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Abstract

Introduction: In this study, metal pollution and their sources in surface soils were evaluated by pollution indices
and multivariate statistical techniques in association with a geographical information system (GIS).

Methods: Surface soil samples were collected in dry season from different locations of Dhaka Aricha highway and
analyzed by energy dispersive X-ray fluorescence (EDXRF).

Results: Thirteen different metals were found in the tested samples. Pollution indices are determined by enrichment
factor in an order of Zr > Sn > P >Mn > Zn > Rb > Fe > Ba > Sr > Ti > K > Ca > Al. The resulting geoaccumulation index
(Igeo) value shows the following order: Sn > Zr > P >Mn > Zn > Rb > Fe > Ba > Ti > Sr > K > Ca > Al. Contamination
factors (CFs) of the metals range from 1.422 to 3.979 (Fe); 0.213 to 1.089 (Al); 0.489 to 3.484 (Ca); 1.496 to 2.372 (K); 1.287
to 3.870 (Ti); 2.200 to 14.588 (Mn); 5.938 to 56.750 (Zr); 0.980 to 3.500 (Sr); 2.321 to 4.857 (Rb); 2.737 to 6.526 (Zn); 16.667
to 27.333 (Sn); 3.157 to 16.286 (P); and 0.741 to 3.328 (Ba). Pollution load index calculated from the CFs indicates that
soils are strongly contaminated by Zr and Sn. Principal component analysis (PCA) of parameters exhibits three major
components. R-mode cluster analysis reveals three distinct groups in both site and metal basis clustering that shows a
similar pattern with the PCA.

Conclusions: These results might be helpful for future monitoring of further increase of heavy metal concentrations in
surface soils along highways.

Keywords: Heavy metals, Geoaccumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), Principal
component analysis (PCA), Dhaka Aricha highway

Introduction
Rapid urbanization and industrialization in Bangladesh
leads to economic growth and gives the chance of think-
ing of being a developed country in the future; on the
other side, this process changes the whole environment
drastically. Our planet, or in a small sense the environ-
ment, has the capability to minimize the adverse effects,
but now, it is alarming for us to think about it. Dhaka, a
megacity in the world, is in the worst situation in terms

of environmental perspective. Environmental pollution
has crossed its line, degrading the whole environment
day by day. High population and large density of vehicle
emissions are industrial pollutions that are circulated
everywhere, the main culprits to degrade the system
(Chowdhury 2006; Islam 2014). The situation is worst in
the transition point of the city like bus stands. The
major highway like Dhaka Aricha highway is being pol-
luted for vehicle emissions, an industrial pollution that
causes the disturbance of the environment. Heavy metal
contamination of aquatic ecosystems has received much
attention because of its toxicity, abundance, and persist-
ence (Arnason and Fletcher 2003). Elevated levels of
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heavy metals in environmental compartments, such as
aquatic soils, may pose a risk to human health due to
their transfer in aquatic media and uptake by living or-
ganisms, thereby entering the food chain (Sin et al. 2001;
Varol and Sen 2012). Soils are ecologically sensitive
components of the aquatic ecosystems and are also a
reservoir of the contaminants, which take part consider-
ably in maintaining the trophic status for any water res-
ervoir (Singh et al. 2005a, b).
Roads play a major role in stimulating social and eco-

nomic progress, and road construction has also resulted
in heavy environment pollution in this region (Liu et al.
2006). Road traffic is an important deleterious factor
concerning air quality, noise, and land consumption
(Zechmeister et al. 2005). The contribution of cars and
road transports to the global emission of atmospheric
pollutants is regularly increasing (Viard et al. 2004). The
road transports also induce the contamination of nearer
soils by a pollutant transfer via the atmospheric fallouts
(Viard et al. 2004; Nabuloa et al. 2006) or road runoff
(Mitsch and Gosselink 1993; Nabuloa et al. 2006). Max-
imum researchers have stated the influence of the traffic
load on heavy metal contents in topsoils and their vari-
ability with distance (Ward et al. 1977; Rodriguez and
Rodriguez 1982; Garcia and Milla´n 1998; Zhang et al.
1999; Turer and Maynard 2003). Nabuloa et al. (2006)
also showed total trace metal concentrations in roadside
soils decreased exponentially with increasing distance
from roadways. Although the concentrations of metals
in the roadside soil were influenced by meteorological
conditions (Othman et al. 1997; Sezgin et al. 2003),
traffic density (Garcia and Milla´n 1998; Nabuloa et al.
2006), the kind of vehicle in traffic (Sezgin et al. 2003;
Nabuloa et al. 2006), and soil parameters (Viard et al. 2004)
were also verified in some studies; little information was
known about the heavy metal accumulation in roadside
soils along the roads with different transportation periods.
Dhaka Aricha highway plays a vital role in inter-

district and inter-regional transports as it links the
northwestern and northern region of Bangladesh with
Dhaka. It originates from Amin Bazar Bridge and ends
at Aricha Ghat, covering a length of 75.4 km (Hoque et
al. 2007). Huge vehicle loads and industrial activities
make a pollutant hotspot zone around these highway
areas. Emissions from high transportation density dis-
perse around the agricultural field, water body, and live-
stock areas which are alongside the highway areas. Huge
contamination loads especially heavy metals accumulate
in the biotic components and enter into the food chain.
Concentration of these heavy metals in soils is associated
with geometrical cycles and biological processes and
could be greatly influenced by high traffic load and
transportation activities. In the food chain, primary pro-
ducers, i.e., plants, are capable of absorbing these metals

from the soil (Kakulu and Abdullahi 2004; Rajaram and
Das 2008). These metals each contaminate into the soil
when they undergo chemical reactions and could come
in direct contact with roots of plants (Udosen et al.
1990). When these plants in the form of vegetables are
consumed by man, trace metals become bioaccumulated
and eventually result in several ailments which may subse-
quently cause death (Odiette 1999). In some cases, plants
accumulate some of these metals which are not injurious
to them but may be poisonous to animals grazing on
the plants (Raven and Evert 1976). Nabuloa et al.
(2006) reported that leaves of roadside crops can ac-
cumulate trace metals at high concentrations, causing
a serious health risk to consumers.
Monitoring of anthropogenic release of heavy metals

is usually done to determine the distribution of pollut-
ants and apportionment of sources (Kelepertsis et al.
2006). Among the statistical techniques, both principal
component analysis (PCA) and cluster analysis (CA) are
useful methods to discover common patterns in data
distribution, leading to initial dimension reduction of
datasets and helping its interpretation (Franco-Uría et al.
2009). PCA and CA assist to set up analyzed parameters
in different factors/groups on the basis of contribution
from their possible sources. FA and PCA have been
widely used to expose variable redundancy and combine
variables into single factors (Wilcke et al. 1998; Chen et
al. 1999; Kumru and Bakac 2003; Navas and Machin
2002; Bretzel and Calderisi 2006). CA is often coupled to
FA and PCA to provide groupings of individual variables
according to distances or similarity indices (Facchinelli et
al. 2001; Granero and Domingo 2002; Manta et al. 2002;
Wang et al. 2005; Han et al. 2006). The explanation of the
above data processing helps to identify pollution sources
and allocate natural vs. anthropic contribution. The geo-
graphical information system (GIS) software is in-
creasingly used in environmental studies because of its
capability to expose non-point source contaminants (Sul-
tan 2007; Wang et al. 2006) and as a visual support in
interpreting heavy metal spatial distribution.
In Bangladesh, determination of the heavy metals

along the roadside is now a growing demand because of
metal biomagnification in the food chain and their po-
tential health impact. This study focuses on the identifi-
cation of heavy metals in the roadside surface soils of
Dhaka Aricha highway which will be served as a baseline
study in Bangladesh for future monitoring of heavy
metals and their levels around the roadside areas. Major
objectives of the present study were (i) to measure the
concentrations of metals (Fe, Al, Ca, K, Ti, Mn, Zr, Sr,
Rb, Zn, Sn, P, and Ba) in surface soils of Dhaka Aricha
highway; (ii) to determine potential pollution indices
using enrichment factor (EF), geoaccumulation index
(Igeo), contamination factor (CF), and pollution load
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index (PLI); and (iii) to define their natural/anthropogenic
contributions using multivariate statistical methods. It
is anticipated that the study would provide a baseline
data regarding the distribution, accumulation, and
sources of heavy metals in the roadside surface soils
of Dhaka Aricha highway.

Study area
The area selected for the study was along the Dhaka
Aricha road which lies between latitudes from 23° 47′
45.84′′ N to 23° 47′ 40.08′′ N and longitude 90° 16′
36.04′′ E to 90° 19′ 33.80′′ E which is 5.04 km long. The
study area situated near Savar which is 17 km north from
the Dhaka center runs northward. The study area was se-
lected because it links with Dhaka City with comparatively
high traffic density and has industrial influence. It carries,
on an average, 9000 motor vehicles per day. The study area
is surrounded by numerous brick fields and near the Amin
Bazar landfill area. The Gabtoli Amin Bazar area is the
transition point of Dhaka City, the largest bus stand acting
as the entry and exit points of the city. Average elevation is
26.5 ft above sea level. This area is perennially inundated
by monsoon flood (June to August) and roadside runoff.
The geology of this area is the uplifted Madhupur area
which is covered by dark reddish-brown to brownish-red,
mottled, sticky, and compact Madhupur Clay Residuum of
the Pleistocene age, underlain by Plio-Pleistocene Dupi
Tila sandstone formation (Maitra and Akhter 2011).

Methods
Sample collection
A total of 19 soil samples (prefixed S) was collected
January, 2014, during dry seasons from roadside surface
soils of Hemayetpur to Gabtoli area, Savar of Dhaka
Aricha highway (Fig. 1). The soil samples were collected
manually with a stainless steel spatula, cleaned after
each sampling for foreign matter and carried within
zip-mouthed PVC packages. All the soil samples were
collected from the upper layer of the soil (about 0–5 cm).
The soil samples were tightly packed and transferred
to Institute of Food Science and Technology (IFST),
Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka, for metal determination in energy disper-
sive X-ray fluorescence (EDXRF). The samples were prop-
erly labeled and kept in room temperature.

Sample preparation
The collected soil samples were homogeneously mixed
up. Unwanted portions like plant roots, stones, or other
debris were removed. Then the samples were kept in a
microwave oven about 48 h (at 60 °C). The soil samples
were kept in room temperature and grinded with mortar
and pestle. Fifteen grams of the grinded samples was
taken for pellet formation. In the VANEOX pressing ma-
chine, a 15-ton pressure was used to form the pellet.
After the pellet formation, the samples were ready for
the analysis in EDXRF.

Fig. 1 Sampling location map of the study area
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Fig. 2 Spatial distribution showing Igeo value of metals in different sampling sites
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Analysis of elements and data acquisition by EDXRF
The elemental analysis was performed by ARL QUANT’X
EDXRF, Thermo Scientific, USA, a spectrometer at IFST,
BCSIR, Dhaka. EDXRF is equipped with a rhodium (Rh)
anode along with an assembly of eight filters (Al, cellulose,
Cu thick, Cu thin, No, Pd medium, Pd thick, Pd thin), and
a Si (Li) detector (with a 15-mm2 area and less than an
equal 76-μm beryllium window) was used for the deter-
mination of elements of the samples (Adyel et al. 2012).
The sample is positioned in the Teflon cup assemblies.
In the present work, the measurements were carried
out in air. UniQUANT ED is the main system software
to run the analysis in this EDXRF. The acquired data
were processed with the help of a connected computer.
The data is generated in percentage value. It can be
converted to ppm value by multiplying by 10,000 (con-
version process described in the software system). This
instrument shows the >5-ppm value (instrument setup
process). The value is generated by the average values
of three time running value commands by the operator.
The value is the average value of three-time running
values in the instrument.

Assessment of soil pollution
EF
The enrichment factor can be calculated by dividing its
ratio to the normalizing element by the same ratio found
in the chosen baseline (Turekian and Wedepohl 1961).
EF is calculated by the following equation:

EF ¼ Metal=Feð ÞSample= Metal=Feð ÞBackground
The EF values close to unity indicate crusted origin;

those less than 1.0 suggest a possible mobilization or de-
pletion of metals (Zsefer et al. 1996).
EFs >1.0 suggest possible anthropogenic origin. EFs

>10 are suggest to be a non-crusted source. For geo-
chemical normalization, iron (Fe) was used as the refer-
ence element (Daskalakis and O’Connor 1995).

Igeo
Igeo is calculated to estimate the enrichment of metal
concentrations above the background level which was
proposed by Muller (1969). Igeo is calculated using
following equation:

Igeo ¼ Log2 Cn=1:5Bnð Þ
where
Cn = concentration of the element in the enriched

samples
Bn = background value of the element
The factor 1.5 is introduced to minimize the effect of

possible variations in the background values which may
be attributed to lithologic variations in the soils (Stoffers

et al. 1986). Muller (1969) proposed the descriptive clas-
ses for increasing Igeo value (Table 1).

CF
The CF is the ratio obtained by dividing the concentra-
tion of each metal in the soil by the baseline or back-
ground value (Turekian and Wedepohl 1961):

CF ¼ Cheavy metal=Cbackground

The contamination levels can be classified based on
their intensities on a scale ranging from 1 to 6. They were
classified as 0 = none, 1 = none to medium, 2 = moderate,
3 = moderately to strong, 4 = strongly polluted, 5 = strong
to very strong, and 6 = very strong (Muller 1969).

PLI
For the entire sampling site, PLI has been determined as
the nth root of the product of the n CF (Usero et al. 2000):

PLI ¼ CF1 � CF2 � CF3 � :::� CFnð Þ1=n

Statistical analysis
Analyzed data were subjected to multivariate analysis:
PCA and FA and CA using SPSS version 22.0 and
Microsoft Excel 2013.

PCA and FA
PCA is designed to transform the original variables into
new, uncorrelated variables (axes), called the principal
components, which are linear combinations of the ori-
ginal variables. The new axes lie along the directions of
maximum variance (Sarbu and Pop 2005). The principal
component (PC) can be expressed as the following:

zij ¼ ai1x1jþ ai2x2jþ ai3x3jþ……………… ::
þ aimxmj

where z is the component score, a is the component
loading, x is the measured value of a variable, i is the
component number, j is the sample number, and m is
the total number of variables.

Table 1 Muller’s classification for the geoaccumulation index

Igeo value Class Soil quality

≤0 0 Unpolluted

0–1 1 From unpolluted to moderately polluted

1–2 2 Moderately polluted

2–3 3 From moderately to strongly polluted

3–4 4 Strongly polluted

4–5 5 From strongly to extremely polluted

>6 6 Extremely polluted
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Table 2 Concentration, enrichment factor, geoaccumulation index, contamination factor, and pollution load index of metals for surface soil

Sampling site Fe Al Ca K

Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI

S1 115,000 1 0.700 2.436 2.877 25,500 0.131 −2.234 0.319 0.597 52,200 0.969 0.655 2.362 1.247 49,900 0.770 0.323 1.876 2.033

S2 156,200 1 1.142 3.309 80,100 0.303 −0.583 1.001 11,000 0.150 −1.592 0.498 46,100 0.524 0.208 1.733

S3 106,200 1 0.585 2.250 31,600 0.176 −1.925 0.395 77,000 1.549 1.216 3.484 54,600 0.912 0.453 2.053

S4 151,800 1 1.100 3.216 80,200 0.312 −0.581 1.003 11,300 0.159 −1.553 0.511 39,800 0.465 −0.004 1.496

S5 171,200 1 1.274 3.627 84,600 0.292 −0.504 1.058 10,800 0.135 −1.618 0.489 50,000 0.518 0.326 1.880

S6 163,400 1 1.207 3.462 76,100 0.275 −0.657 0.951 19,800 0.259 −0.744 0.896 57,600 0.626 0.530 2.165

S7 103,200 1 0.544 2.186 20,300 0.116 −2.563 0.254 38,700 0.801 0.223 1.751 48,500 0.834 0.282 1.823

S8 108,400 1 0.615 2.297 38,400 0.209 −1.644 0.480 36,100 0.711 0.123 1.633 63,100 1.033 0.661 2.372

S9 166,600 1 1.235 3.530 72,900 0.258 −0.719 0.911 17,200 0.220 −0.947 0.778 57,900 0.617 0.537 2.177

S10 182,400 1 1.365 3.864 55,400 0.179 −1.115 0.693 30,000 0.351 −0.144 1.357 63,000 0.613 0.659 2.368

S11 187,800 1 1.407 3.979 78,600 0.247 −0.610 0.983 21,100 0.240 −0.652 0.955 58,600 0.554 0.555 2.203

S12 169,000 1 1.255 3.581 45,700 0.160 −1.393 0.571 61,100 0.772 0.882 2.765 45,500 0.478 0.189 1.711

S13 78,900 1 0.156 1.672 20,700 0.155 −2.535 0.259 38,200 1.034 0.205 1.729 56,800 1.277 0.510 2.135

S14 177,600 1 1.327 3.763 76,000 0.252 −0.659 0.950 31,800 0.382 −0.060 1.439 62,900 0.628 0.657 2.365

S15 156,400 1 1.143 3.314 62,600 0.236 −0.939 0.783 27,700 0.378 −0.259 1.253 55,500 0.630 0.476 2.086

S16 161,000 1 1.185 3.411 87,100 0.319 −0.462 1.089 22,800 0.302 −0.540 1.032 60,700 0.669 0.605 2.282

S17 170,300 1 1.266 3.608 72,700 0.252 −0.723 0.909 23,200 0.291 −0.515 1.050 60,700 0.632 0.605 2.282

S18 94,900 1 0.423 2.011 20,400 0.127 −2.556 0.255 38,300 0.862 0.208 1.733 46,900 0.877 0.233 1.763

S19 67,100 1 −0.077 1.422 17,000 0.149 −2.819 0.213 34,300 1.092 0.049 1.552 58,100 1.536 0.542 2.184

Sampling site Ti Mn Zr Sr

Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI

S1 9200 0.821 0.415 2.000 2.395 3020 1.458 1.244 3.553 4.351 7300 18.726 4.927 45.625 13.515 813 1.112 0.853 2.710 2.157

S2 12,100 0.795 0.810 2.630 3960 1.408 1.635 4.659 1520 2.871 2.663 9.500 371 0.374 −0.279 1.237

S3 9100 0.879 0.399 1.978 2680 1.401 1.072 3.153 3430 9.528 3.837 21.438 942 1.396 1.066 3.140

S4 12,400 0.838 0.846 2.696 12,400 4.536 3.282 14.588 1400 2.721 2.544 8.750 294 0.305 −0.614 0.980

S5 13,200 0.791 0.936 2.870 3910 1.268 1.617 4.600 1650 2.843 2.781 10.313 334 0.307 −0.430 1.113

S6 12,100 0.760 0.810 2.630 3450 1.172 1.436 4.059 1340 2.419 2.481 8.375 558 0.537 0.310 1.860

S7 11,500 1.143 0.737 2.500 2540 1.367 0.994 2.988 9080 25.955 5.242 56.750 702 1.070 0.642 2.340

S8 9200 0.871 0.415 2.000 3020 1.547 1.244 3.553 950 2.585 1.985 5.938 902 1.309 1.003 3.007
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Table 2 Concentration, enrichment factor, geoaccumulation index, contamination factor, and pollution load index of metals for surface soil (Continued)

S9 11,700 0.721 0.762 2.543 3860 1.287 1.598 4.541 1700 3.010 2.824 10.625 515 0.486 0.195 1.717

S10 17,800 1.001 1.367 3.870 4860 1.480 1.930 5.718 1320 2.135 2.459 8.250 773 0.667 0.781 2.577

S11 12,000 0.656 0.798 2.609 4030 1.192 1.660 4.741 1480 2.325 2.624 9.250 552 0.462 0.295 1.840

S12 15,300 0.929 1.149 3.326 9570 3.144 2.908 11.259 1700 2.967 2.824 10.625 1050 0.978 1.222 3.500

S13 7800 1.014 0.177 1.696 2240 1.577 0.813 2.635 5710 21.349 4.572 35.688 905 1.805 1.008 3.017

S14 13,000 0.751 0.914 2.826 4070 1.273 1.675 4.788 1180 1.960 2.298 7.375 779 0.690 0.792 2.597

S15 12,200 0.800 0.822 2.652 3460 1.228 1.440 4.071 1390 2.622 2.534 8.688 644 0.648 0.517 2.147

S16 12,100 0.771 0.810 2.630 4200 1.449 1.720 4.941 1000 1.832 2.059 6.250 686 0.670 0.608 2.287

S17 11,700 0.705 0.762 2.543 3960 1.291 1.635 4.659 1100 1.905 2.196 6.875 637 0.588 0.501 2.123

S18 7500 0.811 0.120 1.630 2130 1.246 0.740 2.506 7190 22.350 4.905 44.938 731 1.212 0.700 2.437

S19 5920 0.905 −0.221 1.287 1870 1.548 0.553 2.200 5440 23.917 4.503 34.000 776 1.820 0.786 2.587

Sampling site Rb Zn Sn P

Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI Conc.
(ppm)

EF Igeo CF PLI

S1 430 1.261 1.034 3.071 3.561 350 1.512 1.296 3.684 3.993 123 8.414 3.773 20.500 20.866 2210 1.296 1.074 3.157 5.71

S2 430 0.928 1.034 3.071 320 1.018 1.167 3.368 126 6.346 3.807 21.000 2310 0.997 1.138 3.300

S3 473 1.502 1.171 3.379 363 1.698 1.349 3.821 124 9.185 3.784 20.667 4560 2.895 2.119 6.514

S4 427 0.948 1.024 3.050 287 0.939 1.010 3.021 123 6.374 3.773 20.500 3010 1.337 1.519 4.300

S5 520 1.024 1.308 3.714 264 0.766 0.890 2.779 102 4.687 3.503 17.000 2590 1.020 1.303 3.700

S6 580 1.197 1.466 4.143 370 1.125 1.377 3.895 128 6.162 3.830 21.333 3850 1.589 1.874 5.500

S7 391 1.277 0.897 2.793 423 2.036 1.570 4.453 105 8.004 3.544 17.500 4205 2.747 2.002 6.007

S8 542 1.686 1.368 3.871 431.5 1.978 1.598 4.542 164 11.902 4.188 27.333 4560 2.836 2.119 6.514

S9 500 1.012 1.252 3.571 440 1.312 1.627 4.632 158 7.461 4.134 26.333 4410 1.785 2.070 6.300

S10 620 1.146 1.562 4.429 330 0.899 1.212 3.474 136 5.865 3.918 22.667 3630 1.342 1.790 5.186

S11 640 1.149 1.608 4.571 620 1.640 2.121 6.526 132 5.529 3.874 22.000 6070 2.179 2.531 8.671

S12 660 1.317 1.652 4.714 260 0.764 0.868 2.737 100 4.655 3.474 16.667 11400 4.548 3.441 16.286

S13 372 1.590 0.825 2.657 415 2.613 1.542 4.368 112 11.167 3.637 18.667 8065 6.892 2.941 11.521

S14 650 1.234 1.630 4.643 570 1.595 2.000 6.000 143 6.334 3.990 23.833 4730 1.796 2.171 6.757

S15 538 1.160 1.357 3.843 310 0.985 1.121 3.263 120 6.036 3.737 20.000 4680 2.018 2.156 6.686

S16 680 1.424 1.695 4.857 290 0.895 1.025 3.053 118 5.766 3.713 19.667 2400 1.005 1.193 3.429

S17 600 1.188 1.515 4.286 420 1.225 1.559 4.421 148 6.837 4.040 24.667 2960 1.172 1.495 4.229

S18 335 1.190 0.674 2.393 470 2.461 1.722 4.947 132 10.942 3.874 22.000 4000 2.842 1.930 5.714

S19 325 1.633 0.630 2.321 490 3.628 1.782 5.158 107 12.544 3.572 17.833 3600 3.618 1.778 5.143

A
hm

ed
et

al.EcologicalProcesses
 (2016) 5:2 

Page
7
of

16



PCA of the normalized variables was performed to ex-
tract significant PCs and to further reduce the contribu-
tion of variables with minor significance; these PCs were
subjected to varimax rotation with Kaiser Normalization
generating VFs (Brumelis et al. 2000; Singh et al. 2004,
2005a, b; Love et al. 2004; Abdul-Wahab et al. 2005). The
factor analysis can be shown by the following equation:

zji ¼ af 1 f 1i þ af 2 f 2i þ af 3 f 3i þ……………… ::

þ af m f mi þ ef i

where
z = measured variable
a = factor loading
f = factor score
e = residual term accounting for errors or other

sources of variation
i = sample number
m = total number of factors

CA
The purpose of CA is to identify groups or clusters of
similar sites on the basis of similarities within a class and
dissimilarities between different classes (Sparks 2000). CA
is a group of multivariate techniques whose primary pur-
pose is to assemble objects based on the characteristics
they possess. CA classifies objects so that each object is
similar to the others. The resulting clusters of objects
should then exhibit high internal (within cluster) homo-
geneity and high external (between clusters) heterogeneity.

Fig. 3 Box-whisker plots of the EF (left) and CF (right) of metals in soils (the whisker shows the minimum and maximum values and the line of
each plot is the median value)

Table 3 Concentration, enrichment factor, geoaccumulation
index, contamination factor, and pollution load index of metals
for surface soil

Sampling site Ba

Concentration (ppm) EF Igeo CF PLI

S1 1520 1.076 0.805 2.621 2.589

S2 1670 0.870 0.941 2.879

S3 430 0.330 −1.017 0.741

S4 1500 0.804 0.786 2.586

S5 1350 0.642 0.634 2.328

S6 1780 0.887 1.033 3.069

S7 1440 1.136 0.727 2.483

S8 1680 1.261 0.949 2.897

S9 1610 0.786 0.888 2.776

S10 1680 0.750 0.949 2.897

S11 1680 0.728 0.949 2.897

S12 1880 0.905 1.112 3.241

S13 1370 1.413 0.655 2.362

S14 1930 0.884 1.150 3.328

S15 1600 0.833 0.879 2.759

S16 1650 0.834 0.923 2.845

S17 1910 0.913 1.134 3.293

S18 1550 1.329 0.833 2.672

S19 1350 1.637 0.634 2.328
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In this study, hierarchical agglomerative CA was per-
formed on the normalized dataset by means of the Ward’s
method, using squared Euclidean distances as a measure
of similarity. CA was applied on experimental data stan-
dardized through z-scale transformation in order to avoid
misclassification due to wide differences in data dimen-
sionality (Liu et al. 2003).

Inverse distance weighting
The factor scores from the R-mode PCA and Igeo values
were used with ArcGIS 10.1 to determine the spatial var-
iations of the dominant processes and soil pollution level
using the inverse distance weighting (IDW) method. The
IDW method estimates the values of an attribute at
unsampled points using a linear combination of values
at sampled points weighted by an inverse function of the
distance from the point of interest to the sampled
points. The weights can be expressed as follows:

λi ¼ 1=di
P

Xn

i¼1
1=di

P

where
di = the distance between x0 and xi
p = power parameter
n = the number of sampled points used for the

estimation
The main factor affecting the accuracy of IDW is the

value of the power parameter (Isaaks and Srivastava
1989). The most popular choice of p is 2, and the result-
ing method is often called inverse square distance.

Results and discussion
Pollution indices
The EF values for Fe is 1 in all sampling sites; Al ranges
from 0.116 to 0.319; Ca from 0.135 to 1.549; K from
0.465 to 1.536; Ti from 0.656 to 1.143; Mn from 1.172 to
4.536; Zr from 1.832 to 25.955; Sr from 0.305 to 1.820;
Rb from 0.928 to 1.686; Zn from 0.764 to 3.628; Sn from
4.655 to 12.544; P from 0.997 to 6.892; and Ba from
0.330 to 1.637 (Tables 2 and 3). The average order of the
EF values for the metals is Zr (8.106) > Sn (7.590) > P
(2.311) >Mn (1.625) > Zn (1.531) > Rb (1.256) > Fe (1) > Ba
(0.948) > Sr (0.865) > Ti (0.840) > K (0.747) > Ca (0.561) >
Al (0.218). The EF values between 0.05 and 1.5 indicate
that the metal is entirely from crustal materials or natural
processes; on the other hand, the EF values higher
than 1.5 indicate that the sources are likely to be an-
thropogenic (Zhang and Liu 2002). According to Han
et al. (2006), EF ≤2 suggests deficiency to minimal
metal enrichment, whereas EF >2 suggests higher degrees
of metal enrichment.
The Igeo brought in by Muller (1969) is used as a

reference of calculating the level of metal pollution.

Table 5 Component matrix showing three factor models for
sampling sites

Elements PC1 PC2 PC3

S1 −1.112 0.205 −0.218

S2 0.009 −1.544 −0.685

S3 −1.046 1.295 −0.125

S4 0.265 −1.428 −2.137

S5 0.228 −1.310 −1.138

S6 0.583 −0.505 0.256

S7 −1.301 0.151 −0.555

S8 0.031 0.496 1.546

S9 0.410 −0.745 0.816

S10 1.192 0.417 0.230

S11 0.860 −0.114 0.992

S12 1.364 2.730 −1.984

S13 −1.183 1.002 0.117

S14 1.071 0.337 1.380

S15 0.349 −0.050 −0.237

S16 0.816 −0.283 0.060

S17 0.750 −0.442 0.952

S18 −1.536 −0.157 0.194

S19 −1.751 −0.054 0.535

Moderate to strong factor loadings are boldface

Table 4 Matrix of three principal components

Component

Elements PC1 PC2 PC3

Fe 0.927 −0.221 −0.059

Al 0.789 −0.541 −0.053

Ca −0.355 0.846 −0.044

K 0.277 0.148 0.853

Ti 0.840 0.015 −0.287

Mn 0.507 0.004 −0.663

Zr −0.854 0.175 −0.085

Sr −0.189 0.927 0.237

Rb 0.911 0.211 0.174

Zn −0.161 0.031 0.745

Sn 0.280 −0.185 0.701

P 0.174 0.789 −0.162

Ba 0.600 −0.122 0.172

Eigenvalue (total) 5.149 2.473 2.253

% of total variance 39.610 19.020 17.331

Cumulative % of variance 39.610 58.630 75.961

Moderate to strong loadings are in boldface
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From Tables 2 and 3, the Igeo value of Fe is 0.939 ± 0.444;
K is 0.439 ± 0.190; Ti is 0.675 ± 0.375; Mn is 1.537 ± 0.667;
Zr is 3.172 ± 1.096; Sr is 0.524 ± 0.509; Rb is 1.247 ± 0.337;
Zn is 1.412 ± 0.358; Sn is 3.798 ± 0.201; P is 1.929 ± 0.604;
and Ba is 0.788 ± 0.464. According to Table 1, overall sam-
pling site is unpolluted by Al and Ca; unpolluted to mod-
erately polluted by Fe, K, Ti, Sr, and Ba; moderately
polluted by Mn, Rb, Zn, and P; and strongly polluted by
Sn and Zr. The distributions of Igeo in different sites are
shown in Fig. 2. The CFs of the metals range from 1.422
to 3.979 (Fe); 0.213 to 1.089 (Al); 0.489 to 3.484 (Ca);
1.496 to 2.372 (K); 1.287 to 3.870 (Ti); 2.200 to 14.588
(Mn); 5.938 to 56.750 (Zr); 0.980 to 3.500 (Sr); 2.321
to 4.857 (Rb); 2.737 to 6.526 (Zn); 16.667 to 27.333
(Sn); 3.157 to 16.286 (P); and 0.741 to 3.328 (Ba) (Tables 2

and 3). PLI calculated from CF depicts that the soils are
strongly contaminated by Zr and Sn (Tables 2 and 3).
Figure 3 shows the Box-whisker plots of Enrichment Fac-
tor (EF) and Contamination Factor (CF) of metals in soil
of the area. CF, EF, and Igeo show minor similarity with
Jayaprakash et al.’s (2009) study in the Indian coast area.

PCA and FA
Using varimax rotation with Kaiser Normalization, PCA
was performed on the metal data maximizing the sum of
the variance of the factor coefficients. This technique
clusters variables into different groups. The PCA results
obtained for the elements are shown in Table 4. Three
principal components having eigenvalues greater than 1

Cluster 1 
Cluster 2

Cluster 3

Cluster 4 

Cluster 5

Fig. 4 Plots of PC1 vs. PC2 showing all metal dataset

Cluster 1 

Cluster 2Cluster 3 

Cluster 4 

Cluster 5 

Fig. 5 Plots of PC1 vs. PC3 showing all metal dataset
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Fig. 6 Factor score map of Principle Components (PC1, PC2 and PC3) as a for PC1, b for PC2 and c for PC3
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were considered. According to Liu et al. (2003), strong,
moderate, and weak factor loadings range from >0.75,
0.75 to 0.5, and 0.5 to 0.3, respectively.
The first principal component (PC1) in the datasets

explains 39.610 % of total variance and is strongly posi-
tively loaded with Fe, Al, Ti, and Rb and moderately
positively loaded with Ba, indicating both natural and
anthropogenic sources. The dominant factor loading of
Fe in the first PC1 strongly suggests that the origin of Fe
could be associated to the local emission sources such as
metallurgical plant (Mmolawa et al. 2011). Al correlates
with Fe in weathered materials and can be an indicator
of mafic rocks. Anthropogenic sources of Ti and Rb in-
clude paint pigments and glass dust, but mainly natural

sources are more important than anthropogenic sources
(Reimann and de Caritat 1998). Major sources of Ba in-
clude manufacture of rubber, paper, fabrics, glass, plas-
tics, and enamels. These parameters retain high positive
scores in S10, S11, S12, S14, S16, and S17 and negative
scores in S1, S3, S7, S13, S18, and S19 (Table 5).
The PC2 in the datasets explains 19.020 % of variance.

PC2 is strongly positively loaded with Ca, Sr, and P and
moderately negatively loaded with Al, indicating an-
thropogenic sources. The long-established agricultural
practice and liming are the sources of Ca and P. Cement
factories, fertilizers, and dust can also be regarded as an-
thropogenic sources of Ca. Sr can be released from in-
dustrial waste, disposal of coal ash, and incinerator ash

Cluster 1 

Cluster 2 

Cluster 3

Fig. 7 PC1vs. PC2 plot of sampling site grouping

Cluster 2 
Cluster 1 

Cluster 3 

Fig. 8 PC1 vs. PC3 plot of sampling site grouping
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(Reimann and de Caritat 1998). These parameters retain
high positive scores in S3, S12, and S13 and negative
scores in S2, S4, S5, and S9 (Table 5).
PC3 represents 17.331 % of variance and is positively

loaded with K, Zn, and Sn and moderately negatively
loaded with Mn, indicating anthropogenic sources. Zn is
dispersed in the environment from high traffic density
(tire wear particles) (Callender and Rice, 2000). High
positive loading for K indicated their sources related
with soil parent material (Ali and Malik, 2011). Zinc is
readily adsorbed by clay minerals and carbonates
(Krishna and Govit 2004). Possible reason for Zn con-
centration being higher is due to its association with
sewage pollution (Muniz et al. 2003).
Sn is released from waste incineration and coal and wood

combustion in the surrounding Brickfield area. These pa-
rameters retain high positive scores in S8, S9, S11, S14, and
S17 and negative scores in S4, S5, and S12 (Table 5).

For all the elemental dataset, five clusters are found in
the PC1 vs. PC2 plot (Fig. 4). Cluster 1 incorporates Rb,
Ti, Fe, and Al, and cluster 2 consists of K, Mn, Ba, and
Sn. Cluster 3 includes Ca, Sr, and P. Clusters 4 and 5 in-
clude Zr and Zn, respectively. For the PC1 vs. PC3 plot
(Fig. 5), similarly five main clusters are obtained. Cluster
4 of both plots shows similar grouping.

Spatial similarities and site grouping
Using GIS, factor score maps were generated following
the IDW method for three principal components.
Interpolation surfaces are created using the coordination
data and site-based factor scores. The power value was set
to 2; standard neighborhood was used instead of smooth
neighborhood, and sector type was sector 4 with 45° offset.
Obtained interpolation surface explains three dominant
processes in the study area. Figure 6a, b, and c represents
factor score maps for PC1, PC2, and PC3, respectively.

Fig. 9 Hierarchical clusters formed among analyzed metals
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Within the −1.75113 to 1.36427 range of scores, about
49.501 % of the study area lies within positive factor
loading, and about 50.498 % of the area lies within the
range of −1.75113 to 0.062 (Fig. 6a). This indicates the
processes related to PC1. The loading of PC1 increases
from the western to the eastern parts then decreases at
the eastern side of the study area. S12, S16, and S17
show the highest positive impact of PC1.
In Fig. 6b, the factor scores of PC2 range from

−1.54373 to 2.73029. About 21.289 % of the study area
bears positive factor loading, and about 78.710 % of the
area has a loading in the range of −1.54373 to 0.319.
The highest positive impact of PC2 occurs in S12 which
is near the Amin Bazar landfill area.
The PC3 factor score map (Fig. 6c) ranges from

−1.98358 to 1.5457. About 68.477 % of the area covers
the positive factor loadings. The highest positive impact
of PC3 occurs in S8 and S14.

In order to identify sample site clustering, factor
scores obtained from PCA are used and PC1 vs. PC2
and PC1 vs. PC3 plots are generated (Figs. 7 and 8). On
the PC1 vs. PC2 plot, three main clusters are obtained.
Cluster 1 includes S2, S4, S5, S6, S8, S9, S10, S11, S14,
S15, S16, and S17. Cluster 2 contains S1, S3, S7, S13,
S18, and S19. Cluster 3 contains only S12. For the PC1
vs. PC3 plot (Fig. 7), three main clusters are obtained.
All the three clusters are similar to PC1 vs. PC2.

CA
CA performed on the elemental data reveals three major
clusters (Fig. 9). Cluster 1 comprises Fe, Al, Ti, Rb, Ba,
and Mn. The interrelated association among these metals
shows similar positive loadings in PC1. Cluster 2 includes
K, Sn, and Zn. The interrelated association shows similar
positive loadings in PC3. Cluster 3 contains Ca, Sr, P, and
Zr, and its positive loadings are similar to PC2.
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Fig. 10 Hierarchical clusters formed among sampling sites
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Spatial similarities are discovered by R-mode CA.
Nineteen sampling sites form three major clusters
(Fig. 10). In cluster 1, the similarities among sampling
sites S6, S8, S9, S10, S11, S14, S15, S16, and S17 are also
observed in the factor score map of PC3. Cluster 2 rep-
resents the similarities among sampling sites S2, S4, and
S5 which are noticed in the factor score map of PC2.
The same observation is found in cluster 3 which repre-
sents the similarities among sampling sites S1, S3, S7,
S12, S13, S18, and S19 in the factor score map of PC1.

Pearson’s correlation matrix (CM)
Pearson’s CM brings out some interconnection between
the parameters (Table 5). Strong positive relationship
is found among Fe-Al, Fe-Ti, Fe-Rb, Al-Ca, and Ca-Sr
(P < 0.01) which is also observed in PC1. Negative
correlation is found among Fe-Zr, Al-Ca, Al-Zr, and
Zr-Rb (P < 0.01) which is described in PC1 and PC2.

Multivariate analysis and management implication
PCA, FA, and CA will be excellently used in future studies
to find inter-parameter associations existing between dif-
ferent pollutants. This data-mining technique will further
help in reducing the number of pollution parameters
to be tested and subsequent cost of analysis. The re-
sult of this study supports the fact that multivariate
statistical methods including CA and PCA/FA can be
applied to interpret complex datasets of heavy metals
in soil, understand spatial variation in of heavy metals
along roadside areas, and identify latent pollution
sources/factors. Therefore, this evaluation study can
help managers identify the main sources of pollution
in different regions so as to determine their priorities
for pollution minimization and source reduction. Since
multivariate statistical methods are easily applied to heavy
metal data, using them can be a practical approach to en-
vironmental impact assessment. The Dhaka Aricha high-
way is a pollution hotspot, dispersing the toxic metals in
the environment. For source identification, important
heavy metals, and their hotspot location, we can easily use
multivariate tools for pollution source zonation and to re-
veal the main harbor of contamination of heavy metals in
this area. In this study, for PCA, FA, and CA metal data-
sets, three major principal components and three major
clusters were formed. Major metals like Fe, Rb, Ti, and Al
are found in PC1 and cluster 1. A quite similar pattern is
also shown in PC2, cluster 2, and PC3, cluster 3. So we
can easily identify the major metals in the study area and
their sources. We can reduce their point and non-point
sources of pollution and reduce their concentration in soil.
Thus, we can easily manage or handle the pollution reduc-
tion strategy and also give priority to those sites where
close monitoring is needed.

Conclusions
This work was undertaken to evaluate the surface soil
state of the Hemayetpur-Gabtoli region. CF, EF, PLI, and
Igeo indicated the pollution state and their associated an-
thropogenic sources. Zr and Sn show high loading, and
Al and Ca show low pollution load in CF, EF, and Igeo.
From PCA, three major principal components were ex-
tracted which perfectly reduced the data dimension and
also indicated possible anthropogenic sources. These
components explain 75.961 % of the total variance. From
the factor score map, high positive loading is found near
the Boilapur-Amin Bazar landfill site (PC1), near Boila-
pur (PC2), and near the Noyahati-Amin Bazar landfill
site (PC3). CA formed three major clusters for both
water parameters and sampling sites. This result regard-
ing sources showed similarities among PCA and CA.
The present investigation clearly indicates that the soils
from freshwater reservoir are contaminated with some
toxic heavy metals. Consequently, there is a dire need to
reduce/regulate the anthropogenic sources of pollution
in the study area.
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