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Introduction: The information available on the sensitivity of soil biotic and abiotic attributes, which can be used to
track the impact of reforestation in riparian buffers, is often insufficient to refine management practices and

Methods: In this study, conducted in Victoria, Australia, the changes in soil biotic and abiotic attributes, organic
carbon (OC), mineral nitrogen (MN), total dissolved solutes (TDS) and pH were characterised to assess the impact of
land-use change from bare riparian (BR) to reforested riparian (RR). Additionally, the benefits of revegetating a
deforested creek bank with regard to salinity abatement and C-sequestration potentials were assessed.

Results: The TDS depletion in the RR strips varied spatiotemporally from 65 to 169 mg/L, the net OC deposition
from 16 to 19 g C/kg soil and MN deposition from 1.2 to 2.1 g N/kg soil, respectively. Additionally, the net changes
in pH from alkaline to near neutral condition varied by 0.4 to 1.0 pH units. Approximately 30% to 60% of the net
OC depletion after deforestation was redeposited under RR over 3 to 6 years. The TDS depletion after land-use
changed from BR to RR ranged from 15 to 32% over 3 to 6 years.

Conclusion: The soil attributes OC, MN and TDS characteristics under different land-use practices varied
spatiotemporally. This information may be useful to convince stakeholders to undertake reforestation of creek banks
for salinity abatement, and that change in land-use has the potential to increase C sequestration at a farm scale.

Keywords: Creek bank riparian, Deforestation, Reforestation, Soil biotic and abiotic attributes, Site specificity,

Introduction

Riparian buffer reforestation benefits include, but are
not limited to, improvements in soil biotic and abiotic
condition (Rasiah et al. 2015; An et al. 2012; Luo et al.
2010; Lal 2004; Rasiah et al. 2004; Silver et al. 2004), the
quality of surface and subsurface water discharged into
streams (Collins et al. 2012; Nair and Graetz 2004
Fennessy and Cronk 1997; Lowrance et al. 1984), retard-
ing the progression of salinity via improvement in deep
drainage, reduction in evaporation from the soil surface,
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thereby retarding solute transport to the soil surface
from deeper within the profile (Clarke et al. 2002), pro-
viding shade for livestock (Lindenmayer et al. 2008), a
potential for the return of native fauna and flora (Jose
2009; Lindenmayer et al. 2008; Hobbs and Norton 1996)
and enhancing farm aesthetic values (Petursdottir et al.
2012). Furthermore, perennial reforested stands may serve
as windbreaks, and sequester atmospheric CO, in soil
profiles (Jose 2009; Silver et al. 2004; Shepherd and
Montagnini 2001). Recently, the farm-level benefits of re-
forestation along stream banks has been receiving in-
creased attention, due in part to the potential for reduced
sediment, nutrient and pesticide transport to streams
(Kaleb et al. 2013; Wortley et al. 2013; Nair and Graetz
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2004). How these are linked to soil biotic and abiotic attri-
butes or whether they can be used to discriminate and
characterise changes in land-use practices spatiotempo-
rally is not well documented. Such information is essential
to convince farmers, policy-decision makers and model-
lers to upscale their perspective from point measurements
at a farm level, to landscape and catchment scales (Chen
et al. 1999; Rasiah and Kay 1999).

Changes in soil functioning depend partially on the dy-
namics of soil biotic and abiotic indicators, such as soil
organic carbon (OC) (Tran et al. 2015; Rasiah and Kay
1998; Agren and Bosatta 1996), mineral nitrogen (MN)
(Rasiah and Kay 1998), total dissolved solutes (TDS) and
pH (Agren and Bosatta 1996). These functioning dynam-
ics vary spatiotemporally (Rasiah and Kay 1999).
Quantifying the dynamics of these indicators requires an
appropriate baseline, which is usually obtained from un-
disturbed native vegetation in the vicinity of the de-
graded riparian strip. However, these are usually
unavailable in landscapes used for large-scale commer-
cial farming. Under such circumstances, the degraded ri-
parian soil conditions may instead serve as the baseline
against which to measure improvements in condition
(Rasiah et al. 2015). The objectives of this study are to
(i) characterise selected soil biotic and abiotic attri-
butes, OC, MN, total dissolved solutes (TDS) and pH
of soils that have been subjected to three contrasting
land-use practices; (ii) assess the impact of reforestation
of deforested creek-bank on salinity abatement and
C-sequestration potentials; and (iii) explore the poten-
tial to convince stakeholders to manage riparian buffers
appropriately in-order to sustain agroforestry on large
farms in Victoria, Australia.

Methods

Study sites

Soil samples were collected along four transects in the
Corangamite Catchment in south-west Victoria,
Australia (Fig. 1). The catchment is characterised by a
temperate climate, having cool wet winters and warm
to hot dry summers (Joyce 2003). The mean annual
rainfall at the farm is ~ 600 mm, and land-use is mixed
farming, including wheat and oil-seed crops rotated
with pasture. The crops are generally sown in autumn
(May-June) and harvested in late spring (September—
October). No-till and low-till farming practices have re-
placed traditional ploughing over the past few decades,
along with precision agriculture incorporating spatially
variable fertiliser and herbicide applications, depending on
specific crop requirements.

The soil types at the farm are Sodosols that developed
on weathered Quaternary volcanic rocks (Robinson et al.
2003; Gray et al. 2002; Nicholson 2002). They are tex-
ture contrast soils, typically varying in depth, dependent
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on the age of the parent material. The profiles are often
shallow (<2 m), base-rich clay loams over a strongly
sodic heavy clay subsoil. The soils are generally of a low
agricultural potential, characterised by high sodicity,
erodibility, poor structure, low permeability and low to
moderate fertility.

Geologically, the soil profile characteristics are similar
across the four transects and variability is likely associ-
ated with differences in micro-ecosystem functioning.
Before these transects were cleared for cropping in the
late nineteenth century, the land cover was native grass-
land, with native forest species (Acacia melanoxylon,
Eucalyptus camaldulensis, Leptospermum lanigerum,
Allocasuarina verticillata and Allocasuarina littoralis)
along the riparian strip.

Four transects, ranged in length from 150 to 200 m,
and 50 to 100 m in width, and the separation distance
between them ranged from 100 to 500 m (Fig. 1, Table 1).
During design stage, two out of the four transects were
selected as replicates for the 3-year and the remaining
two for the 6-year reforestation land-use treatments.
The cropland (CP) plot was on the upper aspect of a
replicate/transect, and the corresponding bare riparian
(BR) and the reforested riparian (RR) plots at the lower
aspect, just above the bank of a seasonal creek. Before
the study commenced the riparian strip was bare, apart
from seasonal weedy vegetation. The RR plots were lo-
cated 90 m to 165 m from the corresponding BR plots
(Fig. 1, Table 1). The CP, BR and RR plots are considered
to represent the different land-use and management
practices that were investigated in this study. Native for-
est tree seedlings were planted in two of the four RR
plots in 2006, and in two remaining plots in 2009. Dur-
ing soil sampling in February 2012, the seedlings were 6
and 3 years old, respectively.

The 6-year-old RR plots are abbreviated as 6 yr-RR-1
and 6 yr-RR-2, the CP as 6 yr-CP-1 and 6 yr-CP-2 and
the BR as 6 yr-BR-1 and 6 yr-BR-2. The 3-year-old RR
plots are abbreviated as 3 yr-RR-1 and 3 yr-RR-2, CP as
3 yr-CP-1 and 3 yr-CP-2 and the BR as 3 yr-BR-1 and
3 yr-BR-2 (Table 1).

Soil sampling and laboratory analysis

Soil sampling was undertaken in February 2012. In each
of the CP plots, a 25-m square was marked out. These
were then divided into 25 grid nodes of 5 m x5 m and
each was allocated a number (1 to 25). To select the
nodes for soil coring, five numbered cards were ran-
domly drawn from a bag. At each of the selected grid
nodes, five deep soil cores were extracted to 0.4 m depth
using a 0.1-m-diameter hydraulically driven auger. Due
to the impracticability of setting up 25-m square plots in
the BR and RR plots, five soil cores were extracted at
5-m intervals along a 25 m strip within each plot.
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Fig. 1 At the top left hand corner is the study site, the Corangamite Catchment, in Victoria, Australia. At the top right hand corner is the detail of
catchment authority area (CMA) and bottom picture showing the sampling locations in the farm. The land-use practice treatments at the 6-year-
old reforested (RR) transect-1 is abbreviated as 6 yr-rr-1, the corresponding cropland (CP) as 6 yr-c-1, the bare riparian (BR) as 6 yr-br-1. Along the
second transect the 6-year-old RR as 6 yr-rr-2, 3 yr-c-2 and 6 yr-br-2, respectively. Similarly, the 3-year-old RR as 3 yr-rr-1, 3 yr-c-1, 3 yr-br-1 and

3 yrrr-2, 3 yr-c-2 and 3 yr-br-2, respectively, along the other two transects. During design stage, two out the four transects were considered as
replicates for the 3-year-old RR and the corresponding CP and RR land-uses, and the other transects as replicates for the 6-year-old RR and the

corresponding CP and BR land-uses

Three out of the five cores from each location were
used for the determination of soil organic carbon (OC),
mineral nitrogen (TN), total dissolved solutes (TDS) and
pH, while the other two cores were reserved for another
study. Each one of the three cores was segmented at
0.1 m depth increments. Large clods were broken down
to smaller pieces. The resultant material was air-dried in
the laboratory and sieved through a 2 mm sieve. The
sieved material was used for the determination of OC,
MN, TDS and pH, using the procedures described by
Rayment and Higgins (1992) at a NATA (National

Association of Testing Authorities (Australia)) accre-
dited laboratory.

Data analysis

To determine the statistical significance of the data,
mean separation analysis and simple linear correlations
were performed using the Statgraphics Centrion XVI
(2010) package. Initially, we considered that two tran-
sects out of the four as replicates for the 6-year-old
reforested (RR) land-use treatment and the correspond-
ing cropland (CP) and bare riparian (BR) land-uses. The



Rasiah and Florentine Ecological Processes (2018) 7:39

Page 4 of 12

Table 1 Land-use practices at four locations in the farm and their physical characteristics. During the experimental design stage,
two out of the four transects were considered as replicates for the 3-year-old reforested riparian (RR) and the corresponding
cropland (CP) and bare riparian (BR) land-uses for this time-period. Similarly, the other two transects for the 6-year-old RR, and the

corresponding CP, and BR land-uses

Land-uses Slope aspect

Proximity to the creek

Vegetation character

Replicate 1 for the 6-year-old reforest

6 yr-cropland-1 ~10-15% upslope,
~40 m from 6 yr reforested riprian-1

~50 m from creek

6 yr-reforested riparian-1 ~ 3% downslope,

~ 230 m from 6 yr-bare riparian-1

6 yr-bare riparian-1 ~ 3% downslope,

~ 164 m from 6 yr-cropland-1
Replicate-2 for the 6-year-old reforest

6 yr-cropland-2 ~5-10% midslope,
~ 150 m from 6 yr reforested

riparian-2

6 yr-reforested riparian-2 Relatively flat,

~ 165 m from 6 yr bare riparian-2

6 yr-bare riparian-2 Relatively flat

Replicate 3 for the 3-year-old reforest

3 yr-cropland-1 ~10% midslope,

~ 146 m from 3 yr reforested riparian

3 yr-reforested riparin-1 < 2% downslope

Replicate 4 for the 3-year-old reforest

3 yr-cropland-2 ~ 10% midslope,

~550 m from 3 yr-cropland-1

3 yr-reforested riparian-2 < 3% downslope,

~ 170 m from 3 yr-cropland-2

3 yr-bare riparin-2 < 3% downslope,

~90 m from 3 yr reforested riparian-2

<5 m away from creek bank

<10 m away from the creek bank

<5 m away from creek bank

~ 100 m from creek bank

<5 m away from creek bank

~50 m from creek bank

<5 m away from creek bank

Wheat-pasture rotation, now in
pasture phase

Well re-established forest, 5-10-m-tall,
thick litter on ground

<5 m from creek bank

Wheat-pasture rotation,
now in wheat phase

Well-established 5-10-m-tall stand,
thick litter on ground

<5 m away from creek bank

Wheat-pasture rotation, now in
pasture phase

Not so well established <5 m tall stand

Wheat-pasture rotation,
now in pasture phase

Not so well-established 5-m-tall stand,
thick litter

<5 m away from creek bank

The 3-year-old RR along one out of the four transects is abbreviated as 3 yr-reforested riparian-1, and the corresponding CP as 3 yr-cropland-1 and the BR as 3 yr-bare
riparian-1. Similar abbreviations; 3 yr-regorested riparian-2, 3 yr-cropland-2, 3 yr-bare riparian-2 are used for second 3-year-old RR, CP and BR land-uses, and for the two
6-year-old RR and the corresponding CP and BR land-use practices along the other three transects

other two transects for the 3 years of RR stand, and the
corresponding CP and BR land-uses. A mean separation
analysis was conducted to determine whether the depth
incremented soil attributes organic matter (OC) and
mineral nitrogen (MN), electrical conductivity (EC) and
pH were sufficiently sensitive to characterise and dis-
criminate the land-use practice. The depth incremented
means and the corresponding pools for a given attribute
(e.g. OC or EC) showed that the two replicates belong-
ing to a given RR time-frame were statistically not repli-
cates; therefore, we consider the replicates as different
sites in the farm. This is where spatial variability or
site-specificity concept came into play in this paper. In
Tables 3 and 5, we show the functional relationship be-
tween the soil attributes by defining OC =f (MN or EC
or pH), MN = f (EC or pH) and EC = f(pH), to determine
whether the land use practice and/or site-specific vari-
ability between replicates had any impact on the func-
tional variability of the attributes. For the OC
correlation, the 16 means from the 4 CP plots (Table 2)

were correlated with the corresponding TN or EC or pH
(Table 4), and similarly for TN, EC and pH. For these
correlations, the depth increment was considered as se-
lection variable. Correlations were also conducted to
verify whether soil attributes (OC, MN, EC and pH)
interacted with each other, and if there was any inter-
action among the three land-use practices.

Results

Soil organic carbon

The OC content in any given profile section in the CP
plot was generally higher than that in the corresponding
RR, regardless of the number of years after reforestation,
followed by BR. The mean OC-pools between replicates
1 and 2 or that between replicates 3 and 4 were signifi-
cantly different from each other. Similar results were
also obtained for that between the MN-pools or
TDS-pools of replicates 1 and 2 and between replicates
3 and 4 (later in the text). The OC-distributions across
all CP plots ranged from 44.0 to 13.40 g C/kg soil, 34.8
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Table 2 The summary of mean separation analysis for soil organic matter (OC) and mineral nitrogen (MN) content distributions at
0.10 m depth increments and for their pools (totals) in soil profiles along the four transects to determine whether these were

impacted by different land-use practices and/or the physical location of the transects in the farm. During the experimental design
stage, two out of the four transects were considered as replicates for the 3-year-old reforested riparian (RR) and the corresponding
cropland (CP) and bare riparian (BR) land-uses and the other two transects as replicates for the 6-year-old RR, CP and BR land-uses

Land-use Mean organic carbon (OC) content in the profile sections OC-pool

g C/kg soil

Depth increments (m)

0-0.10 0.10-0.20 0.20-0.30 0.30-040 0-040
Replicate 1 for the 6-year-old reforest
6 yr-cropland-1 35.6Ad 214Bd 183 Ca 157 Cd 91.0e
6 yr-bare riparian-1 243Ab 16.9B,b 133Cb 103 Db 64.8b
6 yr-reforested riparian-1 344Ad 18.2B,c 151 Cd 128 D,a 80.5f
Replicate 2 for the 6-year-old reforest
6 yr-cropland-2 440A,a 369Be 250 Ce 255Ce 131.4i
6 yr-bare riparian-2 284Ae 18.2B,c 128 Cb 11.0Db 70.4d
6 yr-reforested riparian-2 34.2Ad 21.78d 181 Ca 149 Dd 88.9e
Replicate 3 for the 3-year-old reforest
3 yr-cropland-1 43.1Aa 253Ba 177 Ca 134 Da 99.5a
3 yr-reforested riparian-1 233Ab 153Bb 122Cb 11.0 Db 61.8b
Replicate 4 for the 3-year-old reforest
3 yr-cropland-2 404A,a 26.1B,a 228 Cc 20.2 D¢ 109.5¢
3 yr-bare riparian-2 26.7AC 18.2B,c 159 Cd 129 Da 73.7d
3 yr-reforested riparian-2 34.8Ad 2268d 160 Cd 16.1Cd 88.7e

MN-pool

Mean nitrogen (MN) content in the profile sections

g N/kg soil

0-0.10 0.10-0.20 0.20-0.30 0.30-0.40 0-040

Replicate 1 for the 6-year-old reforest

6 yr-cropland-1 322 Ae 212 Bc 169 Ce 140 Df 844 ¢
6 yr-bare riparian-1 224 Ab 142 Bd 121 Cd 0.89 Db 576 b
6 yr-reforested riparian-1 3.02 Ae 181 Be 124 Cd 083 Db 6.95f
Replicate 2 for the 6-year-old reforest

6 yr-cropland-2 361 Ac 303 Bf 217 Cf 181 Dg 10629
6 yr-bare riparian-2 250 Ae 1.67 Bg 1.14 Cg 087 Db 6.20d
6 yr-reforested riparian-2 284 Ad 2.04 Bc 142 Cc 112 D¢ 7.42f
Replicate 3 for the 3-year-old reforest

3 yr-cropland-1 3.96 Aa 232 Ba 157 Ca 161Ca 946a
3 yr-reforested riparian-1 208 Ab 123 Bb 094 Cb 087 Cb 5.12b
Replicate 4 for the 3-year-old reforest

3 yr-cropland-2 357 Ac 2.07 Bc 144 Cc 1.07 Dc 8.15¢
3 yr-bare riparian-2 240 Ad 1.50 B,d 132Cd 128 Cd 6.50d
3 yr-reforested riparian-2 308 Ae 223 Ba 175 Ce 151 De 8.57¢

Same block letter(s) in a given row or small letter(s) in a given column indicate the means are not significantly different at P < 0.05. The 3-year-old RR along one
out of the four transects is abbreviated as 3 yr-reforested riparian-1, and the corresponding CP as 3 yr-cropland-1 and the BR as 3 yr-bare riparian-1. Similar
abbreviations; 3 yr-reforested riparian-2, 3 yr-cropland-2, 3 yr-bare riparian-2 are used for the second 3-year-old RR, the corresponding CP and BR land-uses along
the second transect. The abbreviations for the two 6-year-old RR and the corresponding CP and BR land-use practices along the other two transects are similar to
what has been used for the 3-year-old RR transects land-uses
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to 11.0 g C/kg soil in the RR plots and 28.4 to 10.3 g
C/kg soil in the BR plots, respectively (Table. 2). The
mean OC content in the CP, RR and BR plots were
107.8 g C/kg soil, 80.0 g C kg/soil and 69.6 g C/kg
soil, respectively. The OC-pools across the CP plots
ranged from 91 to 131 g C/kg soil compared with 61.8 g
to 88.9 g C/kg soil for RR and 64.8 to 73.7 g C/kg soil for
BR (Table 2). This trend prompted us to claim that a given
replicate was independent of the other three with regard
to the soil attributes and proceeded to use it as a char-
acteristics property for a given land-use along a given
transect, implying the means are site-specific property
for that land-use (Tables 2 and 4).

The OC content in any given profile section of CP plot
in replicate 1 was significantly different from the corre-
sponding section in RR, which in turn varied from BR
(Table 2). This implies the depth incremented
OC-distributions among the three land-use practices in
replicate 1 were significantly different from each other
(Table 2). Similar results were also obtained for repli-
cates 2,3 and 4. These significant differences between
OC-distributions of the three land-use practices indicate
that mean separation analysis is useful to discriminate
the impact of land-use practice on soil OC content along
a transect. The OC-pools also showed significant differ-
ences between the three land-use practices.

The OC contents in three out of the four sections of the
soil profile under the 6-year-old RR plot in replicate 1 were
significantly different from the corresponding sections in
the RR of replicate 2 (Table 2). We define this as that 75%
of the OC-distributions between the 6-year treatment rep-
licates were significantly different from each other. The
significant difference between the OC-distributions of the
CP plots in replicate 1 and 2 was 100%, and also 100% be-
tween the BR plots. The OC-distributions between the
RR plots in replicates 3 and 4 were 100% significantly
different, and the corresponding significant difference
between the CP plots was 50%. The OC-pools among
the four RR replicates were 100% significantly differ-
ent from each other, and similar results were obtained
for the CP and BR replicates.

The net OC deposition (difference between the
OC-pools of RR and BR) 3 years after reforestation in rep-
licate 4 was 15.0 g C/kg soil, compared with 15.7 g/kg soil
and 18.5 g C/kg soil 6 years after reforestation in replicates
1 and 2, respectively. The net OC depletion (OC-pools of
CP minus BR) in the deforested BR plot in replicate 4 was
35.8 g C/kg soil, compared with 26.2 g C/kg soil in repli-
cate 1 and 61.0 g C/kg soil in replicate 2, respectively.

The absolute values of the slopes of the correlations
indicate that OC content decreased with increasing
depth, regardless of the land-use practices in the repli-
cate/transect (Table 3). The slopes were significantly dif-
ferent among land-use practices, being highest for the
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CP, followed by RR and BR, respectively, suggesting that
C turnover dynamics with soil depth depended on the
land-use practice. The intercepts followed trends quali-
tatively similar to the slopes, in that they decreased with
increasing depth and varied between land-use practices.

Mineral nitrogen

The mineral nitrogen (MN)-distributions across the CP
plots ranged from 1.07 to 3.96 g N/kg soil, 0.70 to 3.08 g
N/kg soil in RR and 0.87 to 2.50 g N/kg soil in BR, re-
spectively (Table 2). The mean MN content in the CP, RR
and BR plots were 2.29 gN/kg soil, 1.75 gN kg/soil and
1.54 g N/kg soil, respectively. The MN-pools across the
CP plots ranged from 8.15 to 10.62 gN/kg soil, com-
pared with 6.95 to 8.57 gN/kg soil for RR and 5.76 to
6.50 gN/kg soil for BR land-uses (Table 2). The MN
content in any given profile section in the CP plot was
generally higher than that in the corresponding RR, re-
gardless of the number of years after reforestation,
followed by BR. The mean MN content in any given
profile section of replicate 1 was significantly different
from the corresponding section in replicate 2, regard-
less of the land-use practice, and similar results were
obtained for that between replicates 3 and 4.

The MN-distributions among the three land-use prac-
tices on replicates 2, 3 and 4 were 100% significantly dif-
ferent from each other, except in replicate 1. The
MN-pools among the three land-use practices were
100% significantly different from each other on each one
of the replicates 1,2 and 3, except 66% in replicate 4.
Neither the MN-distributions nor the MN-pools in all
four replicates showed 100% significant differences
among the three land-use practices.

The significant differences between the MN-distribu-
tions of the 6-year-old RR replicates, and the corre-
sponding BR and CP replicates, were 100%, 75% and
100%, respectively. The MN-distributions between the
3-year-old RR replicates were 100% significantly different
and a similar result was obtained for the corresponding
CP replicates. The MN-pools between the replicates
were 100% significantly different from each other. The
MN-pools were generally able to discriminate the im-
pacts of land-use practices and site-specific characteris-
tics differences between transects/replicates on MN
content in soil profiles.

The magnitudes of the slopes of the correlations indi-
cate that MN-distributions decreased with increasing
depth, regardless of the land-use practices in the repli-
cates/transects (Table 3). The slopes were significantly
different among the three land-use practices, being high-
est for CP followed by RR and BR, respectively, for the
3-year-old RR replicates. Even though a similar trend
was observed for the 6-year-old RR in replicates 1 and 2,
the slopes for the CP and RR are not significantly
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Table 3 The summary for the simple linear correlation analysis performed between the mean soil attribute content in a given
profile section and the corresponding profile depth to determine whether the distributions are impacted by land-use practices

Land-use Intercept Slope Correlation coefficient
Correlation between organic carbon content and the profile depth

3 yr-cropland 40.1 - 846 (4.2) d 093
3 yr-bare riparian 26.1 -340@3.1)d 0.86
3 yr-reforested riparian 29.7 -562 (4.7)d 0.87
6 yr-cropland 40.8 -65.1 (4.2) d 0.78
6 yr-bare riparian 26.8 -469 (25 d 0.92
6 yr-reforested riparian 404 —722(88)d 0.72
Correlation between mineral nitrogen content and profile depth

3yr-cropland 3.79 —7.97 (046) d 091
3 yr-bare riparian 2.06 —3.92 (0.28) d 091
3 yr-reforested riparian 262 — 456 (0.55) d 0.73
6 yr-cropland 361 —-6.09 (0.37) d 0.90
6 yr-bare riparian 246 — 487 (0.20) d 0.95
6 yr-reforested riparian 3.07 -6.39 (0.23) d 0.96
Correlation between electrical conductivity and profile depth

3 yr-cropland 0.209 —0458 (0.03) d 0.88
6 yr-cropland 0.200 —0.359 (0.03) d 0.81

The correlations are significant at P < 0.05. They were carried out using the means listed in Table 2. The correlation for the two 3-year-old reforested riparian (RR)
land-use is abbreviated as 3 yr-reforested riparian, the corresponding cropland as 3 yr-cropland (CP), and the bare riparian as 3 yr-bare riparian (BR) in this table.
Similar abbreviations are used for the 6-year-old RR and the corresponding CP and BR land-use practices

different from each other. The intercepts followed trends
similar to the slopes, being highest for CP followed by
RR and BR.

The net MN deposition (which is the difference be-
tween the MN-pools of RR and BR) in the 3-year-old
stands of RR in replicate 4 was 2.07 gN/kg soil, com-
pared with 1.19 gN/kg soil and 1.22 gN/kg soil under
the 6-year-old RR stands in replicate 1 and replicate 2,
respectively. The net MN depletion (MN-pools of CP
minus BR) in the deforested BR plot in replicate 4 was
2.02 g N/kg soil, compared with 2.68 g N/kg soil in repli-
cate 1 and 4.42 g N/kg soil in replicate 2, respectively.

Electrical conductivity

The significant difference between the electrical con-
ductivity distributions (EC-distributions) of the 6-year-
old RR replicates was 100%, and that between the
corresponding BR replicates and CP replicates were 75%
and 50%, respectively (Table 4). The significant differ-
ence between the 3-year-old RR replicates’ electrical
conductivity (EC)-distributions was 100% and 25% for
that between the corresponding CP replicates. The
TDS-pools between the 6-year-old RR replicates were
significantly different from each other, as it was between
BR replicates, but not between the CP replicates. The
TDS-pools between the 3-year-old RR replicates were
significantly different from each other, as it was between
the corresponding CP replicates.

The EC in a given profile section was generally higher in
BR plots, followed by RR and CP, respectively (Table 4).
The TDS-pools across the CP plots ranged from 291
to 329 mg/L, compared with 175 to 452 mg/L for RR
plots, and 435 to 621 mg/L for the BR plots. After
the land-use changed from BR to RR, the average
TDS decreased by ~ 36%.

Even though there was a general trend for the EC to
decrease with increasing soil depth, the correlations
were significant only for the CP plots (Table 3). The
TDS depletion that occurred 3 years after reforestation
in the 3 yr-RR-2 stand was 169 mg/L, compared with
182 mg/L and 65 mg/L in the 6 yr-RR-1 and 6 yr-RR-2
stands, respectively. Compared with the BR land-use
practice, the CP land-use practice retarded the TDS de-
pletion by ~ 309 mg/L in the 3 yr-CP-2 plot, compared
with 251 mg/L and 106 mg/L in the 6 yr-CP-1 and
6 yr-CP-2 stands, respectively.

Neither EC-distributions nor TDS-pools were found
to be effective discriminators to characterise the
site-specific impact of long-term CP land-use. On the
other-hand, both indicators were effective to discrimin-
ate the site-specific impact of the change in land-use
practice from BR to RR.

Soil pH
The depth incremented pH distributions between the
6-year-old RR replicates was 100% significantly different,
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Table 4 The summary of mean separation analysis for electrical conductivity (EC) and pH distributions at 0.10 m depth increments
and for the total dissolved solutes (TDS-total) in soil profiles along the four transects to determine whether they were impacted by
land-use practices and/or the physical locations of the transects in the farm. During the experimental design stage, two out of the
four transects were considered as replicates for the 3-year-old reforested riparian (RR) and the corresponding cropland (CP) and bare
riparian (BR) land-uses and the other two transects as replicates for the 6-year-old RR, CP and BR land-uses

Land-use

Replicate 1 for 6-year-old reforest
6 yr-cropland-1

6 yr-bare riparian-1

6 yr-reforested riparian-1
Replicate 2 for 6-year-old reforest
6 yr-cropland-2

6 yr-bare riparian-2

6 yr-reforested riparian-2
Replicate 3 for 3-year-old reforest
3 yr-cropland-1

3 yr-reforested riparian-1
Replicate 4 for 3-year-old reforest
3 yr-cropland-2

3 yr-bare riparian-2

3 yr-reforested riparian-2

Replicate 1 for 6-year-old reforest
6 yr-cropland-1

6 yr-bare riparian-1

6 yr-reforested riparian-1
Replicate 2 for 6-year-old reforest
6 yr-cropland-2

6 yr-bare riparian-2

6 yr-reforested riparian-2
Replicate3 for 3-year-old reforest
3 yr-cropland-1

3 yr-reforested riparian-1
Replicate 4 for 3-year-old reforest
3 yr-cropland-2

3 yr-bare riparian-2

3 yr-reforested riparian-2

Electrical conductivity (EC) in the profile sections
dS/m

Depth increments (m)

0.00-0.10 0.10-0.20 0.20-0.30
0.227 Ac 0.098 Bb 0.090 Bb
0.203 Aa 0.233 Bd 0.251 Ce
0177 Af 0.151 B¢ 0.140 Cf
0.197 Aa 0.117 Ba 0.100 Cb
0.180 Af 0.163 B¢ 0.170 Ac
0.107 Ag 0.097 Bb 0.167Cc

0.197 Aa 0.110Ba 0077 Ca
0.083 Ab 0.080 Ab 0.087 Bb
0.230 Ac 0.110Ba 0.070 Ca
0347 Ad 0.180 B¢ 0.183 B¢
0.253 Ae 0.167 B¢ 0.169 Bd

Soil pH in the profile sections

0-0.10 0.10-0.20 0.20-0.30
6.9 Ac 6.5 Bb 6.8 Ab
80 Ae 84 Bd 86 Cd
7.1 Ad 78 B, 80 Cc
6.6 AC 6.1 Bb 6.3 Be
70 Ad 7.1 Ae 78 B,
59 Aa 6.5Bb 73Cf
5.7 Aa 53Ba 58 Aa
57 Aa 6.2 Bb 6.7 Cb
6.1 Ab 55Ba 58Ca
6.5 Ac 64 Ab 69 Ab
75 Ad 80 B¢ 8.2 B¢

0.30-040

0093 Be
0223 Df
0.147 Cg

0.100 Ce
0227 Cf
0207 D,h

0070 Da
0023 Cb

0077 Ca
0260 Cd
0.117 Cc

0.30-040

72Cb
8.7 Cc
83D

6.7 Aa
83 Cc
78Dd

65Ca
7.1 Db

6.2 Aa
73Bb
83 B.c

TDS-pool
mg/L

0.00-040

3251 f
57609
3936h

3290f
4352 ]
3699

2906 a
1747 b

Same block letter(s) in a given row or small letter(s) in a given column indicate the means are not significantly different at P < 0.05. The 3-year-old RR along one
out of the four transects is abbreviated as 3 yr-reforested riparian-1, and the corresponding CP as 3 yr-cropland-1 and the BR as 3 yr-bare riparian-1. Similar
abbreviations; 3 yr-reforested riparian-2, 3 yr-cropland-2, 3 yr-bare riparian-2 are used for the second 3-year-old RR, the corresponding CP and BR land-uses along
the second transect. The abbreviations for the two 6-year-old RR and the corresponding CP and BR land-use practices along the other two transect are similar to
what has been used for the 3-year-old RR transects land-uses
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and that of the corresponding BR and CP replicates were
75% and 50%, respectively. The significant difference be-
tween the 3-year-old RR replicates was 100% and 25%
for the corresponding CP replicates.

The distributions indicate that pH was generally
higher, i.e. in the alkaline range, in the BR plots, in con-
trast to the RR, which were near neutral to slightly
acidic, and CP, which were generally slightly acidic, ex-
cept in the 3 yr-BR-2 plot where it was lower than the
corresponding RR plot. The distributions suggest a gen-
eral increase in pH with increasing depth, but the correl-
ation analysis shows this as insignificant increase.
Six years after reforestation, the pH in the RR plots was
less than the corresponding BR plots, but this was not ex-
plicit 3 years after reforestation. The significant differences
(BR > RR > CP) that were observed between the land-use
practices at a given site indicate treatment impact.

The pH distributions were a very effective indicator to
discriminate site-specific impact of land-use change
from BR to RR. It was also useful to discriminate be-
tween BR and CP land-uses.

Discussion

General

The CP and BR plots have been under the cropping and
bare, respectively, land-use practices for more than
50 years. Under these conditions, we suggest the distri-
butions of OC, MN, EC and pH and the pools in the top
0.40 m depth might not have undergone any significant
change during the relatively short study period of 3 to
6 years. Because of this, the major emphasis in this
paper is on the changes from BR land-use to RR. There-
fore, we considered BR as the background or control for
this study (Rasiah et al. 2015). This proposal implies that
any significant difference between the OC or MN or EC
or pH distributions in the BR replicates is primarily due
to site-specific impact on these attributes. The signifi-
cant difference between the OC-, MN-, EC- and pH dis-
tributions in the 6-year-old BR replicates were 50%, 75%,
75% and 75%, respectively (Tables 2 and 4). On the other
hand, the significant difference between the pools of
OC-, MN- and EC- of the BR replicates were 100% for
each of them. Therefore, the pools of the attributes are
better than the corresponding distributions to character-
ise the appropriateness of design stage replicate assump-
tions vs. the statistical validity of the replicates.

The means separation analysis indicates the design
stage replicate assumption is not valid, therefore we de-
cided to proceeded with the statistical validity and con-
sider the replicates as four independent transects, and
the soil attributes characteristics along any given tran-
sect is site-specific. Even though the validity of the ex-
perimental results without replicates may be an issue,
but site-specificity impact on soil attributes is what the
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reality in large-scale experimental approach in which the
typical experimental designs are difficult to apply. On
the other hand, the results are very useful for up-scaling
via modelling for situations where site-specific experi-
mental soil characteristics approximate the new site/
farm and also may help to convince the stakeholders the
impact of site-specific soil attributes variability on
spatially varying reforestation issues. The distributions of
OC, MN, EC or pH between the RR replicates generally
produced 100% significant difference and as did the cor-
responding pools. It seems the pools for attributes can
be generally used to assess the impact of the land-use
change from BR to RR.

Soil organic matter and mineral nitrogen

Significantly higher average net organic matter (OC) de-
position (17.1 vs. 15.0 g C/kg soil) was observed in the
older RR stands compared to the younger (6 vs. 3 years),
as was the case for the net TDS depletion (245.7 vs.
169.0 mg/L, 3 vs. 6 years). This implies that these two
soil attributes can be used as indicators to characterise
temporal impact of reforestation. However, the same
possibility was not evident with regard to net mineral ni-
trogen (MN) deposition.

Comparisons of the OC-distributions between each
RR and its corresponding BR profiles indicate that C de-
position has occurred down to 0.4 m depth in all of the
four RR profiles, regardless of the temporal or
site-specific impact (Table 2). This implies that when re-
forestation is undertaken using deep-rooted trees, the
depth to OC deposition should be given due consider-
ation, in order to provide the most reliable information
for atmospheric C-trapping benefits of reforestation. In
this context, the slopes and intercepts of the correlations
can be extrapolated to compute the maximum depth to
which OC and MN depositions ceased to occur under
RR. The extrapolations indicate the maximum depths to
OC and MN depositions to occur under the 3-year-old
RR stands are 0.53 m and 0.57 m, respectively, and
0.56 m and 0.48 m under the 6-year RR stands.

The average net OC deposition (the difference be-
tween the OC totals of RR and the corresponding BR)
that occurred 6 years after commencement of reforest-
ation was 17.1 g C/kg soil and the corresponding net
OC depletion (the difference between the OC totals of
CP and the corresponding BR) was 43.6 g C/kg soil
These quantities translate to ~39% of the depleted OC
redeposited by the forest stand. The average MN deple-
tion and the corresponding depositions were 3.55 g N/kg
soil and 1.21 g N/kg soil, respectively, and these translate
to ~35% of the depleted MN being redeposited. The
average TDS depletion (difference between BR and RR)
6 years after reforestation was 123.8 mg/L and this
translates to ~ 12% of what was in the BR profiles.
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The net OC depletion that occurred after deforestation
(> 50 years ago) in the 3 yr-BR-2 plot was 35.8 g C/kg soil
compared with 26.2 g C/kg soil and 61.5 g C/kg soil in the
6 yr-BR-1 and 6 yr-BR-2 plots, respectively, indicating
site-specific soil biotic functioning variability impact
between the sites can be characterised by net OC deple-
tion under BR. The average net OC depletion after forest
clearing was ~41.2 g C/kg soil. The net OC-depletion of
~ 35.8 g C/kg soil extrapolates to ~ 212.7 Mg C/ha.

It seems ~ 30% (net OC deposition divided by net OC
depletion) of the depletion that occurred in the 6 yr-BR-2
plot had been restored during 6 years under the refor-
ested stand compared with ~60% in the 6 yr-RR-1. Re-
sults from other parts of Australia indicate similar
depletions occurred after clearance of native vegetation
(Cotching 2012). The OC-depletions that occurred after
vegetation clearance have been linked to deteriorations
in soil bio-physical-chemical condition (Luo et al. 2010;
Lal 1981). Larger OC-pools under RR than BR implies
reduction in the CO, released to the atmosphere (Smith
2008; IPPC 2001).

The slopes of the correlations (Table 3) between OC-
and MN-distributions and profile depth indicate the de-
crease was most rapid under CP, followed by RR and BR,
respectively, suggesting there were three different
micro-ecosystem, soil biotic conditions, with regard to
OC turnover dynamics along the transect. The net MN
deposition of 2.07 g N/kg that occurred 3 years after re-
forestation commenced, compared with 1.19 g N/kg soil
in 6 yr-RR-1 and 1.24 gN/kg soil in 6 yr-RR-2, suggest
the longer temporal influence at the latter two sites was
probably masked by the unfavourable site-specific condi-
tions overriding the temporal influence. Significant TN
deposition seems to have occurred down to 0.4 m depth
in 3 yr-RR-2 and 6 yr-RR-2 plots compared with 0.2 m in
the 6 yr-RR-1 plot. Even though deposition had occurred
down to 0.4 m in 3 yr-RR-2 and 6 yr-RR-2 plots, it was
higher in the former, 2.07 g/kg, than the latter, 1.24 g/kg,
suggesting the temporal influence in the latter was over-
ridden by unfavourable site-specific soil biotic impact.

Electrical conductivity and soil acidity/alkalinity (pH)
Higher electrical conductivity (EC)-distributions in BR
than RR (Table 4) suggests solute washout from 0.4 m
depth under RR after reforestation. This was probably due
to (i) enhanced deep percolation through the root-chan-
nels opened-up by a deep-rooted forest stand, (ii)
increases in root-water uptake from deeper sections of
profiles instead of being transported upwards, along
with solutes, to the soil surface and (iii) decreases in
soil evaporation that otherwise was driving upward
solute transport.

The major proportion of solutes in Victorian sodosols
are saline and these are known to have been transported
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towards the soil surface after native vegetation clearance
(Robinson et al. 2003; Nicholson 2002), leading to a risk
of dry-land salinity. The reforestation results from this
study indicate that even a short time-frame (3 years)
under reforestation was effective in combating salinity
risk. The reforested stand could also help to reduce sur-
face runoff, thereby reducing pesticides, herbicides and
unused fertiliser (N and P) solutes loadings in streams,
which may in turn be discharging into sensitive off-site
water bodies. Such improvements may help in the return
and re-establishment of the fauna and flora that disap-
peared after deforestation (Petursdottir et al. 2012).

A net-depletion of 169 mg/L in 3 yr-RR-2 compared
with 182 mg/L in 6 yr-RR-1 indicates temporal influence
on solute wash-down/depletion in the latter. However, a
similar comparison between 3 yr-RR-2 and 6 yr-RR-2
(169 vs. 65.3 mg/L) was observed, suggesting a reverse
trend due to unfavourable site-specific soil abiotic condi-
tions that prevailed at the latter site for salt washout,
thereby overriding longer temporal influence there.

Larger TDS-pools under BR than CP may be due to
bare surface conditions in BR provided a more
favourable situation for soil water evaporation than
crop/pasture cover, thereby enabling relatively greater
upward transport of solutes. The difference between the
TDS-pools of 6 yr-BR-1 and 6 yr-CP-1 (251 mg/L) and
6 yr-BR-2 and 6 yr-CP-2 (106 m/L) may be due to differ-
ences in site-specific subsurface variability influencing
variation of evaporation rates or amounts between the
sites. Salt washout after reforestation suggests forest
stands along fence lines, riparian buffers and any other
unused marginal lands on large farms may help to re-
duce salinity risk at a farm level.

The significant differences between pH distributions of
the BR plots indicate site-specific subsurface soil vari-
ability, resulting variation of soil acidity/alkalinity be-
tween the sites. This suggests the pH in BR can be used
as a baseline to assess the impact of reforestation. The
decreases in pH, from alkaline to near neutral or mildly
acidic, suggests that alkaline solute-washout has oc-
curred as a result of reforestation. In Australia, this
process is considered a positive change, since it reduces
salinity risk following native vegetation clearance (Clarke
et al. 2002; van der Moezel and Bell 1992). The change
from alkaline to near neutral to slightly acidic condition
after reforestation of BR may help to retard, to a limited
extent, salinisation. This should encourage farmers to
undertake stream bank reforestation as a management
option to combat salinity in similar situations.

Even though soil acidity is a major issue under
dry-land cropping in Australia, the mildly acidic condi-
tion under CP are not yet an issue at this farm. Other
workers (Kaleb et al. 2013; Wortley et al. 2013; Collins
et al. 2012; Fennessy and Cronk 1997) have reported that
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reforestation and associated forest litter may help to re-
duce agricultural pollutants, such as soluble N and P,
sediment and pesticides, in surface runoff from crop-
lands, thereby improving the water quality of runoff, and
consequently improving water quality downstream. The
higher MN concentrations observed in RR than BR
might have been due to reduced surface runoff. Vertical
transport of solutes, including MN, in soil infiltrating
water may have resulted in the observed increase of the
MN-pools in the RR profiles. Decreases in bulk density
after reforestation and the deep root-channels
opened-up under RR might have provided conditions
favourable for deep percolation into soil profiles (Rasiah
et al. 2015). The anticipated improvements in creek
water quality may help to improve the on- and off-site
aquatic ecosystem health, in addition to other environ-
mental benefits (Montaggnini 2006).

Interaction between soil attributes

It is not surprising that OC was positively correlated
with MN, regardless of the land management practices
examined in this study. However, we anticipated similar
trends for RR. Nevertheless, the negative correlation be-
tween OC and pH under CP is consistent with the ex-
pectation that when soil pH changed from alkaline to
near neutral, the OC turnover dynamics improved and a
similar change was anticipated with EC. The positive
correlation between OC and EC implied that when TDS
increases, the OC turnover dynamic responds likewise.
However, this trend is unrealistic (Table 5). A positive
correlation between EC and pH suggests a trend be-
tween OC and EC. The interactions involving the abiotic
indicators indicate that they can have significant impact
on OC and MN accumulation in the reforested land-
scape, thereby improving the soil abiotic condition.

Conclusions

Even though the depth-incremented distributions of soil
organic carbon (OC), soil mineral nitrogen (MN), total
dissolved solutes (TDS) and pH were not sufficiently sen-
sitive to discriminate changes in land-use management
practices from native forest to cropland (CP) or bare ripar-
ian (BR) and then from BR to reforested riparian (RR), the
OC-, MN- and TDS-pools were effective as sensitive indi-
cators to discriminate changes in land-use. However, the
pools were not consistently sensitive enough to differenti-
ate the temporal impact of reforestation on the changes in
soil condition. The net-deposition of OC and the
net-depletion of TDS were found to be sufficiently sensi-
tive to differentiate site-specific and temporal impacts of
reforestation. However, there was also a potential for the
temporal impact of reforestation on the soil attributes to
be overridden by site-specific variability.
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Table 5 The summary for the simple linear correlation analysis
performed to determine whether the interactions between the
different soil attributes under a given land-use practice are
significant. The depth increment in the analysis was a
selection variable

Intercept Slope Correlation coefficient

Cropland

OC=f (MN) 330
OC=f(EQ 8.04
OC=f(pH) 7099

10.36 (343) MN 094
154.1 (5.0) EC 087
—719 (8.94) pH 0.59
Bare riparian
OC=fMN) 243 10.35 (1.11) MN 0.98
Reforested riparian

OC=f (MN) 046 1089 (2.13) MN 097
EC = f(pH) 0062 (0003) pH 084

The correlations are significant at P < 0.05. The correlations were conducted
using the means listed in Table 2 for the four cropland land-use and similarly
for the other land-use practices. For any given land-use practice, the
correlations were conducted for OC=f (MN or EC or pH), MN = f(EC or pH) and
EC =f(pH). Only the significant correlations are reported in this table. Electrical
conductivity is abbreviated as EC

-028

To differentiate deforestation or reforestation associ-
ated changes in soil biotic condition, we therefore rec-
ommend the determination of TDS wherever salinity is
a major issue, and OC where C-credit at farm scale is
considered as an incentive for C-sequestration in soil.
The determination of both OC and TDS are recom-
mended where C-credit is considered as an incentive
and salinity a major issue.

In BR land-use, pH distributions provided a sufficiently
sensitive baseline to discriminate site-specific subsurface
soil conditions between the sites. This suggests that pH in
BR can be used as an indicator to assess the impact of re-
forestation on pH dynamics in reforestation.

The interaction involving OC, EC and TDS indicate
the need for further research into how other abiotic in-
dicators may interact positively and contribute towards
improvement in soil biotic condition. Such information
may help us to increase the ability to refine and improve
the C-sequestration potential of windbreaks associated
with whole farm operations.
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