Shah et al. Ecological Processes (2015) 4:7

DOI 10.1186/513717-015-0034-0 @ ECOlOg'CaI Processes

a SpringerOpen Journal

RESEARCH Open Access

A cross-city molecular biogeographic
investigation of arbuscular mycorrhizas
in Conyza canadensis rhizosphere across
native and non-native regions

Manzoor A Shah'", Marie-Eve Beaulieu?, Zafar A Reshi', Salman Qureshi® and Damase P Khasa’

Abstract

Introduction: The ecological processes underlying the suppressive impacts of invasive species on native species
diversity, both above- and below-ground, in non-native regions are not well understood. We therefore aimed to
investigate the cross-city biogeographic patterns of arbuscular mycorrhizal (AM) diversity in Conyza canadensis
rhizosphere in native (North American) and non-native (Kashmir Himalayan) regions.

Methods: We recovered AMF spores from rhizospheric soils of Conyza in native and non-native ranges, besides
doing so from the uninvaded sites in the introduced region. DNA extracted from AMF spores was processed for
cloning and PCR-RFLP of SSU rRNA gene to yield the restriction groups (RGs) followed by their sequence analysis
to determine the sequence groups (SGs).

Results: The results indicated greater diversity of RGs and SGs in Conyza rhizosphere in native than in non-native
sites. In the introduced region, however, the AMF diversity was more in uninvaded than in invaded sites. The
species composition of AMF varied significantly between native and non-native regions and so also between
invaded and uninvaded habitats.

Conclusions: Though difference in AMF diversity between Conyza invaded and uninvaded sites may be attributed
to invasion, the role of other evolutionary factors seems likely for differences between the native and non-native
regions. We suggest that the ecological processes underlying these evolutionary differences in two biogeographic
regions, besides the intensity of urbanization, might play some role in these differences.
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Urbanization

Introduction

Arbuscular mycorrhizal symbiosis in view of its central
role in plant-rhizosphere interactive dynamics is referred
as the mother of plant root endosymbioses (Parniske
2008). These AMF may act as drivers of various ecological
processes (Shah et al. 2009). The different mechanisms
through which these fungi influence or are influenced
by various ecological processes have been reviewed
(Bonfante and Genre 2010). Urbanization and ensuing
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disturbances generally facilitate invasion by alien species
(Dar et al. 2015) thereby causing decline in richness of
plant communities.

The scarce information available on the effect of alien
plants on AM community dynamics calls for more
research. However, understanding the impact of plant in-
vasions on mycorrhizal diversity, an emerging challenge
for contemporary ecologists, is beset with complexities
not only due to the simultaneous operation of a multitude
of biotic and abiotic factors at different eco-evolutionary
scales (Shah et al. 2009) but also due to technical, meth-
odological, and conceptual reasons (Green and Bohannan
2006). Many AM fungi are difficult to identify using
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exclusively either morphological characteristics or mo-
lecular criteria, and they are difficult to culture in the
absence of a host plant and possess multiple and slightly
different variants of the nuclear-encoded ribosomal RNA
gene within single spores (Sanders et al. 1995; Lanfranco
et al. 1999).

The effect of plant invasions on the homogenization of
aboveground native biodiversity is reasonably well studied;
both in aquatic and terrestrial systems (e.g., McKinney
and Lockwood 1999; McKinney 2004; Rooney et al. 2004;
Taylor et al. 2004; Shah et al. 2014). However, the impact
of invasive plants on structurally and functionally di-
verse native soil communities remains largely unknown.
Evidence suggests that biological invaders can generally
promote positive feedback involving soil microbes (Scott
et al. 2001; Callaway et al. 2004; Wolfe and Klironomos
2005; Reinhart and Callaway 2006) and mycorrhizas
(Eppstein and Molofsky 2007; Shah and Reshi 2007; Shah
et al. 2008a, b), and such feedbacks may promote invasive-
ness. Some invasive species in turn may negatively influ-
ence diversity of AMF (Shah et al. 2010), one of the
important drivers of plant diversity and productivity (van
der Heijden et al. 1998; Burrows and Pfleger 2002).

Conyza canadensis (L.) Cronq. (Canadian horseweed)
is an annual, herbaceous member of sunflower family
(Asteraceae), native to North America and invasive in a
number of countries, including Kashmir Himalaya, India.
It was introduced into Europe from North America
almost 300 years ago, where it completely naturalized
and became one of the most abundant plant species
(Thebaud and Abbott 1995) especially in urban and semi-
urban habitats (Shah et al. 2014). Owing to the British
colonial past of India, C. canadensis was most likely
introduced to Kashmir Himalaya through Europe as
the species was reportedly one of the six earliest and
most abundant weeds in London during World War
II (Salisbury 1942). The rapid range expansion of this
ruderal species is attributed to production of a large
number of small, wind-dispersed seeds (over 200,000
seeds per plant), high resistance to diseases and her-
bicides (Weaver 2001), besides its association with
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AM mutualists (Shah et al. 2010). A recent transcontinen-
tal study revealed that C. canadensis strongly suppresses
native plant diversity in non-native regions but not in
its native range (Shah et al. 2014). In the present
study, we asked whether the AMF diversity differs in
Conyza rhizosphere in native and non-native ranges and
tackled this question through a molecular biogeographic
approach.

Methods

Sample collection and sampling site description

Soil samples were collected from six sites, three each
in Kashmir Himalaya (South Asia) and Canada (North
America). A brief description of the study sites in
both regions is given in Table 1. The Kashmir Himalayan
sites were highly invaded by C. canadensis and soil sam-
ples drawn from each of these sites and nearby similar
uninvaded (control) sites were transported to the Centre
of Forestry Research, University Laval, Quebec, Canada,
for analysis. The invaded and uninvaded sites in Kashmir
Himalaya were 10 m apart from each other. While C.
canadensis formed almost dense monocultures in Kashmir
Himalaya, it occurred quite sparsely in the North
American sites. Hence, it was not possible to have
uninvaded (control) sites in native region the way we
had them in invaded region. Rhizospheric soils of C.
canadensis were collected from all the North American
sites in Quebec on the same day and stored at —20°C prior
to analysis. The sites varied in the disturbance regimes,
light exposure, and geographical coordinates (Table 1).
We took ten rhizospheric soil samples per site appro-
ximately at a distance of 1 m from each other. Three
replicates of each sample were processed for analysis. Soil
samples were collected in both the regions from the rhizo-
spheres of C. canadensis individuals varying from seedling
stage through pre-flowering to post-flowering stages.

AMF spore isolation

Arbuscular mycorrhizal fungal spores were isolated from
all the soil samples using standard wet sieving and su-
crose centrifugation procedure (Daniels and Skipper

Table 1 Brief description of sampling sites in Kashmir Himalaya and North America

Site Habitat type and land-use pattern Latitude Longitude Altitude (m) pH
Kashmir Himalayan sites
Lalbazar Dry, exposed, highly disturbed, typical urban, dense Conyza cover 34°-5'N 74°-50" E 1,584 6.84
Zakura Dry, exposed, moderately disturbed, urban, dense Conyza cover 34°-5'N 74°-50" E 1,587 7.33
Nagbal Dry, protected, undisturbed, semi-urban, dense Conyza cover 34°-18' N 74°-56' £ 1,586 7.70
North American sites
Riviere St-Charles Dry, exposed, less disturbed, semi urban, sparse Conyza cover 46°-48' N 71°-15" W 3 7.51
Riviere Jaune Dry, exposed, semi urban, sparse Conyza cover 46°-54" N 71°-19" W 158 7.65
Lac Clément Dry, exposed, urban, sparse Conyza cover 46°-56' N 71°-21" W 215 6.46

Table shows habitat type, geographical coordinates, and soil pH.
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1982; Tommerup 1992). A 30 g air-dried soil sample
was thoroughly washed through a set of sieves (mesh
size pm: 250, 106, 75, and 53). Sievings were collected
and centrifuged at 2,000 rpm for 5 min, and the pellet
was resuspended in 25 ml of 50% sucrose and centri-
fuged again for 2 min at the same speed. The spores
in the supernatant were washed, and sucrose was re-
moved by a vacuum filtration system. Only the live
viable spores, separated from dead spores under a stereo
microscope, were used for DNA extraction. About 100
spores from each sample were picked up under the ste-
reo microscope and placed in 1.5-ml tubes for DNA
extraction.

DNA extraction

DNA from AMF spores was extracted by the Chelex
method as described by Simon (1996) with some modifi-
cations. Spores representing the whole range of morpho-
logical diversity were placed in Eppendorf tube with
50 pL of distilled water and crushed with blue pestles
before and after adding 50 pL of 20% Chelex-100. Then,
the samples were incubated at 85°C for 3 min followed
by a short vortex and incubation in ice for 5 min. This
heating-cooling cycle was repeated twice; and subse-
quently, the samples were incubated at 60°C for 90 min
followed by centrifugation at 13,000 rpm for 5 min. The
supernatant was collected and immediately processed
for PCR amplification. The samples were stored at -80°C
until used in subsequent molecular analysis.

PCR amplification

From the total AMF DNA, only the portion of the SSU
rRNA gene was specifically amplified using the universal
eukaryotic primer NS31 (Simon et al. 1992) and the
AMF specific primer AM1 (Helgason et al. 1999). The
master mix for each PCR reaction was composed of
Feldan Bio kit (Feldan Bio, Québec, QC, Canada) with 1
unit of taq, 0.5 uM of each primer, 0.2 mM of ANTP,
and 1 pl of total AM DNA. The PCR reaction was
performed in a MJ Research PTC-225 Peltier Thermal
Cycler as follows: (i) initial denaturation step (4 min at
94°C), (ii) 35 cycles of denaturation (50 s at 94°C) fol-
lowed by annealing (1 min at 59°C) and elongation
(2 min at 72°C), and (iii) final elongation step (10 min at
72°C). The PCR products were purified using QIAquick
PCR Purification kit (QIAGEN, Toronto, ON, Canada)
following the manufacturer’s protocol. The purified PCR
products were quantified in 1% agarose gel.

Cloning, amplification, and restriction digestion

About 75 ng of purified PCR products were cloned using
the pGEM"-T Easy Vector Systems (Promega Corpor-
ation, Madison, W1, USA) according to the manufacturer’s
instructions. For each sample, 96 cloned products were
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randomly selected, and then PCR was performed for each
of the cloned products using the M13 universal primer
set. PCR amplification for transformant DNA was per-
formed, as above, using a MJ Research PTC-225 Peltier
Thermal Cycler with following modification of 30 cycles,
with one step consisting of denaturation (50 s at 94°C),
annealing (50 s at 55°C), and elongation (1 min at 72°C).
The PCR products were digested independently with Hinfl
and Alul according to the manufacturer’s instructions
(New England Biolabs, Ipswich, MA, USA). The pattern
of restriction length polymorphism (RFLP) was observed
by running 2% agarose plus 1% Synergel. After analyzing
the restriction fragment length polymorphism (RFLP)
pattern manually and with Genetools version 4.0 (Syngene,
Frederick, MD, USA) and grouping clones with similar
pattern in RFLP type or restriction groups (hereafter RG),
at least three clones of each RFLP type (RGs) were
sequenced (Plate-forme d’Analyses Génomiques de 1’
Université Laval, Québec, QC, Canada) on a ABI 16-
capillary genetic analyzers 3130XL (Applied Biosystems,
Foster City, CA, USA) to verify homogeneity of the RG
and subsequent analysis. Because three restriction groups
were not homogenous, we used alternative restriction
endonucleases to distinguish the different subgroups. For
RG1 Rsal enzyme was used; and for RG11 and RG19, Clal
enzyme served to distinguish the different subgroups.

Grouping and phylogenetic analysis

DNA sequences were edited with BioEdit version 7.0.5
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html; Hall
1999). Sequences with more than 5% of ‘N’ were not in-
cluded in the subsequent analyses. The BLASTn algo-
rithm (http://www.ncbi.nlm.nih.gov/BLAST/) was used to
query GenBank (NCBI) for highly similar sequences. The
sequences not corresponding to the mycorrhizal species
were discarded. The sequences retained were used to pre-
cisely analyze the RG grouping. Many RGs yielded the
same sequence, so they were grouped together to give a
new grouping pattern, the sequence groups (hereafter
SGs). Sequences were also used for phylogenetic analyses.
They were aligned with ClustalX version 1.81 (ftp://ftp-
igbmc.u-strasbg.fr/pub/ClustalX/; Thompson et al. 1997).
Neighbor-joining (Kimura-2 parameters model) and max-
imum parsimony (search with heuristic method closes-
neighbor-interchange CNI with 100 random stepwise
addition replicates) phylogenetic analyses were carried
out with MEGAA4.1 (http://www.megasoftware.net/ Tamura
et al. 2007). All analyses were followed by a 1,000 bootstrap
replicates. Bayesian inference of phylogeny was calcu-
lated with MrBayes program, assuming a 4 x 4 model
and non-variable substitution rates among sites - gamma
rates. Analyses were based on two runs of four Markov
chain Monte Carlo analyses where 2,000,000 generations
were generated, burn-in at 0.5 rate, and sampled every
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100 generations for a total of 10,001 trees generated
(http://mrbayes.csit.fsu.edu/ Ronquist and Huelsenbeck
2003). Phylogenetic affiliation for all the sequence iden-
tifications was based on 98% to 99% similarity. The
sequences were deposited in the GenBank vide voucher
numbers (suite.sqn IAMF1-18 HQ712058; IAMFC2-01
HQ712059; IAMFC2-46 HQ712060; IAMFC1-08 HQ71
2061; IAMF2-108 HQ712062; IAMF1-74 HQ712063).

Statistical analysis and diversity indices

Two types of analyses were carried out, one for AMF
diversity and other for the resemblance between the
AMEF species composition across different sites. Simpson
(D), Shannon-Wiener (H), and Pielou’s evenness (E)
diversity indices were used to evaluate the diversity of
AMEF restriction and sequence + g-*roups. A multivariate
analysis (correspondence analysis) was done to verify
resemblance between the communities. Rarefaction and
coverage (C), where C is defined by the equation: C=1 -
(n1/N), nl is the number of clones that occurred only
once (frequency = 1), and N is the total number of clones
examined of species richness, were used to confirm the
sufficiency of sampling effort. Various indices and corres-
pondence analyses were computed in R with the vegan
package (R Development Core Team. 2010. R: A lan-
guage and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL http://www.R-project.org/).

Results

The sites invaded by C. canadensis in Kashmir Himalaya
from which soil samples were drawn represented almost
monospecific stands, as opposed to the control (unin-
vaded) sites in the Kashmir as well as the native North
American sites where about seven to ten other species
occurred at each site. The species co-occurring with C.
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canadensis in North American region included Arte-
misia frigida, Aster falcatus, Chrysopsis villosa, Elymus
cinerius, Festuca scabrella, Festuca idahoensis, Monarda
fistulosa, Potentilla argentea, and Vulpia octoflora. The
species usually occurring in uninvaded control sites in
Kashmir Himalaya included Arctium lappa, Bromus
japonicas, Chenopodium album, Convolvulus arvensis,
Medicago polymorpha, Potentilla nepalensis, Polygonum
hydropiper, Steria viridis, Sisymbrium loselli, and Sola-
num nigrum. While the average pH of both invaded and
uninvaded sites in Kashmir Himalaya was 7.29, for
North American sites it was 7.20. Template DNA, ex-
tracted from AMF spores recovered from field collected
soils, yielded enough PCR products for each sample
for subsequent analyses. Adequate number of clones
for each sample was processed, in terms of the percent
coverage and rarefaction indices (Table 2), to reflect the
AMEF diversity.

The pattern of restriction digestion, reflective of AMF
diversity, revealed evident differences across biogeogra-
phical regions. While the extent of occurrence of res-
triction groups (RGs) varied in C. canadensis invaded
samples from native and invaded regions, the two regions
also shared some RGs. Representatives of each RG were
sequenced resulting in 12 different sequence groups
(Table 2). In many cases, different RGs yielded the same
sequence and they were grouped together as one sequence
group (SG). Blasting of representative sequences into
GenBank databases led to characterization of most of the
sequences to the species level, though few were identified
to the genus level only (Figure 1). Glomus was the domin-
ant genus across the samples. The only AM species com-
mon between North American and Kashmir Himalayan
samples included Glomus caledonium and G. constrictum.
The species found exclusively in North American samples
included Glomus sp., G. etunicatum, G. versiforme, and

Table 2 Comparison of AMF partial SSU rRNA gene library composition from replicate soil samples of Conyza

canadensis

Clone library Number Number Number of SGs Percentcoverage® Number of SGs found in at Rarefaction for
and soil samples of clones of SGs  uniqueto library least two libraries in the same system number of clones®
QAMF2 43 4 0 100 4 3.8 (35)
QAMF 3 44 5 1 977 4 44 (35)
QAMF4 48 5 2 958 3 4.7 (35)
IAMF1 43 4 1 95.7 3 38 (35
IAMF2 39 2 0 100 2 2.0 (35)
IAMF3 39 3 1 974 2 3035
IAMFC1 90 3 2 978 1 26 (35)
IAMFC2 86 2 0 100 1 1.9 (35)
Drawn from native North American (QAMF) and introduced Kashmir Himalayan (IAMF) regions with reference to uninvaded control samples (IAMFC) in the
introduced region. *Percent coverage of the clone libraries is defined by the equation C=1- (n1/N), where n1 is the number of clones that occurred only once
(frequency = 1), and N is the total number of clones examined (Good, I.L. 1953. The population frequencies of species and the estimation of population

parameters. Biometrika 40, 237-264). PRarefaction predicts the diversity that would probably be observed in sample of reduced size (Foote, M. 1992. Rarefaction

analysis of morphological and taxonomic diversity. Paleobiology 18, 1-16).
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Figure 1 Phylogenetic maximum parsimony tree of the sequence groups (SGs) based on the small subunit of rDNA. Bootstrap
percentage values (50%) generated from 1,000 replicates from maximum parsimony and posterior probabilities (>80%) from Bayesian analysis are
shown as [Maximum parsimony bootstrap value/Bayesian posterior probabilities]. Taxa in bold are AM fungi isolated in present study (Codes: QAMF®
Invaded North American samples; IAMF® Invaded Kashmir Himalayan samples; IAMFC® Uninvaded control samples). Other taxa are from GenBank.
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Blastocladiella emersonii (X54264)

Diversispora sp. A specific isolate of Glomus sp., G. claroi-
deum, and a member of Diversisporaceae were exclusively
found in invaded samples. Another specific isolate of
Glomus sp. and G. intraradices were the only species
exclusively found in the control samples. Glomus caledo-
nium was the species common to all the investigated
samples.

Diversity indices of AMF were higher in the North
American than in the Kashmir Himalayan samples
(Table 3). Comparison of Shannon-Wiener and Simp-
son’s diversity indices showed relatively higher diversity
values for Kashmir soils not invaded by C. canadensis
than for soils invaded by it (Table 3). More so, average
AMF diversity in uninvaded soil samples in Kashmir



Table 3 Frequency of occurrence and diversity indices for the sequence groups (SGs)

Sequence Closest relative
groups (SG) found In GenBank

% Similarity QAMF2 QAMF3 QAMF4 QAMF Average |AMF1

IAMF2 IAMF3 IAMF Average IAMFC1

IAMFC2 IAMFC3 IAMFC Average

1 Glomus caledonium Y17636
G. intraradices EU23266
G. mosseae AJ55616
G. constrictum AJ569
G. claroideum Y17636
G. cf. etunicatum Y17644
G. eburneum EF581879
Glomus sp. FN429112
G. versiforme X86687
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Himalaya was lower than the average diversity of the
samples drawn from native range of C. canadensis
(Table 3). Correspondence analyses (CA) for both RGs
revealed closer relationships among North American
AMF taxa than between North American and Kashmir
AMF, from either control or invaded soils (Figure 2).
However, CA showed that Kashmir samples invaded by
C. canadensis are more similar to Kashmir control sam-
ples, in comparison to the North American samples. In
other words, more similarity between AMF species of
control vs. invaded soils in the non-native region, in
comparison with native region samples, was brought out
by the correspondence analyses of RGs (Figure 2). The
CA plot for SGs yielded almost the similar trend to that
of RGs.

Discussion

Our results indicate that the homogeneity or heterogen-
eity of aboveground plant communities can potentially
influence soil microbial communities as indicated by
some earlier studies (see for instance van der Heijden
et al. 1998). It seems that relatively less species richness
of plants that co-occur with Conyza canadensis in non-
native ranges than in its native range (Shah et al. 2014)
may possibly contribute partly to less mycorrhizal

Page 7 of 9

species diversity in Conyza invaded plots. In other
words, suppression of the native plant diversity by Con-
yza in non-native ranges may possibly be through its
negative effects on the symbiotic association between
AM fungi and native plants the way it has been recently
demonstrated in case of Impatiens glandulifera (Ruckli
et al. 2014). Decreases in AMF species richness due to
plant invasion has been previously reported by other
workers (Burrows and Pfleger 2002; Mummey and Rillig
2006). The less diversity of AMF in Conyza invaded than
those in uninvaded urban sites on morphological
grounds reported earlier (Shah et al. 2010) seems to be
rather confirmed by the use of molecular approaches in
the present study. Notwithstanding the problems associ-
ated with the SSU rRNA heterogeneity in identification
of different isolates of the same AMEF species, strength
of this molecular marker for community profiling stands
proved beyond doubt (Stéphani and Bérubé 2006). The
PCR-RFLP rRNA markers coupled with cloning are reli-
able, easily reproducible, and quite efficient for AM
community analysis. It has been observed that richer
plant communities support greater AM species richness
(Eom et al. 2000; Burrows and Pfleger 2002; Husband
et al. 2002), and positive relationships between the diver-
sity of plants and diversity of AMF have been shown

CA2

that of RGs.

Figure 2 Correspondence analysis of the different soil samples according to the frequency of associated AM fungi. Correspondence
analysis of the different soil samples according to the frequency of associated AM fungi characterized with the restriction digestion method (RG).
Soil samples are positioned along the first two DA axes, where Eigenvalues are 0.5515 for CA1 and 0.5055 for CA2. Black circles represent North
American (QAMF) samples and white circles represent Kashmir Himalayan (IAMF) samples. The CA plot for SGs yielded almost the similar trend to

CA1
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(Grime et al. 1987; van der Heijden et al. 1998). Lower
AM diversity in the Conyza invaded than those in unin-
vaded soils could therefore be partly due to relatively
diverse aboveground plant cover in native sites as well as
in uninvaded sites in Kashmir Himalaya as against
almost the monospecific stands of Conyza invaded plots.
Such a shift in AMF diversity may potentially have
significant influence on both above- and belowground
biodiversity. Moreover, changes in the soil chemistry are
also expected when aboveground plant communities
change from more diverse and heterogeneous to homo-
genous due to plant invasions (Vitousek and Walker
1989; Fierer et al. 2009). The differences in NO3 and K
and smaller but nevertheless real differences in P be-
tween invaded and uninvaded sites (data not presented)
could per se explain the differences in AMF community.
But whether such differences in soil nutrient characteris-
tics are directly attributable to Conyza abundance also
remains to be seen. The decline in AMF diversity due to
invasion by allelopathic Comyza (Shaukat et al. 2003)
draws support also from Callaway et al. (2008), who
reported that through novel weapons invasive plants
can suppress fungal mutualists in invaded but not in
native range.

The comparison of North American and Kashmir
Himalayan rhizospheric samples of C. canadensis yielded
evident differences in the diversity of sequence groups,
thereby indicating a shift in AM species composition. In
contrast to monotypic stands in Conyza invaded sites in
Himalaya, in the native North American sites the species
co-occurred with many other plant species. Changes in-
duced by C. canadensis in the AMF spore diversity could
possibly be caused through the production of antimi-
crobials by invasive plants (Vivanco et al. 2004; Stinson
et al. 2006), exudation of allelochemicals (Callaway et al.
2004), and/or alteration of quality and quantity of soil
nutrients (Vitousek and Walker 1989). A recent study
showed that the taxonomic composition and richness of
AM fungal communities associated with Trachycarpus
fortunei not only varied between the native and intro-
duced ranges but also that sharing a pool of geographically
widespread, non-host-specific AM taxa by such a general-
ist alien plant species facilitates its invasion (Moora et al.
2011). The correspondence analysis indicated relatively
closer relationship between the AMF isolates of each bio-
geographical region than across regions, thereby indicat-
ing the influence of specific urban ambience in addition to
the other related ecological factors that vary in each of the
targeted regions. Notwithstanding that some alien plants
can exploit AMF for their invasiveness (Callaway et al.
2004; Shah et al. 2008a, 2008b, Fumanal et al. 2006),
invasive species in turn may influence the community
structure and diversity of AMF communities negatively
(Shah et al. 2010).
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Conclusion

The difference in AMF species composition between
Conyza invaded and uninvaded sites in Kashmir Himalaya
may be due to differences in aboveground plant compos-
ition. We suggest that the long-term evolutionary legacies
of AMF-plant interactions in native range of Conyza, as
against the relatively short-term and rapid evolutionary
relations in non-native regions, might play some role in
these differences. These suggestions are, however, ten-
tative, and more evidence from both descriptive and
experimental studies is required to assess the role of
such evolutionary factors for the differences between
AMEF species diversity in Conyza rhizosphere in native
and non-native regions. Since the evolutionary trends in
mycorrhizal mutualisms appear to be much more com-
plex than models and theoretical discussions would sug-
gest (Brundrett, 2002), how invasive plants change the
coevolution of native plant-AMF interactions still re-
mains a challenging question. An interesting discourse
for the invasion ecologists would be to examine, in a
rapid evolution perspective, whether homogenization of
diverse soil communities occurs due to urbanization-
induced homogenization of aboveground plant communi-
ties. A combined molecular and biogeographical approach
through well-replicated field studies, if applied to a larger
pool of invasive species from different geographical
regions, could potentially lend unprecedented precision
to our understanding of the dynamics of invasive plant-
AMEF interactions.
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