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Enhanced aboveground biomass by increased
precipitation in a central European grassland
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Abstract

Background: Global climate change is projected to increase temperature and alter precipitation pattern, which
could affect grassland ecosystem. Long-term observation at a field experiment can be a powerful approach to
explore the impacts of climate change on biomass productivity in grassland. In attempting to understand how
climatic variability regulates biomass productivity, we analyzed long-term records of temperature and precipitation
to examine how variation of temperature and precipitation across 19 years affect biomass productivity.

Methods: We established the experiment with 64 plots in two blocks and planted 31 species in 30 different mixtures.
We harvested aboveground biomass twice a year, sorted biomass by functional groups, and weighed dry biomass. The
site was mown after each harvest. We did not apply any fertilizer and water. Using linear regression model,
we examined the influences of growing season temperature and precipitation on biomass productivity.

Results: The results showed that aboveground biomass productivity in September and annual were significantly
increased in post-drought (2003–2015). The relationships of aboveground biomass productivity with growing season
precipitation were significantly positive. The results showed that aboveground biomass productivity in June and annual
were sensitive to growing season temperature. The relationships of aboveground biomass productivity of the
functional group of grasses with early growing season temperature were significantly negative. Early growing season
precipitation had a significant positive effect on aboveground biomass productivity of the functional groups of grasses
and legumes. Post-drought aboveground biomass productivity of the functional groups of grasses in June and
September were declined, whereas legumes significantly increased, which suggests that the role of dominant grasses
may shift by legumes with global climate change.

Conclusions: Our results highlight that early and late growing temperature and precipitation variability may reduce
the aboveground biomass productivity in grassland. Our study implies that the combination of several functional
groups is essential for the maintenance of stable productivity in temperate grassland ecosystem.

Keywords: Aboveground biomass, BIODEPTH experiment, Climate change, Functional groups, Grassland biodiversity,
Hay meadow, Precipitation variability, Temperate grassland, Temperature variability

Introduction
Studying the effects of climate change on plant communi-
ties is an important research goal in ecology and gaining
increased importance under global warming. Several ex-
perimental studies (Tilman and Downing 1994; Grime et
al. 2000; Jentsch et al. 2007; Wang et al. 2007; Bloor et al.

2010; Butof et al. 2012; Walter et al. 2012; Backhaus et al.
2014; Urbina et al. 2014; Gargallo-Garriga et al. 2015; Gel-
lesch et al. 2015; Isbell et al. 2015; Ludewig et al. 2015;
Malyshev et al. 2015) have investigated the effects of cli-
mate change on plant productivity. A range of studies
(Knapp et al. 2008; Beierkuhnlein et al. 2011; Kreyling et
al. 2011b; Weißhuhn et al. 2011) have revealed that the
functioning of grassland species is affected by drought.
Precipitation is one of the most influential abiotic fac-

tors for plant productivity in almost all terrestrial eco-
systems (Lieth 1975; Webb et al. 1986; Sala et al. 1988;
Huxman et al. 2004). Several studies (Beierkuhnlein et
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al. 2011; Jentsch et al. 2011; Walter et al. 2012) have re-
vealed that the magnitude of the rainfall events and their
seasonal frequency are important for temperate grass-
land productivity. IPCC scenarios have shown that pre-
cipitation pattern will be altered in the course of climate
change (IPCC 2007). According to regional climate
change projections, Germany will experience higher
temperature and an increasing risk for summer droughts
in the late twenty-first century (Görgen et al. 2010).
Plant community ecologists have long been interested in

how plant functional groups (grasses, herbs, and legumes)
influence primary productivity of an ecosystem. The mass
ratio hypothesis (Grime 1998) predicts that the effects of
species of an ecosystem are dependent on species func-
tional groups. Several plant functional groups are import-
ant for above- and belowground biomass production and
can increases over 300% more biomass than monoculture
species (Tilman et al. 2001) and have a complementarity
effect (Huston et al. 2000; McLaren and Turkington
2010). Shallow- and fibrous-rooted grasses have suffered
from lower precipitation and higher temperature (Fay
et al. 2003; Morecroft et al. 2004; Grant et al. 2017);
however, deep-rooted herbs and legumes can maintain
productivity (Sage and Kubien 2007; Kakani et al.
2008). Some studies (Grime et al. 2000; Weißhuhn et
al. 2011; Craine et al. 2012; Jentsch et al. 2014) have
revealed that growing season temperature is not the
driving factor; rather, growing season precipitation
(Duncan and Woodmansee 1975; Fay et al. 2003)
regulated the grassland productivity. However, it is
not clear whether early or late growing season
temperature and precipitation have significant influ-
ence on aboveground biomass productivity.
Hay meadows are one of the most species-rich

terrestrial ecosystems in Europe (Veen et al. 2009;
García-Feced et al. 2015) and managed for conserva-
tion purposes (Dahlström et al. 2013). Hay meadows
are permanent ecosystem and need attention in the
face of climate change. A range of experiments
(Beierkuhnlein et al. 2011; Jentsch et al. 2011;
Kreyling et al. 2011a; Backhaus et al. 2014; Urbina et
al. 2014; Gargallo-Garriga et al. 2015; Gellesch et al.
2015; Malyshev et al. 2015) in Germany have con-
ducted to understand the effect of climate change on
hay meadows and grassland. BIODEPTH (BIODiver-
sity and Ecological Processes in Terrestrial Herb-
aceous Ecosystems) is such an experiment, which
was established in 1996 at eight sites across Europe
with a view to assessing plant diversity and primary
productivity (Hector et al. 1999). One site of this
experiment has been established at Lindenhof,
Bayreuth, Germany, by the Department of Biogeog-
raphy, University of Bayreuth.
The primary objectives of our study are:

1. To investigate the response of aboveground biomass
production of hay meadow to temperature and
precipitation variability

2. To determine whether several functional groups
buffer adverse effects of increased growing season
temperature and precipitation or amplify the
dominance pattern on biomass production

We tested the following hypotheses:

1. Higher growing season temperature negatively
affects the aboveground biomass of hay meadow

2. Growing season precipitation variability adversely
affects the aboveground biomass of hay meadow

3. Dominance patterns of functional groups explain
variance in aboveground biomass production

4. Several functional groups buffer adverse effects
of increased growing season temperature and
precipitation variability

Materials and methods
Study site
The experiment was carried out at the German site of
the former BIODEPTH project. The study site is situated
at Lindenhof, Bayreuth (49° 55′ N, 11° 35′ E, altitude
355 m a.s.l.). The experimental layout was based on BIO-
DEPTH concept of identical design at eight sites across
Europe (Hector et al. 1999). The study site’s annual pre-
cipitation is 709mm, and average annual temperature is
8.2 °C. The experiment was established on a former ar-
able land, where the soil consists of keuper marl from
trias, and the soil type is brown soil-pseudogley with
variable mixture.

Soil characteristics
The soil was a loamy to sandy stagnic gleysol with pH
(CaCl2) = 5.65 ± 0.20. Soil carbon content was 0.78 ± 0.06%
in 1996 and 0.77 ± 0.10% in 2002. Soil nitrogen content was
0.08 ± 0.01% in 1996 and 0.13 ± 0.01% in 2002 (Kreyling et
al. 2011a). In 2002, no differences were observed between
two blocks in case of C/N ratio (P = 0.446), nitrogen con-
tents (P = 0.640), and carbon contents (P = 0.373) (Kreyling
et al. 2011a).

Experimental design
In autumn 1995, aboveground biomass was removed
and the ground was deeply plowed. In early spring 1996,
the previous seed banks were eliminated through in situ
steam sterilization of soil. Initial experimental design
during 1996–1998 consists of two blocks, and each
block consists of 32 plots (Fig. 1). Each plot size is 2
m × 2m quadrats. Seeds of 31 grassland species
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(functional groups of herbs, grasses, and legumes) were
collected and assembled by independent random draws.
However, it was ensured that all multi-species communi-
ties contained grasses. Each diversity level was replicated
with different mixtures, and total 30 mixtures of com-
munities were taken. Each block contained 30 mixtures;
thus, each mixture represented twice. Therefore, 60
plots were allocated with 30 mixtures. No seeds were al-
located in four plots (Fig. 1).

Species pool studied
Thirty-one traditional grassland species were allocated
with different mixtures at the experiment in 1996
(Appendix). Since September 1998, no weeding was
done, so species from neighboring plots and surrounding
vegetation intruded.

Management of experimental site
During 1996–1998, non-target species were weeded to
avoid the competition with the target species. Since
1999, the succession was allowed to take place as weed-
ing was stopped after final harvest in September 1998.
No fertilization and watering were done during the

whole study period. After each harvest of aboveground
biomass, field site was mown. Therefore, mowing was
done twice a year (June and September). The paths be-
tween the plots were not mown since 1998. This allows
the chance of other species to invade the surrounding
plots. The field site was protected by the fence to avoid
grazing by herbivores. Unfortunately, in August 2001,
some sheep entered into the site and destroyed biomass
partly. That is why, the aboveground biomass of few
plots in September 2001 reduced.

Data collection
Aboveground biomass harvest
Aboveground biomass was harvested twice (June and
September) a year by two samples of 20 cm × 50 cm
within the central square meter (1 m × 1m) of each
plot. At each harvest, vegetation was cut 5 cm above
the ground. Each sample biomass was collected in the
polythene bag. Biomass was sorted by functional
groups. Sorted biomass was taken in a paper bag and
then dried at 80 °C for 24 h and finally weighed in
the laboratory of Department of Biogeography at the
University of Bayreuth.

Temperature and precipitation
Daily temperature and precipitation data across 19 years
were obtained from the German Weather Service station
in Bayreuth.

Data handling and statistical analyses
All statistical analyses were performed using R statistical
software. We used simple linear regression based on 19
years of dataset.

Results
Aboveground biomass production
The results showed that aboveground biomass in June
decreased and in September and annual sum in-
creased across 19 years (Fig. 2a). Mean biomass in
June (386 g m−2) was two and half times higher than
that in September (153 g m−2). The highest above-
ground biomass in June (484 g m−2) was recorded in
the year 2002 and in September (301 g m−2) in 2011.
The results also revealed that pre-drought biomass in
June was increased, while in September and annual
sum decreased (Fig. 2b). Post-drought aboveground
biomass in September and the annual sum increased
significantly (September: R2 = 0.29; P = 0.05, annual:
R2 = 0.39; P = 0.02) across 13 years (Fig. 2c).

Biomass responses to temperature variability
Aboveground biomass productivity in June (R2 = 0.272;
P = 0.021, Fig. 3a) and annual (R2 = 0.379; P = 0.004;

Fig. 1 Initial experimental design of the BIODEPTH experiment with
blocks A (1–32) and B (33–64). Each color represents the initial levels
of species diversity for each plot
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Fig. 2 Variation of aboveground biomass production in June, September, and annual across 19 years (a), pre-drought (1997–2002) (b), and
post-drought (2003–2015) (c)

Fig. 3 Response of aboveground biomass productivity to temperature variability for the study period 1997–2015. Relationships of aboveground
biomass in June with growing season (March–June) temperature (a), biomass in September with growing season (June–September) temperature
(b), annual biomass with growing season (March–September) temperature (c), and annual biomass with annual mean temperature (d)
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Fig. 3c) significantly declined with growing season
temperature increase. However, the relationships of bio-
mass productivity in September with growing season
temperature (R2 = 0.175; P = 0.074, Fig. 3b) and of annual
biomass with annual mean temperature (R2 = 0.002; P =
0.837, Fig. 3d) were not significant.

Biomass responses to temperature variability excluding
the extreme event
The results showed that aboveground biomass in June
significantly decreased with growing season temperature
increase (R2 = 0.229; P = 0.044, Fig. 4a). However, the re-
lationships of aboveground biomass with temperature
were not improved by excluding the extreme event. The
relationships of biomass in September with growing sea-
son temperature (R2 = 0.081; P = 0.250, Fig. 4b), in an-
nual with growing season temperature (Fig. 4c), and in
annual with mean annual temperature (Fig. 4d) were not
significant.

Biomass responses to precipitation variability
The relationships of aboveground biomass in June with
growing season (March–June) precipitation and in Sep-
tember with growing season (June–September) precipita-
tion were significant (June biomass: R2 = 0.335; P = 0.009,
Fig. 5a; September biomass: R2 = 0.533; P < 0.001, Fig. 5b).
However, the relationships of annual biomass with

growing season (March–September) precipitation and an-
nual biomass with annual precipitation were not signifi-
cant (Fig. 5c, d).

Biomass responses to precipitation variability excluding
the extreme event
Excluding the extreme event, the results showed that
the relationships of aboveground biomass in June with
growing season (March–June) precipitation and
biomass in September with growing season (June–
September) precipitation were significant (June: R2 =
0.285; P = 0.022, Fig. 6a, September: R2 = 0.453; P =
0.002, Fig. 6b). Interestingly, annual biomass prod-
uctivity responded negatively with increasing annual
precipitation, but it was not significant (Fig. 6d).
Growing season (March–September) precipitation
had no effects on annual biomass (Fig. 6c).

Performance of functional groups in pre-drought and
post-drought
The results showed that aboveground biomass product-
ivity of the functional groups of grasses and legumes in
June increased significantly in pre-drought (grasses: R2 =
0.75; P = 0.02, Fig. 7a; legumes: R2 = 0.68; P = 0.04, Fig. 7a).
Post-drought legumes biomass in June (R2 = 0.65; P < 0.01,

Fig. 4 Response of aboveground biomass productivity to temperature variability for the study period 1997–2015, excluding the extreme event
2003. Relationships of aboveground biomass in June with growing season (March–June) temperature (a), biomass in September with growing
season (June–September) temperature (b), annual biomass with growing season (March–September) temperature (c), and annual biomass with
annual mean temperature (d)
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Fig. 5 Response of aboveground biomass productivity to precipitation variability for the study period 1997–2015. Relationships of aboveground
biomass in June with growing season (March–June) precipitation (a), biomass in September with growing season (June–September) precipitation
(b), annual biomass with growing season (March–September) precipitation (c), and annual biomass with annual precipitation (d)

Fig. 6 Response of aboveground biomass productivity to precipitation variability for the study period 1997–2015, excluding the extreme event
2003. Relationships of aboveground biomass in June with growing season (March–June) precipitation (a), biomass in September with growing
season (June–September) precipitation (b), annual biomass with growing season (March–September) precipitation (c), and annual biomass with
annual precipitation (d)
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Fig. 7b) and in September (R2 = 0.43; P = 0.01, Fig. 7d) also
significantly increased.

Functional group response to the early growing and late
growing season temperature
Early growing season temperature in September had a
significant (R2 = 0.25; P = 0.02, Fig. 8c) negative effect on
aboveground biomass productivity of the functional
group of grasses. With the increase of late growing sea-
son temperature, aboveground biomass of the functional
group of herbs in June (R2 = 0.44; P = 0.001, Fig. 8f ) and
September (R2 = 0.30; P = 0.01, Fig. 8h) harvests signifi-
cantly decreased. The relationships of aboveground bio-
mass of the functional group of legumes with late
growing season temperature in June were significantly
negative (R2 = 0.23; P = 0.03, Fig. 8j).

Functional group response to the early growing and late
growing season precipitation
The relationships of aboveground biomass productiv-
ity of the functional group of grasses with early grow-
ing season precipitation in June were significantly
positive (R2 = 0.52; P < 0.001, Fig. 9a). Early growing
season precipitation in September had a significant
positive effect on aboveground biomass productivity

of the functional group of legumes (R2 = 0.37; P < 0.001,
Fig. 9k). Aboveground biomass productivity of the
functional group of herbs did not show any signifi-
cant relationships with early and late growing season
precipitation (Fig. 9e, f, g, h).

Discussion
Aboveground biomass productivity
Despite opposite trends of aboveground biomass
productivity in June and September harvests, there
was an increasing trend of annual aboveground bio-
mass productivity across 19 years. Aboveground bio-
mass productivity was not significantly responded in
pre-drought (1997–2002). However, aboveground
biomass productivity in September and annual sum
were significantly increased in post-drought (2003–
2015) period. Our findings are consistent with
Jentsch et al. (2011), who found that annual primary
productivity was not declined to drought, and Grant
et al. (2017) who showed that productivity increased
by 12% due to increased warming.

Biomass responses to temperature variability
Our results showed a significant decrease in above-
ground biomass in June and annual sum with the

Fig. 7 Functional group aboveground biomass productivity in pre-drought and post-drought. Pre-drought (a) and post-drought (b) biomass in
June; pre-drought (c) and post-drought (d) biomass in September
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increase of growing season temperature (Fig. 3a, c),
which is consistent with Weißhuhn et al. (2011) and
Jentsch et al. (2014) who found that biomass pro-
duction decline with warming. Grime et al. (2000)
found that grassland biomass of a 5-year experiment
was declined by winter heating, and Sternberg et al.
(1999) and Kahmen et al. (2005) showed that
experimental drought events reduce biomass prod-
uctivity which is also consistent with our findings.
Our results are in accordance with the hypothesis
stating that growing season temperature increase
has negative effects on aboveground biomass prod-
uctivity. However, our findings are inconsistent with
Beierkuhnlein et al. (2011) and Ma et al. (2017) who
found that warming has no or very limited influence
on biomass productivity. Two recent studies
revealed that warming significantly increase the
biomass (Chen et al. 2017) and growing season air
and soil warming has also positive impacts on
aboveground biomass productivity on the
Qinghai-Tibetan Plateau (Guo et al. 2018). A grow-
ing body of evidence suggests that higher growing

season temperature can lower biomass productivity
by reducing water availability and limiting photosyn-
thesis (Knapp et al. 2008) and increasing evapo-
transpiration (Reichstein et al. 2006; De Boeck et al.
2011). Higher growing season temperature can
generate physiological stress (Crafts-Brandner and
Salvucci 2002) and stimulate root growth instead of
shoot growth (Asseng et al. 1998).

Biomass response to precipitation variability
Like many other studies (Lauenroth and Sala 1992;
Sternberg et al. 1999; Grime et al. 2000; Kahmen et
al. 2005; La Pierre et al. 2016), our results showed a
significant increase in aboveground biomass product-
ivity in June and September with the increase of
growing season precipitation (Fig. 5a, b). Our results
are consistent with Walter et al. (2012) who found
that aboveground biomass altered with precipitation
variability, Grant et al. (2014) who observed that
high intra-annual precipitation variability decrease
biomass production compared to low intra-annual
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Fig. 8 Response of functional group aboveground biomass productivity to early and late growing temperature in June and September.
Relationships of aboveground biomass productivity of the functional group of grasses with early growing season (16 March–30 April)
temperature in June (a), late growing season (01 May–15 June) temperature in June (b), early growing season (16 June–31 July)
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of aboveground biomass productivity of the functional group of herbs with early growing season temperature in June (e), late growing
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harvests. Relationships of aboveground biomass productivity of the functional group of legumes with early growing season temperature
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temperature September (l)
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precipitation variability, and Ru et al. (2017) who
found that precipitation reduction severely affect
plant productivity. Apart from European grassland,
Lauenroth and Sala (1992) found a positive correl-
ation between aboveground net primary production
and precipitation using a 52-year dataset in North
America, and Ma et al. (2017) found that higher pre-
cipitation increase 17.5% community biomass in al-
pine grassland on the Tibetan Plateau. Our results
are in accordance with the hypothesis stating that
growing season precipitation increase has positive ef-
fects on aboveground biomass production. However,
our findings are inconsistent with Fay et al. (2003)
who revealed that aboveground biomass production
was not responded or negatively responded with in-
creasing precipitation.

Performance of functional groups to temperature and
precipitation variability
The significant increase of aboveground biomass
productivity of the functional group of legumes in

post-drought (Fig. 7b, d) in our study may be the
reason for fertilization effects of nitrogen-fixing le-
gumes. Our results coincide with Huston et al.
(2000), who commented on an article of Hector et
al. (1999) and showed that a single species of leg-
ume has strong positive effects on aboveground bio-
mass productivity in eight sites of BIODEPTH
experiment across Europe. The increase of total
aboveground biomass productivity across 19 years
could possibly be due to the complementarity effect
of the functional groups of grasses, herbs, and le-
gumes, i.e., reduction of grasses biomass compen-
sated by herbs and legumes. Chen et al. (2017)
found that legumes biomass increased by 27.6% in
warming treatment which supports our findings that
legumes in post-drought increased significantly in
June and September harvests. Our results showed
that the aboveground biomass productivity of the
functional group of grasses declined in post-drought
(Fig. 7b, d), which are consistent with the findings
of Fay et al. (2003), Morecroft et al. (2004), and
Grant et al. (2017).
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Early growing season and late growing season
temperature influenced aboveground biomass prod-
uctivity of the functional groups of grasses, herbs,
and legumes across 19 years. The relationships of
aboveground biomass productivity of the functional
group of grasses with early growing season
temperature in September were significantly nega-
tive (Fig. 8c), which is consistent with Guo et al.
(2018), who found that pre-season warming reduces
aboveground biomass productivity. Late growing
season temperature has also significant negative ef-
fects on aboveground biomass productivity of the
functional groups of herbs (Fig. 8f, h) and legumes
(Fig. 8 j).
Aboveground biomass productivity of the func-

tional groups of grasses in June (Fig. 9a) and le-
gumes in September (Fig. 9k) were significantly
increased with the increase of early growing season
precipitation. Our findings are consistent with
Chelli et al. (2016) who found that early season
precipitation has a positive response to above-
ground net primary productivity and Zavaleta et al.
(2003) who found that precipitation timing influ-
ences biomass productivity in Mediterranean grass-
lands. Several studies (Suttle et al. 2007; Chelli et
al. 2016, and Ru et al. 2017) have revealed that
early growing season precipitation influences plant
productivity and favors plant growth, which coin-
cides with our results.
Shallow- and fibrous-rooted grasses uptake water

from upper part of the soil profile, and hence, the
increase of early growing season precipitation
means availability of soil moisture in topsoil which
can be utilized by grasses. Likely reasons for vary-
ing behavior of grasses, herbs, and legumes to early
growing season precipitation may be due to plant
root structure, adaptation strategies, the presence of
nodules, root depth, etc. The results of functional
groups biomass also revealed that declining grasses
biomass was compensated by herbs and legumes
which is consistent with McLaren and Turkington
(2010) who found that removal of one functional
group compensated by other functional groups in
terms of biomass recovery and Tilman et al. (2001)
who explored that several functional groups pro-
duce 300% higher biomass compared to single func-
tional group.
Growing season temperature and precipitation

yielded three key findings: (1) early growing season
temperature has significant negative effects on
aboveground biomass productivity of the func-
tional group of grasses in September, (2) late
growing season temperature has significant nega-
tive effects on aboveground biomass productivity

of the functional groups of herbs and legumes in
June harvest, and (3) early growing season precipi-
tation has significant positive effects on the above-
ground biomass productivity of the functional
groups of grasses in June and legumes in Septem-
ber. This apparent discrepancy is probably because
it is not early or late growing season precipitation
(Duncan and Woodmansee 1975; Fay et al. 2003),
rather late growing season temperature is a strong
limiting factor in aboveground biomass productiv-
ity (Grime et al. 2000; Weißhuhn et al. 2011;
Craine et al. 2012; Jentsch et al. 2014) of herbs
and legumes. These results highlight the import-
ance of different functional groups for grassland
ecosystem functioning in the face of climate
change.

Conclusion
European hay meadows are sensitive to global
climate change. The drought has significant effects
on aboveground biomass productivity in a long-run
experiment. Our study shows that aboveground
biomass productivity in September and annual
significantly increase in post-drought, but decrease
in the pre-drought period. We demonstrate that
environmental drivers (temperature and precipita-
tion) are important in grassland productivity. The
responses of aboveground biomass to growing
season temperature and precipitation are different.
For instance, aboveground biomass in June
declines significantly with growing season
temperature, whereas aboveground biomass in June
and September increases with growing season
precipitation. Our study provides new empirical
evidence that the relationships of dominant grasses
with early growing season temperature in Septem-
ber are significantly negative and with early grow-
ing season precipitation in June and September are
significantly positive. Aboveground biomass prod-
uctivity of the functional group of herbs is sensi-
tive to late growing season temperature. Early
growing season precipitation has strong positive
effects on the aboveground biomass productivity of
the functional group of legumes in September. Our
study suggests that the presence of several func-
tional groups is vital in sustaining grassland prod-
uctivity and ecosystem functioning. Incorporating a
more thorough understanding of how growing
season temperature and precipitation affect above-
ground biomass productivity is necessary to ad-
vance our understanding of grassland biomass
productivity dynamics in the face of climate
change.
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Appendix
Table 1 List of species planted in 1996. Each column indicates number of species, species name, and plots where species are
planted

1 species 2 species 4 species 8 species 16 species

Alopecurus pratensis
30, 39
Arrhenatherum elatius
32, 42
Dactylis glomerata
21, 58
Festuca rubra
7, 52
Holcus lanatus
1, 63
Trifolium pratense
18, 48
Trifolium repens
4, 33
Geranium pratense
6, 47
Plantago lanceolata
24, 43
Ranunculus acris
20, 53

Alopecurus pratensis
Arrhenatherum elatius
19, 46
Festuca rubra
Holcus lanatus
27, 54
Dactylis glomerata
Trifolium repens
8, 34
Festuca rubra
Trifolium pratense
25, 60
Festuca pratensis
Ranunculus acris
14, 62
Festuca rubra
Plantago lanceolata
5, 49
Arrhenatherum elatius
Geranium pratense
3, 35

Arrhenatherum elatius
Dactylis glomerata
Holcus lanatus
Lolium perenne
10, 50
Alopecurus pratensis
Dactylis glomerata
Holcus lanatus
Geranium pratense
13, 40
Alopecurus pratensis
Arrhenatherum elatius
Festuca rubra
Trifolium repens
31, 57
Festuca rubra
Lolium perenne
Trifolium pratense
Ranunculus acris
17, 36
Alopecurus pratensis
Arrhenatherum elatius
Lotus corniculatus
Plantago lanceolata
23, 55

Alopecurus pratensis
Arrhenatherum elatius
Dactylis glomerata
Festuca pratensis
Festuca rubra
Holcus lanatus
Lolium perenne
Phleum pratense
16,45
Arrhenatherum elatius
Dactylis glomerata
Festuca rubra
Holcus lanatus
Lolium perenne
Phleum pratense
Trifolium pratense
Trifolium repens
15, 59
Alopecurus pratensis
Arrhenatherum elatius
Dactylis glomerata
Holcus lanatus
Lolium perenne
Achillea millefolium
Geranium pratense
Ranunculus acris
22, 44
Alopecurus pratensis
Arrhenatherum elatius
Festuca pratensis
Festuca rubra
Lathyrus pratensis
Trifolium pratense
Rumex rugosus
Plantago lanceolata
9, 64
Anthoxanthum odoratum
Cynosurus cristatus
Festuca pratensis
Lolium perenne
Lotus corniculatus
Vicia sepium
Crepis biennis
Taraxacum officinalis
26, 37

Alopecurus pratensis
Anthoxanthum odoratum
Arrhenatherum elatius
Bromus hordeaceus
Festuca rubra
Holcus lanatus
Lolium perenne
Phleum pratense
Lotus corniculatus
Trifolium pratense
Trifolium repens
Vicia cracca
Centaurea jacea
Knautia arvensis
Pimpinella major
Plantago lanceolata
11, 38
Alopecurus pratensis
Anthoxanthum odoratum
Cynosurus cristatus
Dactylis glomerata
Festuca pratensis
Festuca rubra
Lolium perenne
Phleum pratense
Lathyrus pratensis
Lotus corniculatus
Trifolium repens
Vicia cracca
Geranium pratense
Leontodon autumnalis
Ranunculus acris
Silene flos-cuculi
28, 51
Arrhenatherum elatius
Anthoxanthum odoratum
Bromus hordeaceus
Cynosurus cristatus
Dactylis glomerata
Holcus lanatus
Lolium perenne
Phleum pratense
Lathyrus pratensis
Lotus corniculatus
Trifolium pratense
Vicia cracca
Achillea millefolium
Campanula patula
Crepis biennis
Leucanthemum ircutianum
2,56
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