight
into the hydrologic functional behavior of catchments
(Sawicz et al, 2011). Such response characteristics are
often indicative of a specific watershed and how its re-
sponse differs from others; examples include common de-
scriptors of the hydrograph shape such as the runoff
duration curve and the time to peak flow (Shamir et al.,
2005). Moreover, different objective functions judge the
goodness of a certain parameter set by different aspects
and, hence, a model’s success at simulating runoff may be
better quantified by using several evaluation measures
(Dawson et al., 2007) and the so-called Pareto optimality,
which describes solutions in which an objective function
cannot be improved without decreasing other objective
functions.

It is therefore important for hydrologists to identify
the dominant parameters controlling model behavior
by using sensitivity analysis, which also helps to bet-
ter understand the model structure, the main sources
of model output uncertainty, and the identification is-
sues (Ratto et al., 2007). Among a variety of global
sensitivity analysis methods currently available, the re-
gional sensitivity analysis (RSA; Hornberger and Spear,
1981), also known as the generalized sensitivity ana-
lysis, is very popular and widely used (Ratto et al., 2007;
Saltelli et al., 2008).

Hydrological modeling involves multiple steps, each
with uncertainties of different origins that render uncer-
tainty in the final model predictions (Butts et al., 2004).
Realistic assessment of various sources of uncertainty is
not only important for science-based decision making
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but also helps to improve model structure and to reduce
model uncertainty. In recent years, quantification of un-
certainties in hydrological modeling has received a surge
of attention, and several methods have been developed
to derive meaningful estimates of uncertainties bound
on model predictions. Among these methods, the gener-
alized likelihood uncertainty estimation (GLUE) method
proposed by Beven and Binley (1992), and the Bayesian
methods (Thiemann et al., 2001; Engeland et al., 2005)
are widely used for simultaneous calibration and uncer-
tainty assessment of different hydrological models (e.g.,
Freer et al., 1996; Kuczera et al., 2006; Blasone et al.,
2008a; Vrugt et al.,, 2009; Dotto et al., 2012, 2014). Both
methods have been discussed with respect to their
philosophies and the mathematical rigor they rely on
(Gupta et al., 2003; Kavetski et al.,, 2006; Kuczera et al,,
2006; Blasone et al., 2008a; Vrugt et al., 2009; Jin et al,,
2010; Dotto et al.,, 2012, 2014). The popularity of GLUE
lies in its conceptual simplicity and relative ease of im-
plementation, requiring no modifications to the existing
source codes of simulation models (Vrugt et al., 2009).
Moreover, GLUE makes no assumption regarding the
distribution of the model residuals, and it allows a flexible
definition of the model performance (likelihood function),
making it capable of including several variables in model
calibration and uncertainty assessment (Blasone et al,
2008b). The main critical point with GLUE is that the ob-
tained confidence bounds are dependent on some subject-
ive choices (e.g., the cut-off value between behavioral and
non-behavioral simulations; see the methods section), and
therefore represent the empirical rather than the true
distribution of model uncertainty.

Based on the RSA and the GLUE, Wagener et al.
(2003) developed the so-called dynamic identifiability
analysis (DYNIA), which is an approach to locating
periods of high identifiability (i.e., low uncertainty) for
individual parameters and to detect failures of model
structure in an objective manner. The main motivation
behind the DYNIA is an attempt to avoid the loss of
information through aggregation of the model residual
in time (Wagener et al., 2003). This methodology can be
applied to track the variation of parameter optima in
time, to separate periods of information and noise, or
to test whether model components (and therefore
parameter values) represent those processes of intention
(Wagener et al., 2003).

The Qilian Mountains in northwestern China are the
origin of several key inland rivers, including the Heihe,
Shiyang, and Shule Rivers (He et al, 2012), and are
highly valued for their ecosystem services in conserva-
tion of water resources and biodiversity. Urban water
supply and irrigation agriculture in the Heihe river basin
depend largely on the steady water yield from the mostly
non-perennial tributaries in the source regions in the
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Qilian Mountains. However, a declining forest cover in
recent decades has imposed a potential risk of increased
water runoff following heavy rainfall events because of
reduced water conservation by vegetation, contributing
to highly fluctuating water outputs. The lower altitudinal
limit of the forest line retreated from 1,900 m a.s.l. in
1949 to around 2,300 m a.sl. during the 1990s mainly
because of overgrazing damage by goats and cattle and
timber harvesting, and, as a consequence, the forest
cover decreased from 22.4% to only 12.4% in the Qilian
Mountains over the same period (Wang and Cheng,
1999). This, together with the local impacts of global
climate change, causes a great concern on declining
water conservation capacity of the Qilian Mountains
and thus the eco-safety of the region. As a result,
great efforts are being directed at assessing the hydro-
logical and ecological consequences of vegetation and
climate change in the tributaries of the Qilian Mountains.
Hydrological modeling is explored as an operational
tool for effective assessment of changes in hydrological
processes relating to modification of land cover and
climate change.

In this study, we investigated the applicability of the
HBV-light model (Seibert, 2005) in simulating hydro-
logical processes in the Pailugou catchment of Qilian
Mountains, and determined sources and relative contri-
butions of uncertainties in modeling procedures. The
Pailugou catchment is a small headwater catchment in
the Qilian Mountains, which drains into the Dayehekou
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basin and finally feeds into the Heihe River. The vegeta-
tion and partial attributes of hydrological processes in
the catchment have been intensively investigated by the
Academy of Water Resource Conservation Forests of Qilian
Mountains in Zhangye, Gansu Province (AWRCFQM).
The on-site investigations include a long-term meteoro-
logical observation, runoff monitoring, assessment on forest
growth and health, and characterization of site condi-
tions. Based on data from the monitoring program of
the AWRCFQM and simulations with the HBV-light
model, we aim to determine how runoff signatures
would help with improving the model calibration, and
to identify the periods when intensive monitoring is
critically required for deriving parameter values of re-
duced uncertainty.

Methods

Study catchment

The Pailugou catchment (latitude 38°24'N, longitude
100°17'E, and elevation 2,660—3,788 m a.s.l.) is located in
the Qilian Mountains, near Zhangye City, in northwestern
China’s Gansu province, covering an area of 2.53 km?
(Figure 1). Based on the climate record (1990-2010)
from the meteorological station at the outlet of the
catchment, mean annual temperature is 0.5°C and mean
annual precipitation is 378.5 mm. Over 80% of the precipi-
tation falls from June to September (Zheng et al., 2014).
Mean annual temperatures decrease with elevation by
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Figure 1 Location and land cover map of the Pailugou catchment in Gansu Province, Northwest China.




Ouyang et al. Ecological Processes 2014, 3:14
http://www.ecologicalprocesses.com/content/3/1/14

0.58°C/100 m and mean annual precipitation increases
with elevation by 4.3%/100 m (Wang et al., 2001). The
main parental materials in the catchment are calcareous
rocks; from these, relatively shallow soils developed, which
commonly have a coarse texture, an intermediate organic
matter content, and pH values ranging from 7 to 8
(He et al, 2012). The soils are mainly classified as
Capsic luvisol, Haplic cambisol, and Hapludoll using
the FAO-UNESCO (1988) soil classification system
(Yu et al, 2010). Permanently and seasonally frozen
soils are widespread at middle and higher elevations.
Vegetation comprises patches of forest stands, shrub com-
munities, and pastures. Qinghai spruce (Picea crassifolia
Kom.) is the only arbor tree species in the catchment
and occurs primarily on shaded (north-facing) and
semi-shaded (east- or west-facing) slopes at intermediate
elevations between 2,600 and 3,300 m as.l. The sunny
(south-facing) slopes in this altitudinal range are mostly
occupied by the grassland plants Carex lansuensis,
Pedicularis muscicola Maxim., and Polygonum viviparum.
Shrubs, including Dasiphora fruticosa, Caragana jubata
(Pall.) Poir., and Salix gilashanica, are mainly found at
elevations above 3,300 m a.s.l. (Yu et al,, 2010).

Data collection

HBV-light requires input forcing data consisting of
daily precipitation and air temperature as well as monthly
estimates of potential evapotranspiration. We obtained
meteorological data for the full period 2000-2003
from a monitoring station near the catchment outlet
at 2,570 m a.s.l. The meteorological data included air
temperature, solar radiation, relative humidity, wind
velocity, and precipitation. The daily mean air temperature
was derived as the arithmetic average of temperatures re-
corded at 02:00, 08:00, 14:00, and 20:00 h Beijing Standard
Time (BST). Monthly mean potential evapotranspir-
ation was calculated from observed meteorological
data using the FAO Penman-Monteith method described
by Allen et al. (1998).

Runoff was measured manually at the catchment
outlet with a V-notch weir, three times a day (i.e., at
08:00, 14:00, and 20:00 h BST) in summer (from May
to September), and at a five-day intervals in winter
(between October and April), from 1 January 2000 through
31 December 2003. Missing daily values of runoff
between October and April were approximated by lin-
ear interpolation. Table 1 shows characteristics of the
average annual rainfall, runoff, and potential evapo-
transpiration derived from the available data for the
period 2000-2003.

Topographical data were derived from a Digital
Elevation Model with a resolution of 1 m, which was
produced by the AWRCFQM from laser scanner data.
A land use classification for the Pailugou catchment
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Table 1 Annual rainfall, runoff, and potential
evapotranspiration for the years 2000 to 2003 in the
Pailugou catchment

Year Rainfall Runoff Potential evapotranspiration
(mma™) (mma™) (mma™)

2000 353 71 842

2001 301 44 874

2002 411 105 764

2003 416 103 772

was obtained from the AWRCFQM (Figure 1); it dis-
tinguishes five land use types in the catchment: forest
(40.4% of the catchment), grassland (29.5%), shrub-
land (25.2%), exposed bedrocks (4.7%), and river
banks (0.2%). For the modeling, we disintegrated river
banks and exposed bedrocks into forest, grassland,
and shrubland. Table 2 gives an overview of the vege-
tation distribution of the three main vegetation types
(forest, shrubs, and grassland) for different altitudinal
ranges in the catchment.

Model description

The HBV-light model (Seibert, 2005) used in this study
is a conceptual rainfall-runoff model modified from the
original HBV model by Bergstrom (1976). There are two
minor changes in the modified model corresponding in
general to the original version described by Bergstrom
(1992). The first is that, instead of starting the simulation
with some user-defined initial state values, the HBV-light
v3.0.0.1 uses a “warming-up” period during which state
variables evolve from standard initial values to their cor-
rect values according to meteorological conditions and

Table 2 Distribution of altitudinal ranges in the Pailugou
catchment and corresponding percentage of cover by
forest, shrubland, and grassland

Altitude Percentage of Forest Shrub Grass
(m a.s.l.) land area (%) (%) (%) (%)
2,660-2,750 5.04 44.84 833 46.83
2,750-2,850 19.19 324 109 56.7
2,850-2,950 26.99 43.57 8 4843
2,950-3,050 1238 72.54 331 24.15
3,050-3,150 794 67.13 26.2 6.68
3,150-3,250 5.16 84.3 1143 4.26
3,250-3,350 48 46.05 51.87 208
3,350-3,450 5.13 6.82 8733 585
3,450-3,550 549 92.71 7.29 0
3,550-3,650 5.14 0 100 0
3,650-3,788 2.74 0 100 0
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parameter values. Secondly, the restriction that only
integer values are allowed for the routing parameter,
MAXBAS, has been removed to allow the use of all real
(non-integer) values.

HBV-light simulates catchment runoff at a daily time
step and requires daily values of precipitation and air tem-
perature as well as data on potential evapotranspiration
(based on either long-term daily or monthly averages) as
forcing variables. It includes four main components: a dis-
tributed snow routine, a distributed soil moisture routine,
a lumped response routine, and a routing routine. All in-
coming precipitation first enters the snow routine. Precipi-
tation is simulated to be either snow or rain depending on
whether the temperature is above or below a threshold
temperature, 77 (°C). All precipitation simulated to be
snow, i.e., falling when the temperature is below the 77,
is multiplied by a snowfall correction factor, SECF (-).
The amount of snow melt, Melt (mm d "), and the refreezing
of melt water, Refieezing (mm d ™), are calculated, respectively,
by:

Melt(t) = CEMAX - (T(¢)-TT) (1)

Refreezing(t)=CFR-CFMAX - (TT-T(t)) (2)

where T (°C) is the mean daily air temperature, CFMAX
(mm d7' °C™) is the degree-day factor, CFR (-) is the
refreezing coefficient, and ¢ is time.

The sum of rainfall and snowmelt from the snow
routine enters the soil moisture routine, which calcu-
lates the changes in soil moisture storage as the dif-
ference between effective precipitation (rain or snowmelt),
P (mm d™'), and actual evapotranspiration, ETA (mm d ™).
ETA is calculated from potential evapotranspiration, ETP
(mm d™"), by a linear function of the soil moisture storage,
SM (mm):

. [ SM(¢)

ETA(t) = ETP(¢)- min (FC-LP’ 1) (3)
where FC (mm) is the maximum possible soil mois-
ture storage, and LP (-) indicates the relative filling
of the soil moisture storage above which ETA reaches
ETP.

The seepage from the soil moisture storage (ie., the
contribution of the effective precipitation to the ground-
water module), AR (mm d™), is calculated as a non-linear
function of the current filling of the soil moisture storage,
SM (mm), by

SM(t)>Bm N

AR(t) = P(t)< o

where BETA (-) is an empirical shape parameter.
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Excess water from the soil moisture zone replenishes
the groundwater storage, which in our case is configured
as the “standard version using UZL and K, in SUZ-box”
(Figure 2). The system consists of two conceptual
groundwater boxes: an upper box with two outflows
(fast runoff Q, and delayed runoff Q;) with different
recession coefficients, and a lower box with one outflow
(slow baseflow Q,). Recharge from precipitation or snow
melt firstly enters the upper groundwater box. Qg be-
comes active only when the water level in the upper
groundwater box, SUZ (mm), exceeds the threshold
filling UZL (mm). The percolation from the upper to the
lower groundwater box, Qe (mmd™), depends on the
filling of the upper groundwater box, SUZ (mm). The
maximum percolation rate from the upper to the lower
groundwater box is defined by the parameter PERC
(mmd™).

In the routing routine, the total runoff at the catch-
ment outlet (the sum of the outflows from two or three
linear reservoirs depending on whether the water level
in the upper groundwater box, SUZ, is above UZL) is
computed using an equilateral triangular weighting func-
tion with the base MAXBAS.

With the designated model structure, there are a
total of 34 parameters involved. We simplified the
model structure by fixing the generally less sensitive
parameter CWH at a value of 0.2, based on the sug-
gestion by Uhlenbrook et al. (1999). The three vege-
tation zones were not differentiated for the other
snow routine parameters (77, CFMAX, SFCF, CFR),
hence TTpyest = TTnrup = TTgrass = TT, etc. With this,
the final model structure comprises 21 free parame-
ters. We further constrained possible parameter values
by defining the following bounds: FCpyes > FCprass > FCopruy
(taking into account the measurements by Wang et al,
2005), BETAjpes> BETAgyuy > BETAgrsy  and  LPpyyeq <
LP, shrub < LP, grass*

recha rgel

Q=Ko (SUZ(G-UZLY

UZL foesssssasmnonddeas suicisy I:

Suz

Q=K "SUZ@l)

Qe ()=PERC-SUZ(Y)

Stz Q)=K'SLZ[)

L— runoff
Figure 2 HBV-light response routine “standard version
using UZL and K, in SUZ-box” (from HBV-light help,
modified).
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Objective function definition

Assessing performance of a hydrological model requires
estimates of the “closeness” of the simulated behavior of
the model to the observations. In this study, a number
of efficiency criteria (or objective functions) were used
to evaluate the model performance, each emphasizing
on a specific type of simulated and observed behavior.
We used the coefficient of determination (R?) and Nash-
Sutcliffe efficiencies (Rop Regioo) to describe the model
fit with respect to the entire hydrograph:

<Z (Qups (£)~Qops) - (Quim (€)= Qi) ) 2

? = —2 —2 (5)
Z(Qobs(t)_Qobs) 'Z(Qsim(t)_Qsim)
Reﬁle— Z(Qobs(t)_Qﬂt)Z) (6)
Z(Qabs(t)_Qobs)
Reﬁf‘logzl Z( anobs(t)_ ansim(t)) (7)

Z ( ln(Qobs(t) _anobs)Z

where Q,;s(f) and Qy;,,,(¢) are the observed and predicted
runoff at time step ¢, respectively, and Q,, and Q;, are
the mean values of observed and simulated runoff, re-
spectively. Values of R® vary between 0 and 1, values
of Ry and Ry, between -« and 1. R, emphasizes
runoff peaks, while Ry, is more sensitive to the model
performance during low flow.

In addition to the statistical efficiency measures, runoff
signatures including the volumetric efficiency (Syz), flow
duration curve (Sgpc), the peak flow (Spp), and the time
to peak (Spr) were used to assess model performance.
The volumetric efficiency Sy represents the fraction of
water delivered at the correct time and ranges from 0 to 1
(perfect fit):

_ Z'Qobs(t)_Qsim(t)|
S oM ©

The flow duration curve was used as a second runoff
signature. The flow duration curve represents the rela-
tionship between the magnitude and the frequency of
runoff, providing an estimate of the percentage of time
the runoff was equaled or exceeded over a given time
period. The objective function is defined as:

Sve =

S (@ - Q)
Sppe=1-"1— (9)
; (Q-Q)

where Q° and @ are the observed and simulated run-
off corresponding to a given percentage of exceed-
ance, i, in the flow duration curve (i =[0,1,2,...,100]).
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Q° is the mean of the observed runoff of all exceed-
ance percentages. Values of Sppc vary between -co
and 1.

Another criterion was used to evaluate the model
performance with respect to the simulation of peak
runoff:

Z ‘ Qpeak,obs (t) _Qpeak,sim (t) |
ZQpeuk,obs (t)

where Qpeaksim(t) and Qpeaicons(t) are simulated peak
runoff and observed peak runoff at time ¢, respectively.
Peaks in the runoff time series were defined as days for
which the preceding day and the following day both had
smaller runoff values than the present day. Values of Spg
vary between 0 and 1.

The correct timing of the simulated runoff peaks was
assessed by:

Spg = 1- (10)

Z | T (Qpeak,obs) -T (Qpeak.sim) |
max (Z ‘ T (Qpeuk«,obs) -T (Qpeak,sim) | )

Spr =1~
(11)

where T(Qpeaksim) is the day of the simulated peak
runoff, and T(Qpeaxons) is the day of the observed
peak runoff. Only peaks with T(Qpeax sim) — T(Qpeak.obs) < 4
were considered in Egs. 10 and 11. Values of Spz vary
between 0 and 1.

The different objective functions given above judge
the goodness of a certain parameter set focusing on
different aspects in the runoff characteristics. One
parameter set can, for example, give a good model
performance according to R’ but only a poor per-
formance in terms of R.; and vice versa. In this
study we combined the objective functions of statis-
tical measures (R? Rep Regiog) with those for the
runoff signatures (Svg, Sepc, Spo, Spr) in order to
obtain a best compromise of the parameter fit, satis-
fying as best as possible most of the objective func-
tions under consideration. The combined objective
function, Cor is a weighted sum of the different ob-
jective functions:

COF =wi -R2 + wy Reﬁ’ + w3 ‘Reﬁﬁvlog + Wy SVE
+ ws-Sepc + We-Spg + W7 -Spr
(12)

The weights wy, wy, ws..., w; in Eq. 12 were chosen
based on the parameter sensitivity with respect to
the corresponding objective functions. The weight for
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each objective function was derived from the standard
weight:

l/ns(pi) ns(p;) >0

Wsmndard(Pi) = {1/n ns(Pi) =0

(13)

where # is the number of objective functions included
in Eq. 12 (in our case, n=7) and #uy is the total num-
ber of at least slightly sensitive objective functions
(according to our classification, see next section) with
respect to parameter p;. The standard weight was
then multiplied by a “sensitivity factor” cor(p;) accounting
for the different sensitivities of the different object-
ive functions (OF) with respect to the same param-

eter (p;):

WOF(pi) = Cor (Pl) : Wstandard(Pi) (14)

The “sensitivity factor” is 7 if the objective function
OF (i.e., either R°, Rup Ropriog Sver Sepcs Spay Spr) is
highly sensitive with respect to parameter p;. Simi-
larly, cor(p;) =3 for moderately sensitive objective func-
tions, coe(p;) =1 for slightly sensitive objective functions,
and cop;) = 0 for insensitive objective functions.

Regional sensitivity analysis

A RSA (Hornberger and Spear, 1981) was performed
to distinguish between the sensitive model parame-
ters, which have a large impact on the model output,
and the non-sensitive model parameters using a
Monte Carlo procedure. For the Monte Carlo simula-
tions, 10,000 parameter sets were generated by sam-
pling from a uniform distribution within the given
range for each parameter (Table 3). The Monte Carlo
sets were split into two groups yielding either “behavioral
model runs” or “non-behavioral model runs”. Distinction
between the behavioral runs and the non-behavioral runs
was made according to the model’s performance. We
assigned the runs yielding the 500 (5% of all runs) highest
objective function values to the class of behavioral runs;
all other runs were classed into the non-behavioral runs.
The Kolmogorov-Smirnov two-sample test was used
to determine whether the cumulative distribution of
the parameter values in the group of behavioral
model runs was significantly different from the group
of non-behavioral model runs. The Kolmogorov-Smirnov
test calculates a test statistic from the maximum distance
D between two cumulative distribution functions, F(p;)
and G(p,,), by:

D = max|F(p,)-G(p,)| (15)
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Table 3 Model parameters and their value ranges
(lower and upper limits) used in the Monte Carlo runs

Index Parameter Lower limit Upper limit Units
Catchment

1 PCALT 4.0 14.0 %/100 m
2 TCALT 0 05 °C/100 m
Snow routine

3 T =25 2.5 °C

4 CFMAX 10 90 mmd™' °C”'
5 SFCF 02 0.65 -

6 CFR 0 08 -

Soil routine

7 FCorest 200 580 mm

8 FCoprun 25 300 mm

9 FCoross 30 568 mm

10 LProrest 0 0.60 -

11 LPSpup 0.50 0.89 -

12 LPyrass 070 090 -

13 BETAtorest 30 6.0 -

14 BETAshun 20 50 -

15 BETAgrass 10 30 -
Response routine

16 PERC 001 30 mm d’
17 uzL 15 70 mm

18 Ko 04 1.0 d”’

19 K, 0035 020 d”’

20 K 0020 0035 B
Routing routine

21 MAXBAS 6.0 11.0 d

where F(p,) is the cumulative distribution function
for the behavioral model runs, G(p,) is the cumulative
distribution function for the corresponding non-be-
havioral model runs, p, are the behavioral parameter
sets, and p, are the non-behavioral parameter sets.
We grouped the parameter sensitivity into four categor-
ies based on the test statistic D and the corresponding
P value: highly sensitive (D >0.2, P <0.05), moderately
sensitive (0.1 <D <0.2, P <0.05), slightly sensitive (D <0.1,
P <0.05), and insensitive (P >0.05).

Uncertainty analysis

The uncertainty in the simulated runoff is assessed using
the GLUE method (Beven and Binley, 1992; Beven and
Freer, 2001), which is based on the concepts of RSA.
Performance of the GLUE analysis includes the following
steps, with steps i to iii being identical to the RSA pro-
cedure: i) a large number of model runs with randomly
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chosen parameter sets selected from a chosen prob-
ability distribution; 1ii) definition of the likelihood
function (Egs. 1 to 8) and calculation of likelihood
values corresponding to the parameter sets; iii) selec-
tion of a cutoff threshold value or a fixed percentage
of the number of sample parameter sets for the likeli-
hood function to distinguish between the behavioral
parameter sets and the non-behavioral parameter sets
(the runs yielding the 500 highest objective function
values [i.e., 5% of the total runs] were classed as be-
havioral runs, similar to the cut-off used in the RSA
analyses); iv) rescaling of the cumulative likelihood
values of all behavioral models to unity; and v) calcu-
lation of the percentiles of the cumulative distribution
of the likelihood measure. GLUE integrates the out-
puts of all behavioral models in an ensemble predic-
tion. For each time step of the simulation, the output
prediction is obtained as the median of the distribu-
tion of all ensemble members, and its uncertainty
bounds are estimated as 2.5% and 97.5% percentiles
of the distribution.

Dynamic identifiability analysis (DYNIA)

DYNIA was developed by Wagener et al. (2003) and
is based on elements from both RSA and GLUE.
Similar to RSA, DYNIA calculates the probability dis-
tribution of parameter values in behavioral parameter
sets, but doing so for each individual model time
step. It estimates the parameter sensitivity and de-
rives from this the amount of information available
for identifying a specific parameter at a given time.
Periods of high parameter sensitivity contain a large
amount of information for identifying a given param-
eter; following Wagener et al. (2003), we term them
periods of high “parameter identifiability”. The devel-
opment of parameter identifiability over time can
also be used to detect failure of model structures, as
was shown by Wagener et al. (2003). The DYNIA
procedure begins with the same Monte Carlo simula-
tions as performed for the RSA and GLUE analyses.
However, rather than calculating an error criterion
which integrates over the entire simulation period (as
in Egs. 5 to 12), DYNIA estimates an error for each
individual model time step. The model error at a given time
is taken as the mean squared error for a moving window
of 2n + 1 time steps around the current time step:
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Taking into account considerations of Wagener et al.
(2003) and based on previous experiences in other appli-
cations, we used a window size of 5 days (i.e., n = 2) for
all parameters.

For each individual model time step, the parameter
sets are ranked according to the value of the model
error, and the top 5% performing parameter sets are
taken as the behavioral sets. As in the RSA analysis, the
identifiability of each parameter is quantified from the
shape of the cumulative likelihood distribution of the
parameter values. The parameter ranges are split into m
bins (in our study m = 40) of equal width, and the gradi-
ent of the cumulative likelihood distribution in each bin
is calculated from the difference of the cumulative likeli-
hood distribution between adjacent bins. This gradient is
an indicator of the identifiability of the parameter: a lar-
ger gradient indicates that the parameter value is more
likely to be contained in that bin, i.e., the parameter is
more constrained in this value range. Hence, the distri-
bution of the parameter values in the bins can be under-
stood as the information content of the runoff data
(objective function) for constraining a certain parameter.
The information content (IC) of the observation data at
a given time step ¢ with respect to the identifiability of a
parameter p; is calculated by:

_Pi,u(t) _Pi,l(t)

pi,max ~Pimin

ICi(t) =1 (17)

where p;, and p;; are the parameter values at the upper
and lower confidence limits at time step ¢, and p; 4.
and p; ,,.;, are the upper and lower value bounds used in
the Monte Carlo sampling (Table 3). IC values range
between 0 and 1, with high values indicating a high
identifiability.

Results and discussion

Parameter sensitivity

The RSA analyses confirm that model parameter sen-
sitivity is largely dependent upon the objective func-
tion used (Table 4). Among the objective functions
based on statistical measures, R’ shows the highest
parameter sensitivity. It exhibits a high sensitivity with
respect to 7 model parameters, a moderate sensitivity
to 3 parameters, and a slight sensitivity to 5 parame-
ters; it is insensitive to 6 parameters. R.y and Regiog
are generally less sensitive. Among the objective func-
tions based on runoff signatures, Spr has the highest

Qohs(Qobs(t_}q)_Qsim(t_n))2 + (Qabs(t_n_l)_Qsim(t_n_l))z s

MSE(t) = m +(Qobs(t>_Qsim(t))2 + .

(16)

+(Qobs(t + n_l)_Qsim(t + n_l))Z + (Qobs(t + n)_Qsim(t + n))Z
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Table 4 RSA parameter sensitivities for various objective functions

Parameters Statistical measures Runoff signatures Combined objective functions
R Rets Rett, og Sve Sroc Sea Ser Cor
(1) (2) (3) (4) (5) (6) (7) (8-28)
Catchment
PCALT . . P - . P P ®) .
TCALT i * - * * _ _ ) *x
Snow routine
T . . * > xx * ¥ (10) xx
CFMAX * ** * * , _ _ an *x
SECF - - *x - _ *x xx 12) vk
CFR - - - - - * - (13) *
Soil routine
FCoorest * * * - * - _ (14) _
FCoprun xrx *x *x * . P xx (15) .
FCyrass * _ % _ xx % * (16) *
LProrest - - * * - - _ a7) *
LPeprup *x * * _ _ xx *x (18) _
LPngS _ _ _ _ _ _ *% (1 9) *%
BETAfopest - * (20) *
BETA s * * * _ _ *x *x Qn xx
BETAgrass *x _ * * * P ¥ 22) wxx
Response routine
PERC . > *x > . P P 23) *
uzL * ** - _ - - (24
Ko (25)
K, . . * > xx * P 26) xx
K, *x *x *x *x _ * * 27) *x
Routing routine
MAXBAS _ *x _ > . xx P (28) .

***_high sensitivity; **, moderate sensitivity; *, slight sensitivity; —, insensitive parameters. The numbers in the parentheses are the indexes for all objective functions:
including 3 statistical measures (1-3), 4 runoff signatures (4-7), and 21 combined objective functions (8-28).

parameter sensitivity. Spr exhibits a high sensitivity
with respect to 4 parameters, a moderate sensitivity to 6
parameters, and a slight sensitivity to 4 parameters; it is
insensitive to 7 parameters. Sgpc, Spo, and Syg are ge-
nerally less sensitive. Using a weighted combination of all
objective functions (last column in Table 4) leads to par-
ameter sensitivities which in most cases lie between the
most sensitive objective function and the least sensitive
objective function. When applying the combined objective
function, 13 out of 21 parameters have at least a moderate
sensitivity. However, the sensitivity with respect to PERC,
FCpyresty and LPg,,,,;, decreases remarkably. The combined
objective function also fails — as do all other objective
functions — in identifying the parameter K.

Among the different model routine parameters, the
catchment parameter PCALT is the most sensitive, with
moderate or high sensitivities for all objective functions.

PCALT describes the linear gradient of precipitation
with altitude. Since the climate data for the modeling
are derived from a monitoring station just below the
catchment outlet, the linear extrapolation of the precipi-
tation to the catchment area by means of PCALT highly
influences the assumed areal precipitation input and,
hence, the potential recharge water and the catchment
runoff. The second catchment parameter, the tempe-
rature gradient TCALT, is less sensitive (high sensitivity
with respect to R, and moderate sensitivity for Cop). All
snow routine parameters are sensitive with respect to
most of the objective functions, with the only exception
being CFR, which is sensitive only with respect to Spq.
The Pailugou catchment experiences long periods of
snow cover; runoff almost ceases in winter, and is highly
influenced by snow melt and refreezing processes during
late spring and summer as well as the start of snow
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accumulation in fall. Therefore, the dominant role of the
snow routine parameters for the model performance is
not astonishing.

The soil moisture routine parameters are generally
more sensitive with respect to the runoff signatures, es-
pecially with those focusing on runoff peaks (Spz Spo).
The storage capacity of the soil moisture reservoir, FC,
has a larger impact on the model performance than
BETA, which influences the amount of percolation from
the soil moisture storage to the groundwater in times
when the soil is not saturated. LP, which describes the
reduction of the potential evapotranspiration in drier
soils, has the least sensitivity. The sensitivities of BETA,
LP, and FC vary between different vegetation classes.
Although forests cover almost half of the catchment, the
parameters of this vegetation class influence the model
performance less than the parameters of the two other
classes do.

The response routine parameters are generally sensi-
tive with respect to most of the objective functions, ex-
cept Ky The parameter PERC, which represents the
maximum percolation rate from the upper groundwater
box to the lower groundwater box, is the most sensitive
parameter of the response routine. The large influence
of PERC on the model fit indicates the importance of
slow groundwater runoff in the catchment. K, is the
least sensitive model parameter, and no objective func-
tion under consideration identified K,. K, controls the
fast runoff when the filling in the upper groundwater
box exceeds the threshold UZL (Figure 2). Precipitation
in the Pailugou catchment is generally very low and it is
realistic to assume that fast surface or near-surface run-
off is a rare event, occurring only after exceptionally
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high rain storms. However, the main reason for the low
sensitivity of K, is most likely the low time resolution of
the outflow data and the model, which is larger than the
reaction time of fast runoff in this small and very react-
ive headwater catchment. Contrary to the fast outflow
coefficient, K,, the second outflow coefficient of the
upper groundwater box, Kj, proves to be highly sensi-
tive, which indicates the importance of fast interflow for
the runoff generation in the catchment. K5, the recession
coefficient of the lower groundwater box, is moderately
sensitive to most objective functions and plays a lesser
role for the objective functions focusing on runoff peaks
(Spgs Spr). The threshold level, UZL, above which fast
runoff from the upper groundwater box occurs, is gener-
ally not very sensitive. However, its sensitivity is much
increased when considering the flow duration curve as
efficiency criteria.

The routing parameter MAXBAS shows a higher sensi-
tivity with respect to the objective functions based on
runoff signatures and the combined objective functions
than to the more statistical measures.

Uncertainty analysis

Figure 3 shows the value distribution for each analyzed
model parameter in the behavioral model runs with re-
spect to the original value range used for the Monte Carlo
runs (Table 4). To compare different model parameters,
the original value range was scaled to [0, 1]. It is obvious
from Figure 3, that for all the objective functions, values
in the behavioral runs spread across the entire value range
considered. However, when looking at the interquartile
ranges of the boxplots, some parameters appear to be
more constrained than others. Noticeable differences in

PCALT TCALT TT CFMAX SFCF FCrorest

| it Bttt b i
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go.s 1 i!%i % J $ ' TE¥ }i ? $! E%
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Figure 3 Boxplots of normalized parameter values in the behavioral sets for the different objective functions.
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the constraining of the parameters are found between
different objective functions. The routing parameter
MAXBAS is constrained in the interquartile range to
around 25% of the original value range when using
the runoff-peak oriented objective functions Spr or Spg, or
the combined objective function. It is much less con-
strained when using any of the other objective functions.
Similarly, the groundwater recharge parameter PERC is
much more constrained by the volume efficiency (Syz) or
Refi0» Which both put a larger weight on low flow con-
ditions. Using combined objective functions is beneficial
especially for the identification of the soil routine para-
meters. Five out of nine soil routine parameters are best
identified when using the combined objective functions,
and for the others, the objective functions rank 2™ or 3
with respect to constraining of the interquartile range.

As clearly illustrated in Figure 3, some parameters are
constrained in different value ranges depending on
which objective function is used to assess the model be-
havior. For example, values of PCALT in the behavioral
runs are relatively large when considering R?, Ry or
Cor as the objective function, and are significantly lower
when using Spg or Spr. The snow correction factor,
SFCEF, attains higher values in the behavioral runs when
considering Rz, as the objective function. Values of
the response routine PERC are particularly low when
based on Spg and Spr. The values of the routing routine
MAXBAS are especially low when based on Sppc, but
much higher values are attained when based on other
objective functions.
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Figure 4 displays the uncertainty bands (e.g., lower and
upper bounds of the 95% confidence intervals) of the
GLUE estimates, their median, and the observed runoff
for some of the objective functions (R?, Refiopr Sepcs Cor)
The GLUE results indicate that HBV-light is generally
capable of simulating the runoff in the Pailugou catch-
ment, and most of the time yields a good agreement with
the observed runoff for all objective functions under con-
sideration, although most models generally underestimate
peak runoffs. The GLUE simulations based on the various
objective functions diverge greatly, in particular following
pronounced snow melt events (Figure 5). Using the ob-
jective functions R? Res Sepcs Cora Corn Corss Coro
Cori» and Copo; leads to a general over-prediction of the
runoff; the other objective functions systematically under-
predict the runoff (Figure 5). Cogs has the lowest absolute
cumulative difference with a cumulated value at the end
of the simulation period of 3.3 mm above the observa-
tions; Cors has the largest absolute cumulative difference
with a value of 161.2 mm of the objective functions above
the observations (Figure 5). An obvious systematic error
in the simulations may originate from the linear inter-
polation of the meteorological input data from one
meteorological station (below the catchment outlet), by
using linear altitudinal gradients for precipitation and
temperature (PCALT, TCALT). Another source of error
could be the daily time steps of the HBV-light simulations,
which may be too coarse to adequately describe the
rainfall-runoff transformation during high-intensity rain-
fall or snow melt events. Moreover, the daily discharges
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—— Meadian GLUE estimate |
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Figure 4 GLUE runoff predictions using different objective functions: R? (a), Rettiog (b), Sroc (€) and Cop; (d). Blue lines = median of GLUE
estimates, dotted lines = confidence intervals, red lines = observed runoff.
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difference, red line = observed runoff. The numbers are the indexes for all objective functions including the 3 statistical measures, 4 runoff
signatures, and 21 combined objective functions in Table 4.

derived from the water level measurements at three times
daily (at 08:00, 14:00, and 20:00 h BST) may have
smoothened the very rapid flow characteristics at the
site, failing to capture the dynamic nature of the rainfall-
runoff transformation.

A desirable model fit would go along with a high
precision (i.e., narrow confidence bands of the GLUE
simulations) and a high accuracy (i.e., a large percentage
of observations being enclosed by the confidence
bounds). The precision and the accuracy of the GLUE
runs based on the various objective functions are dis-
played in Figure 6. Both, the precision and the accuracy
vary between the different objective functions. As an ex-
ample, simulations based on Rz, (index 3 in Figure 6)
as objective function yield very narrow confidence bounds
(median width of 0.07 mm), but they contain only about
60% of the observations. Conversely, using Sgpc (index 5

in Figure 6) implies a high uncertainty in the mod-
eled runoff, but the wide confidence bounds (median
width =0.17 mm) include more than 80% of the ob-
servations. Figure 6 suggests the combined objective
function with respect to parameter TCALT (index 9 in
Figure 6) to be a favorable objective function for the
model conditioning. Using this objective function leads to
confidence bounds which are in the intermediate range of
all objective functions; at the same time, those relatively
narrow confidence bounds contain already almost 80% of
the observations.

It should be noted that the estimated model uncertain-
ties are sensitive to the choice of threshold values which
distinguish behavioral and non-behavioral model runs,
which has been often considered as one of the main
drawbacks of the GLUE technique (e.g., Montanari, 2005;
Blasone et al., 2008b). However, in this study, we did not
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Figure 6 Relationships between percentage of observations contained in confidence limits and median width of confidence limits.
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investigate how sensitive the model simulation results are
to the cut off threshold values, therefore, further studies
need to investigate how the threshold value should be
chosen in order to provide stabilization (may be difficult)
in the application of the GLUE method.

Temporal changes of parameter sensitivity
DYNIA was applied to analyze the temporal changes in
the parameter identifiability over the period 2000-2003
for each of the 21 model parameters. Parameters are
usually found to have specific periods where they play a
more pronounced role for the simulated runoff and are
therefore more sensitive — hence better identifiable — than
in other periods (Figure 7).

Figure 7a displays the development of the IC (Eq. 13)
over time for the catchment parameters (PCALT, TCALT)
and the parameters of the snow routine (77, CFMAX,
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SFCE, CFR). The IC of PCALT varies largely over the sim-
ulated time period; it is highest during the rainy season,
when the soil moisture storage and the groundwater
storages are filled and additional precipitation produces
runoff, and it decreases continuously during recession
periods. The IC for TCALT is significantly higher in
periods with active vegetation, when the soil moisture
is high. The parameters of the snow routine — with
exception of CFR which has a low IC over the entire simu-
lation time — are generally better identifiable during the
snow melt period, especially during the first main melt
events in spring.

Figure 7b displays the development of the IC over time
for the parameters of the soil moisture routine. FCyy,,,,,
shows a pronounced temporal dependency of the IC; it
is more identifiable during the early vegetation period
when the soil moisture storage is replenished by melt
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Figure 7 Development of the information content (IC) with respect to the various model parameters over the entire simulation period.
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water. The ICs for FCpyes and FCgpues show similar pat-
terns, both exhibiting a somewhat higher identifiability
during the periods when the catchment is already rela-
tively wet and further precipitation increases the propor-
tion of faster runoff components in the total catchment
runoff. The ICs of LP and BETA of the same vegetation
class show similar patterns; LP and BETA are generally
better identifiable prior to runoff peaks, in times when
the catchment’s storages are filling.

The IC for the parameters of the response routine and
the routing routine (Figure 7c) is directly linked to the
dynamics of the runoff peaks. The IC for PERC is higher
in early winter, in the course of declining percolation from
the upper groundwater box to the lower groundwater box.
The three recession constants, Ky, K; and K, show very
distinct patterns of IC. While the IC of the fast runoff
component (Kp) is always very low, that of K; is markedly
increased in the falling limbs of runoff peaks and de-
creases with very high runoff events. The dominant role of
the parameter K for controlling recession after peak run-
offs underlines the importance of fast subsurface flow in
the catchment. The IC of K, which influences the dynam-
ics of the slow groundwater runoff, continuously increases
during low flow periods, when recharge from the soil zone
ceases and the base-flow from the lower groundwater box
becomes the main runoff source. L/ZL becomes somewhat
better identifiable in late summer when the catchment is
already relatively wet from the summer rains, and add-
itional precipitation causes the upper groundwater box to
exceed the threshold filling L/ZL and initiates fast runoff.
Not surprisingly, the routing parameter MAXBAS is more
identifiable during pronounced runoff peaks following
snow melt and in the wet season, especially in the rising
limbs of the runoff peaks.

Temporal changes of optimal parameter values
Figure 8 shows the IC of the error criterion (Eq. 12) with
respect to a model parameter as well as the location of
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the parameter values with the highest probability of
occurrence in the behavioral runs. In Figure 8, darker
grey indicates a higher probability density of the param-
eter value in the behavioral runs, indicating time periods
when the parameter values are better identifiable, while
lighter grey indicates time periods when the parameter
cannot be identified. The blue lines show the 95% confi-
dence limits for the parameter estimate at a given time
step. The red dots in Figure 8 indicate the time steps in
the simulation where IC is above 90% of the maximum
IC value achieved over the entire simulation period,
using this as an indication for comparatively good par-
ameter identifiability.

The DYNIA analysis reveals different types of para-
meter behavior. The optimum values (i.e., red dots in
Figure 8) of 11 model parameters (i.e., PCALT, TCALT,
CEMAX, SFCE, FCyyruipy LPyjyuipy LPgrassy PERC, UZL, Ky,
and MAXBAS) are constant over time (Figure 8). For
these parameters, the same value would be identified,
regardless of the time period used for the model condi-
tioning/calibration. For five more parameters (i.e., 77,
FCpyresty BETAgnpupy BETAg4s, Ki), the variation of the
optimum parameter values (i.e., red dots) is less than
10% of the original parameter range, also indicating the
possibility of a relatively stable and time-invariant par-
ameter identification. For the other parameters (CFR,
LPpyresty BETAforesty Koy FCorags), the optimum values of
these parameters shift over the time domain (Figure 8).
This can be attributed to the very low sensitivities
(Figure 7) of these parameters or inadequacies within
the model structure. Our results indicate the importance
of identifying the periods when intensive monitoring
is critical for deriving parameter values of reduced
uncertainty.

Conclusions
In this study, with the objective of evaluating the model
performance of a conceptual semi-distributed rainfall-
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Figure 8 Parameter identifiability of the model parameters of HBV-light model. The grey shading shows parameter probability, red dots
indicate the time steps in the simulation where /C is above 90% of the maximum IC value achieved over the entire simulation period (as an
indication for comparatively good parameter identifiability), and blue lines indicate the 95% confidence intervals.
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runoff model, the well-known HBV-light model is applied
in a small headwater catchment in Qilian Mountains in
Northwest China using RSA, GLUE, and DYNIA frame-
works. Several main conclusions can be drawn from
this study:

1. The results of RSA show that model parameter
sensitivity is largely dependent upon the objective
function used for the model evaluation in the
sensitivity analysis. Most of the model parameters
are sensitive when the runoff signatures and
combined objective functions are used. The time
resolution of the runoff observations and the
HBV-light simulations is too coarse to
satisfactorily describe the fast runoff processes
in the catchment. More frequent runoff
observations would substantially increase the
knowledge on the rainfall-runoff transformation
in the catchment and, specifically, improve the
distinction of fast surface-near runoff and
interflow components in their contribution to the
total catchment runoff.

2. The results of GLUE show that the HBV-light
model is generally able to simulate the runoff in the
Pailugou catchment with an acceptable accuracy.
However, a distinct pattern of mismatch is found in
some high-intensity rainfall/snow melt events at a
daily step. Most parameters are well constrained,
showing higher parameter identifiability and
lower model uncertainty when runoff signatures
or the combined objective functions are used.

The combined objective function focusing

on the catchment parameter TCALT performed
best in terms of model uncertainty and

model precision.

3. The DYNIA analysis shows different types of
parameter behavior. The optimum values of 11
model parameters are constant over time regardless
of the time period used for the model conditioning/
calibration. For 5 parameters, the variation of the
optimum parameter values is less than 10% of the
original parameter range, also indicating the
possibility of relatively stable and time-invariant
parameter identification. For the other 5 parameters
optima change over the time domain. All of these
indicate that model parameters have specific periods
where they are more sensitive, more identifiable, and
where they play a clearer role than during other
periods. The hydrological process of snow routine
could be better described if monitoring is intensified
during snow melt. Our results also highlight the
importance of identifying the periods when intensive
monitoring is critical to derive parameter values
of reduced uncertainty.
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Changes in climate and/or land cover have significant
implications to rainfall-runoff dynamics at watershed or
catchment scales, which in turn affect regional eco-
system processes. Hydrological models are important tools
for evaluating the potential impacts of climate change and
land cover change on the hydrological cycles and runoff re-
gimes. However, uncertainty in model parameters due to a
lack of identifiability may greatly limit the use of models
for purposes such as parameter regionalization or the in-
vestigation of land use or climate. Sensitivity analysis and
identification of parameters with significant implications
to changes in landscape features are a critical step in
studying regional ecosystem processes in response to
natural or anthropogenic perturbations. A higher iden-
tifiable parameter can reduce model uncertainty and is
critical for evaluating the effects of climate change and
land use disturbance on the hydrological cycles.

It should be noted here that the generality of results
and conclusions of this study need to be verified through
the application of HBV-light in other regions.
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percolation rate from upper to lower groundwater box; R: Coefficient of
determination; R.y Nash-Sutcliffe efficiencies; RSA: Regional Sensitivity
Analysis; Sye Volumetric efficiency; Sgpe: Flow duration curve; Spo:

Peak flow; Spr: Time to peak; TCALT: Change of temperature with elevation;
TT: Temperature threshold for rain or snow; UZL: Threshold for the

fast runoff.
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