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Abstract

In the Northeastern U.S., drought is expected to increase in frequency over the next century, and therefore, the responses
of trees to drought are important to understand. There is recent debate about whether land-use change or moisture
availability is the primary driver of changes in forest species composition in this region. Some argue that fire suppression
from the early twentieth century to present has resulted in an increase in shade-tolerant and pyrophobic tree species that
are drought intolerant, while others suggest precipitation variability as a major driver of species composition. From this
debate, an emerging hypothesis is that mesophication and increases in the abundance of mesophytic genera (e.g., Acer,
Betula, and Fagus) resulted in forests that are more vulnerable to drought. This review examines the published literature
and factors that contribute to drought vulnerability of Northeastern U.S. forests. We assessed two key concepts related to
drought vulnerability, including drought tolerance (ability to survive drought) and sensitivity (short-term responses to
drought), with a focus on Northeastern U.S. species. We assessed drought-tolerance classifications for species, which
revealed both consistencies and inconsistencies, as well as contradictions when compared to actual observations, such
as higher mortality for drought-tolerant species. Related to drought sensitivity, recent work has focused on isohydric/
anisohydric regulation of leaf water potential. However, based on the review of the literature, we conclude that drought
sensitivity should be viewed in terms of multiple variables, including leaf abscission, stomatal sensitivity, turgor pressure,
and dynamics of non-structural carbohydrates. Genera considered drought sensitive (e.g., Acer, Betula, and Liriodendron)
may actually be less prone to drought-induced mortality and dieback than previously considered because stomatal
regulation and leaf abscission in these species are effective at preventing water potential from reaching critical thresholds
during extreme drought. Independent of drought-tolerance classification, trees are prone to dieback and mortality when
additional stressors are involved such as insect defoliation, calcium and magnesium deficiency, nitrogen saturation, and
freeze-thaw events. Overall, our literature review shows that multiple traits associated with drought sensitivity and
tolerance are important as species may rely on different mechanisms to prevent hydraulic failure and depleted carbon
reserves that may lead to mortality.
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Review
Introduction
Northeastern U.S. forests play an important role in storing
carbon (Woodbury et al. 2007) and regulating energy,
biogeochemical, and hydrological climate feedbacks
(Bonan 2008). In addition, temperate forest ecosystems in
this region provide many economic, ecological, and recre-
ational benefits (O’Brien 2006; Benjamin et al. 2009).

Given the high societal and ecological value of these
forests, it is critical that we improve our ability to
predict forest responses to future climate change.
While typically considered to be light-, temperature-,
and nutrient-limited (Boisvenue and Running 2006;
Rennenberg and Dannenmann 2015), the historical
role and potential future importance of drought in driv-
ing forest dynamics in this region is being increasingly
recognized. Throughout the twentieth century, both
temperature and precipitation have increased (Hayhoe et
al. 2007; Wake et al. 2014), with the late twentieth century
being one of the wettest periods within the last 500 years
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(Pederson et al. 2015). During this period, drought events
from 1961 to 1990 typically lasted between one to
3 months and rarely exceeded 3 months (Hayhoe et al.
2007). The exception was the multi-year drought in the
1960s (1962–1965; Namias 1967, Namias 1966), which
was likely the most severe drought in the last 500 years
(Pederson et al. 2013). Future climate projections under
high CO2 emission scenarios indicate that more frequent
droughts lasting 1–2 months throughout most of the
Northeastern U.S., as well as 3–6 months in localized
areas in the Northeastern U.S., will be punctuated among
larger rain events (Hayhoe et al. 2007; Wake et al. 2014).
The recent summer 2016 drought where large areas across
the Northeastern U.S. received 25–75% of normal precipi-
tation (July 1–September 30; http://www.drought.gov)
may be a harbinger of such future trends.
There is growing evidence that drought influences

changes in species composition at much larger time-
scales (Booth et al. 2012) and reduces canopy photo-
synthesis and tree growth at shorter time-scales
(Urbanski et al. 2007; Martin-Benito and Pederson
2015). Responses occurring at different time-scales re-
late to differences in species’ drought tolerance, which
is the ability to survive drought events, and drought
sensitivity, which we define as short- to medium-term
physiological response. Recent declines in mature
northern hardwood forest tree species such as Acer sac-
charum, Betula papyrifera, and Betula allegheniensis
(Auclair et al. 1996) and widespread dieback of A. sac-
charum (Jones and Hendershot 1989; Payette et al. 1996;
Horsley et al. 2002; Roy et al. 2004; Roy et al. 2006) and
Picea rubens (Siccama et al. 1982; Johnson 1983) have
been, in part, attributed to drought along with other fac-
tors such as freeze-thaw events, insect defoliation, acid
rain, nutrient availability, and forest succession. Across
forests of the Northeastern U.S., tree species can vary
widely in leaf photosynthetic responses to declining soil
moisture availability, although species growing in mesic
and wet-mesic sites tend to be more sensitive to drought
than xeric sites (Kubiske and Abrams 1994). Canopy
photosynthesis can be inhibited during seasonal periods of
low soil moisture, reducing the overall carbon sink-
strength of forests (Urbanski et al. 2007). Using dendro-
chronology, a number of studies have also reported re-
ductions in tree radial growth during years of low
precipitation (Cook and Jacoby 1977; Conkey 1979;
Kolb and Mccormick 1993; Abrams et al. 2000; Pederson
et al. 2013; Martin-Benito and Pederson 2015).
The overall trend in species composition in the region

has been one of “mesophication” (Nowacki and Abrams
2008), the gradual replacement of shade intolerant, fire-
adapted species (Pinus spp., Quercus spp., Carya spp.)
with shade-tolerant, fire-sensitive species (Acer spp.,
Betula spp., Fagus grandifolia). While some argue that

human influence and land use change have played the
strongest role (Nowacki and Abrams 2015), others sug-
gest that increasing precipitation over the last century is
a primary driver of this tree species shift (Pederson et al.
2015). The prevailing argument for the former is that as
Northeastern U.S. forests recovered from widespread
forest clearing throughout the eighteenth and ninetieth
centuries (Foster et al. 1998, Foster et al. 2010), fire
suppression policies starting in the 1920s to present day
led to a “mesophication” of central hardwoods (i.e., oak-
pine forests) that involved a compositional shift towards
more pyrophobic species (Acer spp., F. grandifolia,
Betula spp., Prunus serotina, Liriodendron tulipifera,
Tsuga canadensis) and substantial losses of pyrophilic
species (Quercus spp., Pinus spp., Castanea spp.). How-
ever, mesophication trends during the last century have
also been attributed to recent increases in precipitation
based on evidence of soil moisture limitations on tree
establishment, growth, and survival, as well as consistent
changes among historic climate and species composition
(Pederson et al. 2015). The period of 1930–2005 was
one of the wettest periods on record throughout most of
the eastern USA (Pederson et al. 2015), which may have
contributed to the recent mesophication. Ultimately, in-
teractions between climate and land use change have
likely contributed to shifts in species composition and
point to a common hypothesis: the present mesophytic
species will be especially vulnerable to future severe
droughts, and consequently, Northeastern U.S. Forests
may experience dramatic shifts in species composition
with increasing drought frequency and intensity
(Abrams and Nowacki 2016). However, evidence in
support of this hypothesis is largely lacking, given the
historical rarity of past droughts in the region, combined
with a lack of targeted research on forest response to
drought—a topic not traditionally considered relevant
until only recently.
Accurate understanding of species’ and forest re-

sponses to drought is fundamental to making predictions
of future trajectories and designing effective manage-
ment approaches, as has been shown for a range of
ecosystems in moisture-limited climates (Skov et al.
2004; Simonin et al. 2007; McDowell et al. 2008; Adams
et al. 2012; Anderegg et al. 2015). However, similar in-
depth characterization of drought-ecosystem interactions
has lagged in Northeastern U.S. forests, with previous
approaches largely restricted to broad classification of
drought tolerance based on species’ traits or growing
conditions. Nevertheless, recent studies have started to
examine physiological mechanisms associated with
drought-sensitivity in Northeastern U.S. species (Johnson
et al. 2011; Roman et al. 2015; Yi et al. 2017), thereby
broadening our understanding of forest vulnerability to
drought. In this review, we find that multiple ways of
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characterizing drought response (e.g., tolerance and sensi-
tivity) are important in characterizing different temporal
and spatial scales. Here, we refer to drought tolerance as
the ability of a particular species to survive a long-term
drought event with minimal damage to branches, whereas
sensitivity refers to short-term (e.g., one growing season
or less), physiological responses to drought. The term vul-
nerability is also used in this review, which refers to longer
term risk of mortality or dieback associated with drought.
In this paper, we first review past approaches to classifying
drought tolerance and drought sensitivity of Northeastern
U.S. species, with an eye towards understanding their abil-
ity to capture consistent patterns as reflected in agreement
(or inconsistency) between different studies, and between
predictions and observations. Second, we review the
current knowledge of linkages between drought toler-
ance and sensitivity to further develop our under-
standing of vulnerability to drought-induced mortality
necessary for refining broader classifications of species
drought tolerance.

Classification of drought tolerance of Northeastern U.S.
species
Because drought-induced mortality events have been
relatively infrequent in Northeastern U.S. forests (Allen
et al. 2010), criteria including site or growing conditions,
physiological responses, and plant traits have typically
been used in classifying species’ drought tolerance.
Otherwise, drought classification would be solely based
on mortality and severity of dieback. Classification of
drought tolerance often relies heavily on the geographic
range of species distribution (especially in relation to soil
moisture availability) as an indicator of a particular
species’ capacity to survive moisture stress. These
classification systems are developed using published
sources of species’ range and environmental condi-
tions to infer drought tolerance, including the Silvics
of North America, USDA Plants Database, USDA Tree
Atlas, and US Forest Service Fire Effects Information
System (Niinemets and Valladares 2006; Matthews et
al. 2011; Gustafson and Sturtevant 2013; Peters et al.
2015). It is worth noting that Gustafson and Sturte-
vant (2013) and Niinemets and Valladares (2006) also
incorporated US Forest Service Forest Inventory and
Analysis (FIA) mortality data and published results of
crown dieback (> 50% branch dieback) for a few species,
respectively, to aid in species drought classification.
With respect to Northeastern U.S. tree species, there

are both consistencies and discrepancies in how species
are classified in terms of drought tolerance. Several spe-
cies among studies (Niinemets and Valladares 2006;
Gustafson and Sturtevant 2013; Peters et al. 2015) are
consistently classified as drought-tolerant (e.g., Quercus
spp., P. serotina, and Pinus banksiana) and drought

intolerant (e.g., Betula spp., Populus spp., T. canadensis,
and Abies balsamea) (Table 1). The major inconsisten-
cies in drought tolerance classifications occur for Pinus
strobus, Acer spp., Fraxinus americana, Tilia americana,
and Picea rubens among the three studies (Table 1).
Also, drought-tolerant species (as classified by Niinemets
and Valladares 2006) actually displayed a higher sensitivity
(i.e., greater reductions in stem growth) during drought as
compared to drought-intolerant species (Phillips et al.
2016). Likewise, species consistently classified as drought
tolerant (e.g. Quercus spp.) experienced higher mortality
following an extreme drought year in the Midwestern
USA as compared with presumably more drought in-
tolerant species, Acer saccharum and Fraxinus ameri-
cana (Gu et al. 2015). The inconsistency in classification
across studies presents a conundrum that plagues drought
research: uncertainty in how we define tolerance and what
criteria should be used to classify species in a reliable and
meaningful way.
The advantage of using established classification sys-

tems is that they provide general information for nearly
all tree species of the USA. A limitation of this approach
is its reliance on fundamental (and often untested)
assumptions about the relationship between growing
conditions and vulnerability to dieback or mortality dur-
ing drought (Niinemets and Valladares 2006; Gustafson
and Sturtevant 2013; Peters et al. 2015). The USDA
Plants Database categorizes species’ drought tolerance
(low, medium, high) based on field observations but not
necessarily on measurements and experiments (USDA,
NRCS 2017). The USDA Plants Database also does not
indicate what the field observations are based on. The
Silvics of North America provides general information
about site and soil conditions (e.g., precipitation and soil
texture) where species grow. However, this approach to
drought tolerance classification lacks a mechanistic un-
derstanding of what determines species’ tolerance, as
geographic distributions may be confounded by numer-
ous other factors (e.g., successional change, land use,
competitive interactions, and biotic agents). Another po-
tential issue with this approach is that certain species
like Tsuga canadensis tend to grow at moist sites such as
ravines, swamp edges, and north-facing slopes (Burns
and Honkala 1990), which can lead to the assumption
that this species is drought-intolerant. However, it is un-
clear whether T. canadensis is less tolerant of drought than
other co-occurring species at the same sites. While studies
have made important progress in understanding tree mor-
tality and drought (Gustafson and Sturtevant 2013), habitat
suitability of Northeastern U.S. species (Matthews et al.
2011), and linkages between shade and drought-tolerance
(Niinemets and Valladares 2006), simple drought classifica-
tions may not account for specific mechanisms or functional
traits that maintain growth or survival during drought.
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Nowacki and Abrams (2008) proposed that the process
of mesophication over the last century in Northeastern
U.S. forests involves establishment and overstory domin-
ance of shade-tolerant species that generate dense shad-
ing, moist and cool microclimates at and near the soil
surface, and a relatively inflammable fuel bed. Subse-
quently, fire is less prone to occur in these mesophytic
forest-types. If recent mesophication due to fire suppres-
sion has in fact led to greater vulnerability of Northeast-
ern U.S. forests to drought, then this hypothesis would
imply strong linkages among drought tolerance, fire tol-
erance, and shade intolerance across species (Abrams

and Nowacki 2016). In tree species across North America,
Europe, and East Asia, there are inverse, albeit weak, cor-
relations (R2 of 0.02 to 0.16) between shade and drought
tolerance (Niinemets and Valladares 2006). Shade-tolerant
species in the Northeastern U.S. have experienced greater
reductions in photosynthesis (e.g., stomatal and non-
stomatal limitations) in response to drought (Kubiske
et al. 1996), but declines in photosynthesis is a metric
for drought-sensitivity and not necessarily associated
with lower drought tolerance because declines in
photosynthesis do not imply greater risk of drought-
induced mortality. In other forest biomes such as

Table 1 Drought tolerance classes for common tree species of the Northeastern U.S. as described in Niinemets and Valladares
(2006), Gustafson and Sturtevant (2013), and Peters et al. (2015)

Species Drought tolerance

Niinemets and Valladares (2006)
(Numeric scale 1 to 5)

Gustafson and Sturtevant (2013)
(No numeric scale)

Peters et al. (2015)
(Numeric scale − 3 to 3)

Abies balsamea Very intolerant (1.0) Somewhat intolerant Intolerant (− 2)

Acer rubrum Intolerant (1.8) Somewhat tolerant Somewhat tolerant (1)

Acer saccharum Intolerant (2.3) Somewhat tolerant Somewhat intolerant (− 1)

Betula allegheniensis Somewhat tolerant (3.0) Somewhat intolerant Somewhat intolerant (− 1)

Betula lenta Somewhat tolerant (3.0) – Intolerant (− 2)

Betula papyrifera Intolerant (2.0) Intolerant Intolerant (− 2)

Carya ovata Somewhat tolerant (3.0) – Somewhat intolerant (− 1)
aCastanea dentata Somewhat tolerant (3.0) – Somewhat tolerant (1)

Fagus grandifolia Intolerant (1.5) – Somewhat intolerant (− 1)

Fraxinus americana Intolerant (2.4) Somewhat tolerant Somewhat intolerant (− 1)

Fraxinus nigra Intolerant (2.0) Intolerant Intolerant (− 2)

Fraxinus pennsylvanica Tolerant (3.9) – Somewhat intolerant (− 1)

Larix laricina Intolerant (2.0) Somewhat tolerant Somewhat tolerant (1)

Picea glauca Somewhat tolerant (2.9) Somewhat intolerant Somewhat intolerant (− 1)

Picea mariana Intolerant (2.0) Somewhat tolerant Intolerant (− 2)

Picea rubens Somewhat tolerant (2.5) Tolerant Intolerant (− 2)

Pinus banksiana Tolerant (4.0) Tolerant Tolerant (2)

Pinus strobus Intolerant (2.3) Tolerant Very intolerant (− 3)

Populus grandidentata Somewhat tolerant (2.5) Intolerant Intolerant (− 2)

Populus tremuloides Intolerant (1.8) Intolerant Intolerant (− 2)

Prunus serotina Somewhat tolerant (3.0) Somewhat tolerant Tolerant (2)

Quercus alba Tolerant (3.6) Tolerant Somewhat tolerant (1)

Quercus rubra Somewhat tolerant (2.9) Tolerant Somewhat tolerant (1)

Quercus velutina Somewhat tolerant (3.0) – Tolerant (2)

Thuja occidentalis Somewhat tolerant (2.7) Somewhat intolerant Intolerant (− 2)

Tilia americana Somewhat tolerant (2.9) Somewhat tolerant Somewhat intolerant (− 1)

Tsuga canadensis Very intolerant (1.0) Somewhat intolerant Intolerant (− 2)
aUlmus americana Somewhat tolerant (2.9) – Intolerant (− 2)
aSpecies that were common to the Northeastern U.S. prior to twentieth century, but are less common due to widespread mortality caused by fungal diseases
Numeric scales are listed below each citation, and scores are listed in parenthesis if provided. Tolerance classifications and scores for Niinemets and Valladares
(2006) and Peters et al. (2015) were obtained from appendices, and tolerance classifications for Gustafson and Sturtevant (2013) were obtained directly from the
paper (see Table 2). We revised tolerance classifications of Niinemets and Valladares (2006) by replacing the term “moderately” with “somewhat” to maintain
consistency among studies
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tropical dry and moist tropical forests, there is little
evidence for a trade-off between drought and shade
tolerance (Markesteijn and Poorter 2009). In fact,
drought tolerance was more closely associated with
greater biomass allocation to roots, whereas shade
tolerance was more closely associated with low-
specific leaf area and slower growth rates in tropical
dry and moist tropical forests (Markesteijn and Poor-
ter 2009). Less is known regarding the link between
drought tolerance and pyrophillic species in temperate
forests. Pyrophilic tree genera of the Northeastern
U.S. generally include Carya, Castanea, Pinus, Populus,
and Quercus (Abrams and Nowacki 2016). Quercus and
Castanea spp. are considered drought-tolerant species,
Populus spp. are mostly considered intolerant, and Pinus
spp. are considered both tolerant and intolerant (Table 1).

Classification of drought sensitivity of Northeastern U.S.
species
Plant species possess specific adaptive strategies that
allow them to either avoid or permit dehydration or re-
ductions in plant water potential in response to drought
(Pallardy 2008). Species that avoid dehydration are gen-
erally considered more sensitive to drought. There are
many adaptations to drought, including specific traits or
responses that regulate plant water potential because
water potential and components of leaf water potential,
turgor pressure, and osmotic potential, are intricately
linked with important physiological processes including
survival, growth, gas exchange, leaf anatomy, and many
biochemical processes during drought (Jones 1992;
Pallardy 2008; Lambers et al. 2008).
A commonly observed adaptation to drought for

Northeastern U.S. tree species is isohydric regulation of
leaf water potential through stomatal control. Northern
hardwood (A. saccharum, B. alleghaniensis, and F.
grandifolia) and other species of the Northeastern U.S.
display large declines in stomatal conductance with little
change in leaf water potential during drought (Federer
and Gee 1976; Kubiske and Abrams 1994). Species are
also capable of permitting and tolerating declines in leaf
water potential (e.g., anisohydry); however, this type of
tolerance strategy appears to be less common. A number
of studies have highlighted the anisohydric behavior of
Quercus species compared with co-occurring species
such as Acer rubrum, A. saccharum, B. papyrifera, L.
tulipifera, Populus grandidentata, and Sassafras albidum
(Federer 1980; Bovard et al. 2005: Yi et al. 2017).
Adaptations that enable Northeastern U.S. tree species
to tolerate lower water potentials generally include
adjustments in osmotic potential (Parker et al. 1982;
Kubiske and Abrams 1994) or cell wall thickness
(Kubiske and Abrams 1994) to sustain or minimize
reductions in cell turgor pressure. Within the Northeastern

U.S. there is some evidence for osmotic adjustments, par-
ticularly for species growing in more xeric sites (Kubiske
and Abrams 1994). However, across a larger spatial scale,
species growing in relatively wet climates, such as the
Northeastern U.S., appear to be less dependent on osmotic
adjustments during drought as compared with drier regions
of the U.S. (Abrams 1990; Kubiske and Abrams 1992).
Since the isohydric-anisohydric framework represents

an approach for classifying species drought responses
and serves as an indicator of stomatal sensitivity, its def-
inition may affect our conclusions regarding species
sensitivity to drought (Table 2). Historically, species have
been divided into two broad categories: isohydric or
anisohydric. Isohydric species regulated water potential
via stomatal closure (or reduced stomatal aperture)
above a critical threshold while anisohydric species allow
water potential to decline as the soil dries (Loewenstein
and Pallardy 1998; Tardieu and Simonneau 1998), al-
though the critical threshold was often ambiguous. More
recently, studies have worked towards a quantitative
description of the isohydric-anisohydric framework that
required deriving parameters from empirical relation-
ships of leaf water potential, stomatal conductance,
and/or hydraulic conductance (Table 2, Martinez-
Vilalta et al. 2014; Klein 2014; Roman et al. 2015; Skel-
ton et al. 2015; Garcia-Forner et al. 2016; Meinzer et al.
2016). An important finding of many of these studies is
that species exhibit a continuum of isohydric-anisohydric
behavior rather than a dichotomy.
Despite common drought-response behavior within spe-

cies, there are some inconsistencies in classification
among studies (Table 2). Quercus species are frequently
classified as displaying anisohydric behavior (Loewenstein
and Pallardy 1998; Roman et al. 2015) with an exception
(Martinez-Vilalta et al. 2014). This may be due, in part, to
the fact that Martinez-Vilalta et al. (2014) classified species
across a number of biomes (e.g., desert, temperate, and
tropical), whereas Loewenstein and Pallardy (1998) and
Roman et al. (2015) compared species at one site. Thus,
spatial scale likely influences where species fall along the
isohydric-anisohydric spectrum, with larger scales leading
to a greater range between end points and, consequently,
changes in species’ relative position across the spectrum.
Another common species of the Northeastern U.S., A. sac-
charum, was classified as isohydric (Roman et al. 2015),
anisohydric (Loewenstein and Pallardy 1998), or inter-
mediate (Klein 2014). In this case, the spatial scales were
similar among two studies that reached different con-
clusions (Loewenstein and Pallardy 1998; Roman et al.
2015). A notable difference among these studies was that
Loewenstein and Pallardy (1998) measured Ψmd values at
− 3 MPa and greater declines in stomatal conductance,
while Roman et al. (2015) measured Ψmd values in the
range of − 0.5 to − 1.0 MPa and smaller declines in stomatal

Coble et al. Ecological Processes  (2017) 6:34 Page 5 of 13



Ta
b
le

2
Su
m
m
ar
y
of

m
ea
su
re
d
an
d
de

riv
ed

pa
ra
m
et
er
s
fo
r
ch
ar
ac
te
riz
in
g
an
is
oh

yd
ric

an
d
is
oh

yd
ric

re
sp
on

se
s
to

dr
ou

gh
t
as

a
pr
ox
y
fo
r
dr
ou

gh
t
se
ns
iti
vi
ty

C
ita
tio

ns
M
ea
su
re
d
pa
ra
m
et
er
s

D
er
iv
ed

pa
ra
m
et
er
s

C
ha
ra
ct
er
is
tic
s
of

is
oh

yd
ric
/

an
is
oh

yd
ric

be
ha
vi
or

Re
la
te
d
ch
ar
ac
te
ris
tic
s

N
or
th
ea
st
er
n
sp
ec
ie
s

Lo
ew

en
st
ei
n
an
d

Pa
lla
rd
y
(1
99
8)

St
om

at
al
co
nd

uc
ta
nc
e
(g
s),
m
id
da
y

le
af
w
at
er
po

te
nt
ia
l(
Ψ m

d
),
pr
ed
aw

n
le
af
w
at
er
po

te
nt
ia
l(
Ψ p

d
)

Is
oh

yd
ric
,l
itt
le
to

no
de

cl
in
e
in

Ψ
m
d

w
ith

de
cr
ea
si
ng

Ψ p
d
du

e
to

gr
ea
te
r

st
om

at
al
cl
os
ur
e

A
ni
so
hy
dr
ic
,g

re
at
er

de
cl
in
e
in

Ψ m
d

w
ith

de
cr
ea
si
ng

Ψ p
d

G
re
at
er

co
nc
en

tr
at
io
ns

of
ab
sc
is
ic
ac
id

(A
BA

,r
oo

t
or
ig
in
)
du

rin
g
dr
ou

gh
t
in

is
oh

yd
ric

sp
ec
ie
s

Ac
er
sa
cc
ha

ru
m

(A
)

Q
ue
rc
us

al
ba

(A
)

Ju
gl
an

s
ni
gr
a
(I)

Ta
rd
ie
u
an
d
Si
m
on

ne
au

(1
99
8)

g s
,l
ea
f
w
at
er

po
te
nt
ia
l(
Ψ
L)

Iso
hy
dr
ic
;u
nd

er
hi
gh

ev
ap
or
at
iv
e

de
m
an
d,
Ψ L

re
ac
he
s
a
pl
at
ea
u
du

e
to

st
om

at
al
cl
os
ur
e
re
ga
rd
le
ss
of

so
il

m
oi
st
ur
e
co
nd

iti
on

s
A
ni
so
hy
dr
ic
,Ψ

L
de

cl
in
es

w
ith

in
cr
ea
si
ng

ev
ap
or
at
iv
e
de

m
an
d
an
d

de
cl
in
in
g
so
il
m
oi
st
ur
e
w
ith

m
id
da
y

st
om

at
al
cl
os
ur
e
un

de
r
se
ve
re

w
at
er

de
fic
it

Is
oh

yd
ric

sp
ec
ie
s:
g s

m
or
e
se
ns
iti
ve

to
A
BA

un
de

r
hi
gh

ev
ap
or
at
iv
e
de

m
an
d

or
w
at
er

de
fic
it.
A
ni
so
hy
dr
ic
sp
ec
ie
s:
g s

sh
ow

s
si
m
ila
r
re
sp
on

se
to

A
BA

re
ga
rd
le
ss

of
ev
ap
or
at
iv
e
de

m
an
d
or

so
il
w
at
er

de
fic
it

N
/A

Sp
er
ry

et
al
.(
20
02
)

M
id
da
y
le
af
w
at
er

po
te
nt
ia
l(
Ψ m

d
),

tr
an
sp
ira
tio

n
pe
rl
ea
fa
re
a
ar
ea

(E
)

Is
oh

yd
ric
,c
on

st
an
t
Ψ m

d
du

rin
g
hi
gh

ev
ap
or
at
iv
e
de

m
an
d
th
at

is
m
ai
nt
ai
ne

d
ab
ov
e
cr
iti
ca
lw

at
er

po
te
nt
ia
lr
eg

ar
dl
es
s
of

so
il
m
oi
st
ur
e

A
ni
so
hy
dr
ic
,Ψ

m
d
de

cl
in
es

w
ith

de
cl
in
in
g
so
il
m
oi
st
ur
e
un

til
Ψ m

d

ap
pr
oa
ch
es

a
cr
iti
ca
lΨ

m
d
va
lu
e

Is
oh

yd
ric

an
d
an
is
oh

yd
ric

sp
ec
ie
s

m
ai
nt
ai
n
sm

al
le
r
an
d
la
rg
er

hy
dr
au
lic

sa
fe
ty

m
ar
gi
ns
,r
es
pe

ct
iv
el
y

N
/A

M
ar
tin

ez
-V
ila
lta

et
al
.

(2
01
4)

Pr
ed

aw
n
le
af

w
at
er

po
te
nt
ia
l

(Ψ
p
d
),
Ψ
m
d

Sl
op

e
of

Ψ
p
d
−
Ψ
m
d
re
la
tio

ns
hi
p

(∂
Ψ
p
d
/∂
Ψ
m
d
)

Is
oh

yd
ric
,∂
Ψ
p
d
/∂
Ψ
m
d
=
ze
ro

A
ni
so
hy
dr
ic
,∂
Ψ
p
d
/∂
Ψ
m
d
>
1

∂Ψ
p
d
/∂
Ψ
m
d
ne

ga
tiv
el
y
co
rr
el
at
ed

w
ith

m
ea
n
su
m
m
er

VP
D
an
d
P 5

0

Q
ue
rc
us

al
ba

(p
ar
tia
li
so
hy
dr
ic
)

Kl
ei
n
(2
01
4)

g s
,Ψ

L
Ψ
at
50
%
g s
of
m
ax
im
um

g s
Ψ

g s
50

�
�

Iso
hy
dr
ic
,g
re
at
er

Ψ
g s

50
ac
ro
ss

co
nt
in
uu

m
A
ni
so
hy
dr
ic
,l
ow

er
Ψ

g s
50
ac
ro
ss

co
nt
in
uu

m

Is
oh

yd
ric

sp
ec
ie
s
ha
ve

sm
al
le
r
P 5

0
Li
rio
de
nd

ro
n
tu
lip
ife
ra

(I)
Ac
er
sa
cc
ha

ru
m

(in
te
rm

ed
ia
te
)

Sk
el
to
n
et

al
.(
20
15
)

g s
,s
ho

ot
w
at
er

po
te
nt
ia
l(
Ψ)
,

st
em

-s
pe

ci
fic

co
nd

uc
tiv
ity

(K
s)

Ψ
at
12
%
g s
of
m
ax
im
um

g s
(P
g1
2),

Ψ
at
50
%
lo
ss
of
co
nd
uc
tiv
ity

(P
50
)

Is
oh

yd
ric
,(
P g

12
−
P 5

0)
=
po

si
tiv
e

A
ni
so
hy
dr
ic
,(
P g

12
−
P 5

0)
=
ne

ga
tiv
e

Is
oh

yd
ric

sp
ec
ie
s
m
ai
nt
ai
n
gr
ea
te
r

hy
dr
au
lic

sa
fe
ty

m
ar
gi
n

N
/A

Ro
m
an

et
al
.(
20
15
)

Ψ
L,
so
il
w
at
er

po
te
nt
ia
l(
Ψ
s),
g s
,

VP
D

∂Ψ
L/
∂Ψ

s,
Δ
Ψ
=
Ψ L

−
Ψ
s

Is
oh

yd
ric
,∂
Ψ
L/
∂Ψ

s
=
0

A
ni
so
hy
dr
ic
,∂
Ψ
L/
∂Ψ

s
>
1

Is
oh

yd
ric

sp
ec
ie
s
be

co
m
e
le
ss

se
ns
iti
ve

to
VP
D
du

e
to

de
cr
ea
si
ng

Δ
Ψ
an
d
g s

du
rin

g
dr
ou

gh
t

Q
ue
rc
us

al
ba

(A
)

Q
ue
rc
us

ru
br
a
(A
)

Ac
er
sa
cc
ha

ru
m

(I)
Sa
ss
af
ra
s
al
bi
du
m

(I)
Li
rio
de
nd

ro
n
tu
lip
ife
ra

(I)

G
ar
ci
a-
Fo
rn
er

et
al
.

(2
01
6)

Ψ
p
d
,Ψ

m
d

Δ
Ψ
=
Ψ p

d
−
Ψ
m
d

Is
oh

yd
ric
,l
es
s
va
ria
tio

n
in

Δ
Ψ

A
ni
so
hy
dr
ic
,g

re
at
er

va
ria
tio

n
in

Δ
Ψ

A
ni
so
hy
dr
ic
sp
ec
ie
s
sh
ow

ed
gr
ea
te
r

st
om

at
al
co
nt
ro
lt
ha
n
ex
pe

ct
ed

N
/A

M
ei
nz
er

et
al
.(
20
16
)

Ψ
p
d
,Ψ

m
d
,l
ea
f
os
m
ot
ic
po

te
nt
ia
la
t

fu
ll
tu
rg
or

(Ψ
π
10
0)
,L
ea
f
w
at
er

po
te
nt
ia
la
t
tu
rg
or

lo
ss

po
in
t
(Ψ

TL
P
)

H
yd
ro
sc
ap
e
ar
ea
:A

re
a
of

tr
ia
ng

le
bo

un
de
d
by

Ψ p
d
−
Ψ m

d
re
gr
es
sio

n
lin
e
an
d
1:
1
lin
e

Is
oh

yd
ric
,s
m
al
le
r
hy
dr
os
ca
pe

ar
ea

A
ni
so
hy
dr
ic
,l
ar
ge

hy
dr
os
ca
pe

ar
ea

H
yd
ro
sc
ap
e
ar
ea

st
ro
ng

ly
co
rr
el
at
ed

w
ith

Ψ π
10
0
an
d
Ψ
TL
P
ac
ro
ss

sp
ec
ie
s

N
/A

A
dd

iti
on

al
ch
ar
ac
te
ris
tic
s
as
so
ci
at
ed

w
ith

an
is
o-

an
d
is
oh

yd
ric

re
sp
on

se
s
ar
e
pr
ov

id
ed

.S
pe

ci
es

co
m
m
on

to
th
e
N
or
th
ea
st
er
n
U
.S
.a
re

al
so

pr
ov

id
ed

,a
s
w
el
la

s
th
e
ty
pe

of
be

ha
vi
or

A
an

is
oh

yd
ric
,I

is
oh

yd
ric
,u

nl
es
s
no

te
d
ot
he

rw
is
e

Coble et al. Ecological Processes  (2017) 6:34 Page 6 of 13



conductance during the most severe portion of a drought.
Yet, measurements by Roman et al. (2015) occurred during
a more severe drought (June–July precipitation < 10% of
mean) than the drought (May–September precipitation
53% of mean) in Loewenstein and Pallardy (1998). Conse-
quently, both the range of the response surface and the se-
verity of the drought can also affect evaluation of species’
anisohydric-isohydric behavior.
Greenhouse experiments that grow seedlings from

seeds collected from different habitats show that adapta-
tion to local site conditions can influence how species
respond to drought. Site conditions may be a critical
factor contributing to the distinct differences in leaf
water potential and stomatal responses to drought
within species. For example, dry-site genotypes of Cercis
canadensis (Abrams 1988), Fraxinus americana (Abrams
et al. 1990), and Prunus serotina (Abrams et al. 1992)
maintained greater stomatal conductance during
drought despite having lower or similar leaf water poten-
tial as compared with genotypes from wetter sites. In
addition to using seed sources from the Northeastern
U.S., these studies also used seed sources that extended
outside of the Northeastern U.S. including states like
South Dakota, Nebraska (Abrams et al. 1990), Wisconsin
(Abrams et al. 1992), and Kansas (Abrams 1988). Never-
theless, studies that used seed sources primarily within
the Northeastern U.S. observed greater declines in sto-
matal conductance and photosynthesis during drought
for wet-site genotypes of Acer rubrum (Bauerle et al.
2003) and Quercus rubra (Kubiske and Abrams 1992)
compared to dry-site genotypes. Both studies also found
that non-stomatal limitations to photosynthesis were
greater in wet-site genotypes. Genotypes from drier sites
also consistently had more xeromorphic leaves, smaller
leaves with greater leaf mass per area and leaf thickness,
despite identical environmental conditions during leaf de-
velopment (Abrams 1988a; Abrams et al. 1990; Abrams et
al. 1992; Kubiske and Abrams 1992). Although, both
genotypic and phenotypic variation can also influence
how temperate deciduous species respond to drought
(Abrams 1994). For many temperate deciduous species,
phenotypic variation in response to light availability
strongly controls leaf and stomatal structural traits associ-
ated with drought sensitivity and can interact with geno-
typic variation associated with adaptation to wet or dry
sites (Abrams 1994). For example, genotypic differences
between dry- and wet-site seed sources were more evident
in Prunus serotina overstory trees exposed to greater light
conditions as compared with shade trees (Abrams et al.
1992). Dry-site genotypes consistently had smaller leaf
area and guard cell length, as well as greater leaf thickness
and leaf mass per area for sun leaves; however, there were
no differences in these parameters between dry-site and
wet-site genotypes for shade leaves. This has important

implications for tree response to drought and suggests
that stage of development and light conditions, in addition
to its topographic location across the landscape, can influ-
ence drought sensitivity.
Based on the trajectory of recent research (Table 2),

characterizing species’ responses to drought using the
isohydric-anisohydric framework for mature trees will
require intensive measurements particularly during pe-
riods of water stress. Accomplishing this for species in
the Northeastern U.S. may be especially difficult, given
the rarity of drought occurrence and high diversity of
species in this region. A few possible solutions to this
problem may include the use of experiments and
targeted monitoring, as well as other measurements to
determine isohydric-anisohydric behavior. Experimental
work that diverts precipitation from forested plots may
be one approach to identifying species sensitivity to
drought while progressing trees towards dieback and
mortality, which will be an important first step in under-
standing mechanisms associated with drought tolerance
of tree species (Mencuccini et al. 2015). This approach
has been implemented in a number of forested ecosys-
tems including temperate deciduous (Tschaplinski et al.
1998; Wullschleger et al. 1998), Eucalyptus grandis
(Battie-Laclau et al. 2014), and tropical forests (Fisher et
al. 2007) in order to understand physiological responses
to drought. Sap-flow measurements may circumvent lo-
gistical issues with intensive gas exchange measurements
in tall, mature trees, as well as improve the timing of tar-
geted physiological measurements. Yi et al. (2017) show
that measurement of sap-flow is a reliable method for
identifying species water-use strategies and stomatal sen-
sitivity (isohydric vs. anisohydric). For example, both
canopy conductance (gc) as estimated from sap-flow
measurements and stomatal conductance (gs) as esti-
mated from leaf gas exchange measurements displayed
similar responses to drought across all species examined
(Yi et al. 2017). Isohydric species (A. saccharum, L. tuli-
pifera) experienced greater declines in both gc and gs
than anisohydric species (Quercus alba, Q. rubra)
(Roman et al. 2015; Yi et al. 2017).
Stomatal regulation of leaf water potential is just one

mechanism by which plants can avoid water stress. In
fact, species can avoid declines in leaf water potential
through leaf abscission (Hoffmann et al. 2011) and ad-
justments in stomatal morphology (Abrams et al. 1994).
Leaf abscission is an important strategy in temperate
deciduous forests in minimizing the risk of hydraulic
failure (Hoffmann et al. 2011) and aiding in recovery of
photosynthesis following a drought (Gu et al. 2007) and
has been reported for a number of species in the North-
eastern U.S. including A. rubrum, A. saccharum, B.
papyrifera, Juglans nigra, L. tulipifera, Liquidambar
styraciflua, and Nyssa sylvatica (Federer 1980; Roberts
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et al. 1980; Parker and Pallardy 1985; Pallardy 1993;
Tyree et al. 1993; Gu et al. 2007; Hoffmann et al. 2011).
Adjustments in stomatal morphology were found by
Abrams et al. (1994) across 17 temperate deciduous spe-
cies of the Northeastern U.S., where species having a
smaller guard cell length maintained lower stomatal con-
ductance and higher leaf water potential during drought.
Smaller guard cell length likely increases resistance of
water vapor through the stomata. Species can also post-
pone declines in leaf water potential during drought
through stem water storage and greater rooting depth
(Abrams 1990). Postponing declines in leaf water poten-
tial through stem water storage seems to be more
relevant for species growing in tropical dry forests that
regularly experience a dry period, as compared with
temperate deciduous species (Borchert and Pockman
2005). Postponing declines in leaf water potential
through greater rooting depth is more common for
Quercus species (Abrams 1990; Pallardy 1993).
While past research on drought responses and sensi-

tivity of Northeastern U.S. tree species primarily empha-
sized mechanisms associated with regulation of leaf
water potential, responses that involve shifts in carbon
allocation or decreases in non-structural carbohydrates
(NSC; e.g., sugars and starches that support metabolic
function and growth) are also indicative of drought
sensitivity. In fact, models like PnET-II strongly rely on
carbon allocation in modeling forest water yield and
productivity in response to drought for Northeastern
U.S. forests (Aber et al. 1995; Ollinger et al. 1997). For
example, PnET-II estimates components of stand water
balance (Aber and Federer 1992), which determines the
degree of water stress and subsequent declines in net
photosynthesis. PnET-II also estimates the total plant
mobile carbon pool, which is dependent on net photo-
synthesis. The total plant mobile carbon pool is first
allocated to leaf biomass, and the remaining carbon is
allocated to wood production. Thus, it is assumed that
carbon allocation is a passive process where mobile
carbon pools simultaneously decrease with photosyn-
thesis during drought, and consequently, leaf and wood
growth is also reduced. However, there is also evidence
that mobile carbon pools may be actively regulated and
compete with wood growth during periods of drought or
low-carbon supply (Sala et al. 2012). This hypothesis is
supported in European temperate deciduous species,
Quercus petraea and Fagus sylvatica, where stem growth
was reduced during a summer drought, but non-
structural carbohydrate (NSC) concentration did not
change (Barbaroux and Bréda 2002). Similarly, stem
growth of A. saccharum trees declined following sugar
removal from xylem sap, yet sugar concentration of
NSC residual pools did not change (Isselhardt et al.
2016). Thus, reduced stem growth in drought years may

be due to active regulation of mobile carbon pools at the
expense of wood growth, but the relationships are
complex and require further study.
Overall, drought sensitivity might be better viewed in

terms of multiple variables (e.g., leaf abscission, NSC
dynamics, stomatal sensitivity, rooting depth, and stoma-
tal morphology), and not just stomatal sensitivity, that
act together to prevent catastrophic losses in hydraulic
functioning and carbon supply that are necessary to
sustain vital physiological processes. While it is import-
ant to recognize that indicators of sensitivity vary greatly
among species, adaptation to and phenotypic plasticity
in response to local site conditions likely also play a
critical, and perhaps even, dominant role in determining
how Northeastern U.S. forests will respond to future
drought conditions.

Integrating drought tolerance and sensitivity
Advancing our understanding of species’ abilities to
survive drought (e.g., drought tolerance) requires meas-
urement of short-term, physiological responses to
drought associated with drought sensitivity, together
with their long-term response to prolonged drought to
assess mechanistic relationships between drought toler-
ance and sensitivity. While few such integrated studies
have been conducted to date, evidence thus far highlight
the paradox of greater drought-induced dieback and
mortality for species that are classified as drought
tolerant. For example, Hoffmann et al. (2011) showed
that, contrary to expectation, isohydric (e.g., drought
sensitive) species with lower wood density that were less
resistant to cavitation experienced less canopy dieback
during a short-term drought. The higher stomatal
sensitivity and leaf abscission of isohydric species (A.
rubrum, L. tulipifera, L. styraciflua) permitted greater
safety margins, while avoiding catastrophic embolism
(Hoffmann et al. 2011). In contrast, anisohydric species
(e.g., drought insensitive) with greater wood density
(Cornus florida, Q. alba, Q. rubra), smaller safety mar-
gins, and an inability to shed leaves experienced greater
leaf desiccation and greater canopy dieback during
droughts. Thus, leaf abscission and stomatal closure are
important mechanisms that reduce transpiration and
minimize the risk of cavitation for temperate deciduous
species (Federer 1980; Roberts et al. 1980; Lucier and
Hinckley 1982; Ginter-Whitehouse et al. 1983; Gu et al.
2007). Consistent with these findings, Gu et al. (2015)
observed greater mortality of drought-tolerant Q. alba
and Q. rubra compared with other drought-sensitive and
intolerant species (A. saccharum, F. americana) follow-
ing an extreme drought in 2012, which was primarily as-
sociated with the lack of regulation of predawn water
potential of the drought-tolerant species.
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There are several other cases where the drought tolerant
and anisohydric Quercus spp. experienced higher mortality
following drought compared with other co-occurring tem-
perate deciduous species in the Northeastern U.S. and
other regions (Karnig and Lyford 1968; Elliott and Swank
1994; Jenkins and Pallardy 1995; Pedersen 1998; Voelker et
al. 2008), which further raises questions about confidence
in drought-tolerance classifications. However, there are also
cases where species that tend to be classified as drought
intolerant (A. saccharum, F. americana) experienced local-
ized and regional dieback associated with drought events
(Hibben and Silverborg 1978; Hendershot and Jones 1989;
Roy et al. 2004). Furthermore, species classified as drought
tolerant with anisohydric behavior, such as Juniperus
virginiana (Ginter-Whitehouse et al. 1983; Bahari et al.
1985), have been shown to experience lower mortality than
other co-occurring species (Gu et al. 2015).
In the Northeastern U.S., it is rare that drought acts as

the sole driver of tree mortality and dieback. There are
many cases in the Northeastern U.S. where mortality
and dieback are associated with multiple interacting
factors including drought, insect defoliators, fungal path-
ogens, acid rain and subsequent depletion of soil Mg
and Ca, atmospheric nitrogen deposition, and soil
characteristics (Karnig and Lyford 1968; Hibben and
Silverborg 1978; Hendershot and Jones 1989; Pitelka and
Raynal 1989; Roy et al. 2004). A number of studies have
reported drought and insect defoliation or pathogen
interactions that resulted in mortality and dieback in
Acer saccharum (Kolb and McCormick 1993), Fraxinus
americana (Hibben and Silverborg 1978), and Quercus
velutina (Karnig and Lyford 1968).
Anthropogenic alterations in biogeochemical cycling

such as acid rain and increased atmospheric nitrogen de-
position in the Northeastern U.S. can also interact with
drought to cause forest dieback, particularly in high ele-
vation Picea rubens. Long-term acidic deposition in the
Northeastern U.S. resulted in major losses of calcium
and magnesium from soils (Likens et al. 1996). Calcium
plays an important role in many physiological processes
in trees including signal transduction during periods of
stress (i.e., temperature extremes, drought, and wound-
ing), which is critical for acclimation to environmental
stress and preventing mortality (Schaberg et al. 2001).
Acid rain can also directly leach calcium from Picea
rubens leaves, which can lead to delayed responses in
stomatal closure during drought (Borer et al. 2005),
potentially limiting mechanisms that prevent leaf desic-
cation. Deposition of fine particle ammonium (NH4

+)
from the atmosphere is particularly high in high
elevation sites in the Northeastern U.S. (Lovett and
Lindberg 1993). Aber et al. (1989, 1998) hypothesized
that nitrogen saturation may increase vulnerability of
forests to drought-induced mortality because nitrogen

saturation reduces fine-root biomass while increasing
leaf biomass (e.g., increase in water demand and de-
crease in water supply). In support of this hypothesis,
McNulty et al. (2017) observed greater Picea rubens
mortality following a few droughts in nitrogen addition
plots that were part of a 30-year nitrogen saturation
experiment. Furthermore, McNulty et al. (2014) hypoth-
esized that trees growing at high nutrient sites may
actually be more vulnerable to drought-induced mortal-
ity than chronically stressed trees growing at nutrient
poor sites. It is likely that future drought events, coupled
with nitrogen availability, may limit the resiliency of
high-elevation Picea rubens and Abies balsamea forests
(McNulty et al. 2017).
One reason why drought-induced mortality events are

rather rare in the Northeastern U.S. may be associated
with the high buffering capacity of carbon stores in
temperate deciduous trees (Hoch et al. 2003; Muhr et al.
2016). Non-structural carbohydrates are not only im-
portant for sustaining growth and respiration, they also
play a key role in embolism repair (Zwieniecki and
Holbrook 2009; Nardini et al. 2011) and in osmotic ad-
justments (Wang and Stutte 1992; Guicherd et al. 1997;
Hartmann and Trumbore 2016) necessary for sustaining
turgor pressure under drought conditions. While charac-
teristics of drought sensitivity such as abscission and sto-
matal closure may reduce overall tree carbon supply,
studies have concluded that temperate deciduous trees
are not carbon-limited, even during years with heavy
fruiting and longer growing seasons (Hoch et al. 2003;
Körner 2003). In fact, Hoch et al. (2003) showed that
temperate deciduous trees contained sufficient NSCs to
replace canopy leaves four times. Similarly, Muhr et al.
(2016) concluded that A. saccharum likely contains
sufficient carbon reserves to buffer against periods of
low carbon supply such as defoliation or drought. Thus,
carbon-limitation under short-term drought may not be
an issue for drought-sensitive species that actively
regulate stem and leaf water potential at the expense of
reductions in carbon reserves through stomatal closure
and leaf abscission.
There is considerable uncertainty regarding the ability

of plants to mobilize carbon pools that are readily
available for sustaining growth and metabolic processes,
particularly under persistent drought. One study found
that A. rubrum preferentially used newer NSCs for me-
tabolism and growth, particularly in the early spring, but
older NSCs (>10 yrs. old) are still accessible (Carbone et
al. 2013; Richardson et al. 2013). However, not all
starches may be available for mobilization (Millard et al.
2007), and drought can adversely affect long-distance
transport of carbon reserves (Sala et al. 2010, 2012). In
France, Bréda et al. (2006) showed that reduced starch
concentration in Q. petraea at the end of a dry summer
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resulted in greater branch dieback and incomplete
budbreak and leaf-flushing the following spring; yet
starch concentrations were not completely depleted.
Similarly, new flushes of leaves in the spring did not
occur in a declining F. sylvatica stand following periods
of extreme waterlogging and drought despite having
similar NSC concentrations in stems as compared with a
healthy stand (Gérard and Bréda 2014). These results
suggest that either leaf flushing is restricted at the expense
of maintaining stored carbon reserves, or a proportion of
stored starches within stems were not accessible during
leaf-flushing. If carbon supply is in fact very large for spe-
cies like A. saccharum, trees should be capable of using
the large supply of carbon reserves following insect defoli-
ation, but many A. saccharum trees in Quebec failed to
produce healthy, vigorous leaves following defoliation
(Roy et al. 2004). Thus, an important question related to
carbon-limitation during drought is: How much of the
stored NSCs are actually available for use in metabolic
function during or following periods of drought?
There are many unresolved questions related to

drought sensitivity and tolerance in Northeastern U.S.
species. Species vulnerability to drought contributes to
mortality and dieback and is ultimately determined by
traits and responses associated with drought sensitivity
and tolerance. However, the significance of drought vul-
nerability of Northeastern U.S. forests in mortality and
dieback events still requires further investigation. In
many cases of tree mortality and dieback, additional
plant stressors such as insect defoliators, fungal patho-
gens, acid rain, nitrogen saturation, and soil characteristics
likely interact with mechanisms associated with drought
sensitivity and tolerance that exacerbate drought effects.
Also, site-specific conditions (e.g., depth to bedrock, as-
pect, and soil drainage) that limit whole-tree carbon bal-
ance may predispose trees to mortality under drought
conditions and biotic attacks. Trees growing at the fringes
of their suitable habitat may be particularly vulnerable to
reductions in growth and dieback (Horsley et al. 2002;
Roy et al. 2004).
Future studies that examine these interactions between

drought and other stressors may be fruitful as the likeli-
hood of dieback and mortality appears to be greater
when multiple stressors are involved. Past studies such
as Ward et al. (2015) that have investigated multiple
interacting factors including drought and nitrogen, ob-
served greater reductions in transpiration in a combined
treatment of fertilization and throughfall removal in
Pinus taeda relative to the control and any single treat-
ment (e.g., fertilization and throughfall removal). One
suggested approach is to investigate drought responses
in optimal and poor growing conditions for particular
species. Many northern hardwood species like A.
saccharum, F. americana, B. allegheniensis, and T.

americana have high site requirements for growth and
tend to occupy well- to moderately-drained till soils
dominated by calcareous bedrock, but also grow at
poorer sites dominated by granite with lower nutrient
availability (Leak et al. 1987). Drought experiments (e.g.,
throughfall removal) at sites representing both of these
edaphic characteristics are one example of studying
drought at optimal and poor growing conditions. A few
promising responses and traits to explore include the
degree of isohydry/anisohydry, leaf morphology and
anatomy, propensity for osmotic adjustments, wood
density, vulnerability to cavitation, and drought-deciduous
behavior. More importantly, developing our understand-
ing of critical thresholds related to soil moisture, cavita-
tion or embolism, and low carbon reserves during
extreme drought is required to improve predictive model-
ing for responses to drought and will help to refine habitat
and species distribution modeling (Iverson et al. 2008;
Iverson et al. 2017).

Conclusions
Recent mesophication and declining importance of fire-
adapted and drought tolerant genera like Quercus may
not necessarily indicate that Northeastern U.S. forests
are more vulnerable to drought. Many characteristics
that reflect drought sensitivity in temperate deciduous
species appear to be important for surviving short-term,
extreme drought. Furthermore, there are a number of
cases where drought-tolerant species experienced greater
dieback or mortality than other co-occurring, drought-
intolerant species. This pattern does not imply though
that general classification of drought-tolerance is not
useful. In fact, general classification schemes that assess
species’ drought-tolerance using information about site
conditions of where species typically grow is important,
because adaptation to local site conditions strongly
influences how species respond to drought. However,
there is room to refine drought tolerance classification
systems, as reliance on current classifications may lead
to unexpected outcomes during extreme drought. Part
of the solution to refining species drought-tolerance
classification will likely involve future experiments that
push trees past critical thresholds while measuring
short-term physiological responses and specific drought-
related traits for a number of species. Ideally, these
experiments would include additional plant stressors
(e.g., alterations in biogeochemical cycling, insect defoli-
ation, fungal pathogens, shallow bedrock, and edaphic
characteristics) to better understand potential drought
interactions that lead to dieback and mortality.
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