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Abstract

Background: Although soil erosion plays a key role in the carbon cycle, a holistic and mechanistic understanding
of the soil erosion process within the cycle is still lacking. The aim of this study was therefore to improve our mechanistic
understanding of soil organic carbon (SOC) and soil respiration dynamics through an experiment conducted in
an eroding black soil farmland landscape in Northeast China.

Results: The depositional profiles store 5.9 times more SOC than the eroding profiles and 3.3 times more SOC
than the non-eroding profiles. A linear correlation between the SOC and '*’Cs (Caesium-137) was observed in our
study, suggesting that the SOC decreased with increased soil erosion. Furthermore, the fractions of intermediate
C and the microaggregate C were lowest at the eroding position and highest at the depositional position. In the

rates and stabilize the SOC at the same time.

depositional topsoil, the input of labile materials plays a promotional role in soil respiration. Conversely, in the
subsoil (i.e., below 10 cm), the potential mineralization rates were lowest at the depositional position—due to
effective stabilization by physical protection within soil microaggregates. The field results of soil surface respiration also
suggest that the depositional topsoil SOC is prone to be mineralized and that SOC at this depositional context is
stabilized at subsoil depth. In addition, the high water contents at the depositional position can limit the decomposition

Conclusions: The findings from this study support that a majority of the SOC at footslope is stored within most of the
soil profile (i.e, below 10 cm) and submitted to long-term stabilization, and meanwhile support that the depositional
profile emits more CO, than the summit due to its high amount and quality of SOC.
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Introduction

As the largest terrestrial carbon pool, the soil carbon pool
is approximately 3.3 times the size of the atmospheric
pool and 4.5 times the size of the biotic pool (Lal 2004a).
Soil erosion and the subsequent transport of sediments by
rivers represent a key pathway for soil carbon lateral
transfer at the land surface, which has a profound effect
on the carbon budget of terrestrial ecosystems (Ludwig et
al. 1996; Li et al. 2018; Wang et al. 2019). However,
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propositions that soil erosion induces a carbon source or
sink have been highly debated (Lal and Pimentel 2008).
Previous studies have generally concluded that soil erosion
leads to a terrestrial carbon loss due to the breakdown of
structural aggregates and lower productivity in the eroding
areas resulting from decreased soil nutrient (Jacinthe et al.
2002; Lal 2004b). In contrast, other studies from the last
two decades have shown that soil erosion can induce a
terrestrial carbon sink, due to the transfer and burial of
high soil organic carbon (SOC) from eroded soil surface
areas to depositional landform positions (Stallard 1998;
Van Oost et al. 2007). The differences in understanding of
the role of soil erosion in the carbon cycle reflect the un-
certainties in quantifying a vertical flux controlled by
interacting processes at large spatial and temporal scales.
To better assess the erosion-induced terrestrial carbon
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sink or source at large scales, mechanisms involved in
impacting carbon storage and flux need to be explored in
detail at the landscape scale.

Within the landscape scale, soil lateral redistribution
processes induced by water and tillage erosion can often
affect carbon cycle dynamics. Initially, soil erosion may
reduce plant production as a result of soil degradation
and may decrease soil nutrient levels due to decompo-
sition at eroding sites (Stallard 1998; Harden et al. 1999).
Furthermore, initial deep burials of SOC can inhibit de-
composition at deposition sites (Smith and Buddemeier
2005; Yoo et al. 2005). Moreover, the chemical or phy-
sical breakdown of soil can increase the decomposition
of SOC during the detachment and transport processes
(Lal 2003). In recent years, some models combining geo-
morphic factors with carbon dynamics have provided
strong support for the assertion that lateral fluxes exert
an important control on carbon vertical exchange at the
landscape scale (Liu et al. 2003; Van Oost et al. 2005;
Rosenbloom et al. 2006). Previous experimental studies
have been conducted to investigate the observational
mechanisms in eroding agricultural landscapes (Doetter]
et al. 2012; Wiaux et al. 2014a; Wiaux et al. 2014b) or
under natural vegetation conditions (Berhe et al. 2008;
Berhe et al. 2012; Nadeu et al. 2012). However, a full
mechanistic understanding of the effect of soil erosion
and burial processes on vertical carbon dynamics (such
as soil respiration, aboveground respiration, plant
production, etc.) is still lacking (Kuhn et al. 2012). Spe-
cifically, the impacts of soil erosion on soil respiration
(Rs), which is one of the most important ecological
processes within our ecosystem, is still unclear.

Soil respiration is the largest vertical carbon efflux
from soil to atmosphere and has the considerable poten-
tial to induce atmospheric carbon dioxide concentration
variation—an increasingly alarming issue in context of
global climate change (Yu et al. 2017). Soil respiration
can indicate soil mineralization through SOC decompo-
sition via microbes and can be affected by numerous
factors including, but not excluding, soil temperature, soil
moisture, and physical protection within soil aggregates
(Doetterl et al. 2016). Thus, understanding mechanisms
involved in soil respiration efflux is essential and has great
research value for quantifying an erosion-induced vertical
carbon flux.

Northeast China is a primary and important food pro-
duction area in China, owing to its fertile soil which has a
high organic matter content. However, after approximately
100 years of intense cultivation, the soil has been severely
damaged by soil erosion (Zhang et al. 2007). Severe soil
erosion has occurred since large-scale land reclamation
began in the 1950s, and the thickness of black soils has
decreased from 60 to 70 cm in the 1950s to 20-30 cm at
present (Fang et al. 2012), exposing the loess parent
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material in some areas. Overall, approximately 4470 km?
of land in Northeast China has been subject to moderate
to severe soil erosion, accounting for 38% of the total
black soil acreage (Fang et al. 2006). Presently, there are
few observational studies in Northeast China that explore
the effects of soil erosion on SOC distribution and soil
surface respiration fluxes at the landscape scale. However,
the severe soil erosion in Northeast China highlights an
urgent need to investigate the impacts of soil erosion
processes on the carbon cycle.

The goal of this study was to conduct an experiment
to improve our mechanistic understanding of SOC
redistribution dynamics in an eroding black soil farm-
land landscape. We mainly focus on the SOC stocks and
soil respiration dynamics in this study. Thus, our study
was conducted as follows: First, we measured soil
surface respiration fluxes along the cultivated slope,
calculated the horizontal and vertical distribution of the
SOC stocks, and quantitatively estimated the soil re-
distribution rate using '*’Cs measurements. Second, we
assessed the differences in the SOC pool composition
and potential soil respiration along a geomorphic gra-
dient through soil organic matter fractionation and in-
cubation experiments. Third, we analyzed all results and
assessed connections among them. In this paper, poten-
tial soil respiration represents soil respiration in optimal
conditions for microbial activity and SOC decompo-
sition—without the impacts of the varied soil water and
temperature conditions.

Materials and methods

Study site

The study site is located at the Heshan Farm (125° 20’
10.5" E, 49° 00" 23.1” N) in Nenjiang County, Heilong-
jiang Province, Northeast China. The elevation of the
area is 320 to 370 m above sea level. The slopes of culti-
vated land in this region range from 0.4 to 8.4%—with
an average value of 4.2%. The climate is a semi-humid
continental climate with a long cold winter, where the
lowest and highest temperatures are — 20 °C in January
and 21 °C in July, respectively (Zhang et al. 2007). The
annual precipitation ranges from 300 to 750 mm, with
an average of 534 mm and more than 90% of the pre-
cipitation falls between May and September (Liu et al.
2013). The primary soil type in this area is black soil,
according to the Chinese genetic classification. The main
textural classes of the topsoil are silt clay loam to clay
loam, according to the USDA classification, with a sand
content of 8-27%, a silt content of 29-66%, and a clay
content of 26-40% (Wu et al. 2008). The study site was
originally covered by natural forests and pastures and
began to be converted into cultivated lands, particularly
on the gentlest slopes, due to the needs of a dramatically
increasing population and expropriation by ranches in
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the 1950s (Liu et al. 2015). In specific regard to the study
site, soybean is the major crop, in rotation with wheat
and corn.

Field experiment

We collected soil cores at four topographic positions
(summit Al, convex shoulder A2, backslope A3 and
footslope A4) along a hillslope (Fig. 1) at the study site
before sowing in May 2015, and sampling was repeated
three times at each location. Soil profiles were excavated
down to the parent materials at each position. Soil sam-
ples were collected at 10-cm intervals for the top 30 cm
soil depth and at 20-cm intervals for soils below 30 cm
deep. In this study, the depth of fertile black soil at
convex A2 and backslope A3 is approximately 30 cm
due to serious soil erosion. In addition, our sampling
was only one transect along the hillslope, leading to the
lack of replicates at slope level. That is due to the limited
width of the hillslope and other inoperable factors such
as ground holes, etc.

Soil bulk density, carbon content, and **’Cs concen-
tration were measured for each soil layer. The soil bulk
density was measured using the oven-dried weight (dry-
ing at 105 °C for 24 h). SOC contents were measured
using an elemental analyzer (vario EL III, Elementar,
Hanau, Germany) as the black soils (pH <7) were
carbonate free, whereas '*’Cs was measured using HPGe
co-axial detectors coupled to a multi-channel analyzer.
To minimize the uncertainties associated with the pre-
cision of the '*’Cs measurements, '*’Cs was detected at
662 keV using counting times at approximately 30,000 s.
This method provides results with a counting error of
less than 10% at the 95% confidence level. Concen-
trations were then converted into inventories per unit area
using the soil depth and bulk density values. Estimates of
soil loss and gain rates (t ha™ year™) can be derived from
the '*’Cs measurements by comparing the inventories
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Fig. 1 Topographical transects and sampling point locations for the
study site. A1: non-eroding profile, A2 and A3: eroding profiles, A4:
depositional profile
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measured at a specific point with the reference inventory.
The reference '*’Cs inventory of 2506 Bq m ™ is regarded
as reliable in the study region (Fang et al. 2012). For an
eroding site where the total **’Cs inventory is less than
the reference inventory, soil erosion rates can be estimated
using the simplified mass balance model proposed by
Zhang et al. (1990). For the depositional position, the
deposition rates were estimated using the proportional
model proposed by Lowrance et al. (1988). The soil
redistribution rates include the soil erosion rates at
the eroding positions and the soil deposition rates at
the depositional positions.

Soil temperature, soil moisture, and soil respiration
measurements were conducted once a month during the
growing season (May, June, July, and September) in 2015.
We conducted field measurements at four topographic
positions (Fig. 1) along the slope at the same time of each
sample collection day. Soil temperature was measured
with a portable digital thermometer. The volumetric
moisture was measured using time-domain reflectometry
(TDR300, Spectrum Technologies, USA). To better assess
the soil respiration process and the SOC dynamics,
samples (L1: 0-10, L2: 10-20, L3: 20-30, L4: 30-50, L5:
50-70, and L6: 70-90 cm) from these four slope positions
(Fig. 1) were employed for the incubation experiments—
soil respiration was measured using a Li-6400XT-09 Soil
CO, Flux Chamber (LI-COR, USA). The respiration of
50-g soil was monitored during a period of 182 days while
keeping moisture (at 55% of the soil water-holding ca-
pacity) and temperature (20 °C) constant in an Erlenmeyer
flask. The headspace air was sampled eight times during
the incubation period using a gas-tight syringe. Before gas
sampling, the headspace air in the flasks was thoroughly
flushed with ambient air for 15 min. The flask was then
capped immediately by sealing it with a rubber stopper for
3 h. The flasks were flushed with ambient air again after
sampling and maintained with sealing membrane and the
CO, emission was detected by a gas chromatograph
(Agilent 7890A, USA). In our analysis, we only considered
the average respiration rates when heterotrophic soil
respiration had stabilized.

We also conducted SOC fractionation experiments for
the soil layers (L1: 0-10, L3: 20-30, and L5: 50-70, and
for the depositional position, L6: 70-90 cm was added) at
these four topographic positions (Fig. 1) to isolate the
functional SOC fractions. We used the modified scheme
described by Doetterl et al. (2012), which was based on
the method proposed by Six et al. (1998), as a means of
collecting and analyzing data. Through a series of physical
and chemical fractionation techniques, we identified dif-
ferent particle sizes of SOC, i.e., water-stable macroaggre-
gate C (>250 pum), microaggregate C (250-53 pum), silt C
(53-2 um), and clay C (<2 pm). Furthermore, three
functional SOC pools (fast, intermediate, and passive),
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that differentiate in terms of stabilization mechanisms,
were quantitatively estimated according to the method
described by Doetterl et al. (2012).

Analyses

Statistical tests for differences between the means of the
geomorphic classes have been performed for the whole
dataset, with tests for top and subsoil samples conducted
separately using Bonferroni corrections and Tamhane’s
T2 with SAS Enterprise 4.2 (SAS Institute Inc., Cary,
NC, USA). Data for all four locations where aggregated
together and linear regressions where performed to link
SOC quality and respiration data to soil depth and
quantitative estimates of soil redistribution rates.

Results

Spatial patterns of soil moisture, temperature, and bulk
density

During the growing season, the average soil moisture
content varied at different slope positions. Along the
topographical gradient, the soil moisture content ge-
nerally declined with increasing altitude, except in the
backslope A3 position. The lowest moisture was observed
at backslope A3 and the highest moisture at footslope A4
(not shown). We found no evidence for systematic spatial
differences in the temperature and the bulk density along
the hillslope (not shown).

Soil erosion and soil organic content patterns

Based on the '*’Cs measurements, we quantitatively esti-
mated that the soil erosion rates for A1, A2, and A3 were
-35 t ha' year!, -472 t ha' year!, and -
56.1 t ha™ year™, respectively, and the soil deposition rate
for A4 was approximately 56.9 t ha™' year™. Thus, we
grouped the soil profiles taken along the geomorphic gra-
dient into three classes according to their geomorphic set-
tings: (i) the non- (or slowly) eroding profile at summit
position Al, (ii) the eroding profiles on convex shoulder
A2 and backslope A3, and (iii) the depositional profile at
the footslope position A4. The vertical distribution of the
SOC concentrations and inventories at various landscape
positions are shown in Fig. 2. The topsoil SOC contents
ranged from 8.1 to 24.4 g/kg at the four positions. At the
eroding positions and the non-eroding position, the SOC
concentrations varied by locations and decreased with
increasing soil depth. The SOC concentrations were
higher for the depositional and the non-eroding profiles
than for the eroding profiles. The soils of the depositional
profiles were enriched in SOC at subsoil depth and the
SOC contents at the footslope position first increased and
then decreased with the soil depth (Fig. 2a). The deposi-
tional profiles store 5.9 times more SOC than the eroding
profiles and 3.3 times more SOC than the non-eroding

Page 4 of 10

SOC(g/kg)
a 0 5 10 15 20 25 30 35
0 L . \ L ) .
20 x
/A
3 .
o ] -
;_: 40 - A
-3 T
[
o
= 601
<]
n
——=e—— A1 (Non-eroding)
80 A o---- A2 (Eroding)
— —v — - A3 (Eroding)
— &— A4 (Depositional)
100
b 30
Cc
EE Non-eroding
25 /| 3 Eroding
[ Depositional
-~ 20 1
i=
~—~ c
D 15
X
~ Cc
3
a0 b
b
5 a a
b
a
0

Topsoil:0-30cm  Subsoil:30-90cm  Total:0-90cm

Fig. 2 SOC depth distribution (a) and stocks (b) as a function of the
geomorphic position. Statistical tests for differences between the
means of the geomorphic classes have been performed for the
entire dataset and for top and subsoil samples separately. The same
letter indicates no significant difference between the geomorphic
positions (p < 0.1)

profiles (Fig. 2b). The SOC and the '*’Cs were positively
correlated in our study area, as were the SOC and the soil
redistribution rates (Table 1).

Spatial distribution of soil respiration

We found consistent patterns of soil surface respiration
fluxes in May, June, July, and September 2015 (Fig. 3a).
The respiration rates were highest at the depositional
position and lowest at the eroding position. This pattern
coincided with the variations in the SOC stocks along
the hillslope. When averaged over the period of obser-
vation, the ratios of soil respiration (pmol m2 s to
the SOC inventory (kg m™2) were compared along the
slope. The eroding profiles had a slightly higher Rs/SOC
(umol kg™' s7') than the non-eroding profiles. The Rs/
SOC was lowest at the depositional position for both the
0-30 cm and the 0-90 cm layers (Fig. 3b).
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Table 1 Significant correlations. Pearson correlation coefficients of linear regressions (1) between the soil depth, soil redistribution
rate, and SOC parameters. Single and double asterisks indicate the significance levels at p < 0.05 and p < 0.01, respectively

Variable 1 Variable 2 r

Field measurement SOC concentration 137Cs activity Bq kg™ 0.67%*
SOC concentration Soil redistribution rate 0.85**
SOC stock kg m™ '37Cs inventory Bq m™? 0.96*
SOC stock kg m™ Soil redistribution rate 0.94*
Fast Pool C (% of total SOC) Soil depth —0.56%
Passive pool C (% of total SOC) Soil depth 0.56*
Intermediate pool C (% of total SOC) Soil redistribution rate 0.74*
Microaggregate C (% of total SOC) Soil redistribution rate 067*

Incubation study Respiration ug C h™' g Soil™’ SOC concentration 0.88**
Respiration ug C h™' g Soil ™’ Soil depth —063**
Respiration ug C h™' g SOC™' Soil depth —0.58**
Subsoil respiration per SOC Intermediate Pool C (% of total SOC) —0.65*%
Subsoil respiration per SOC Microaggregate C (% of total SOC) -0.63*
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Fig. 3 Soil respiration rates measured using LI6400 along the slope
in May, June, July, and September (a), and ratios of the soil surface
respiration fluxes (Rs) to the SOC inventory along the slope for the
0-30 cm layer and for the 0-90 cm layer (b). The same letter
indicates no significant difference between the geomorphic
positions (p < 0.1, tested for May to September separately)

In the incubation experiments, the respiration rates of
the topsoil samples (0-10 cm) were higher than those of
the subsurface soils (10-90 cm) (Fig. 4). The measured
respiration rate was negatively correlated with depth,
whereas positive correlations with the SOC concentra-
tion can be identified (Table 1). The soil respiration per
unit soil (g) for the topsoil samples was the lowest at the
eroding profiles, while the depositional profiles respired
at significantly higher rates (Fig. 4a). For subsurface
soils, the highest respiration rates were found for the
depositional profiles, and this respiration was signifi-
cantly higher than the respiration of the non-eroding
and eroding profiles (p < 0.1) (Fig. 4a).

The topsoil samples also respired at a higher rate than
the subsoils per unit SOC (g). For the 0-10 cm layer, the
potential respiration rates were higher at the deposi-
tional position than at the non-eroding position (Fig. 4b)
. For the subsoil (10-90 cm), the lowest respiration rates
were measured in the depositional profiles and were
significantly lower than the respiration rates of the non-
eroding profiles (p<0.1) (Fig. 4b). Samples from the
eroding profiles respired at a higher rate than those from
the depositional or non-eroding profiles (Fig. 4b).

Spatial patterns of the SOC fractions and pools

We observed a significant positive correlation between
the soil depth and the proportion of the passive pool C
(p<0.01) and a negative correlation between the soil
depth and the fast pool (Table 1). The depositional
profiles contained a slightly greater proportion of the
SOC in the fast pool relative to the non-eroding or ero-
ding profiles (Fig. 5a). More SOC is associated with the
intermediate pool in the depositional profiles than in the
non-eroding or eroding profiles (Fig. 5a). We found a
significant positive correlation (p < 0.05) between the soil
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redistribution rates and the fractions of C in the inter-
mediate pool (Table 1, Fig. 6b) and in microaggregates
(Table 1). Proportionally more SOC was stored in the
intermediate pool and in the microaggregates at the
depositional position. This intermediate pool can mainly
reflect the contribution of the microaggregate C in our
study. We also observed a significant negative corre-
lation (p <0.05) between the intermediate pool (or the
microaggregate C) and the subsoil potential respiration
per unit SOC (Table 1).

Q
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Discussion

Effects of soil redistribution on the SOC

Our study showed that the depositional profiles were
enriched in SOC at subsoil depth and that they stored
significantly more SOC than the non-eroding or eroding
profiles (Fig. 2), which is consistent with many previous
studies (Berhe et al. 2008; Doetterl et al. 2012; Wang et al.
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’ N N N 2013; Wiaux et al. 2014a). A previous study showed that
b — SOC depletion took place at eroding sites and SOC accu-
mulation took place at depositional sites (Dlugof3 et al.

8 1 2012). Being a selective process, soil erosion preferentially
transfers fine and light materials, which are typically

6 enriched in SOC relative to the bulk soil (Wairiu and Lal

2003). This process can lead to carbon loss in the eroding

profiles and enrichment of the labile C fraction in the
41 depositional profiles. For example, Wiaux et al. (2014a)
observed a spatial differentiation of the labile SOC pool
21 (i.e., the SOC not resistant to NaOCl), with a significant
enrichment for the 0—1 m layer in the depositional profiles
ol i along a hillslope in the Belgian agricultural loam belt. In

our study, we also observed a greater proportion of SOC
in the fast pool at the depositional position (Fig. 5a), which
can confirm the processes preliminarily. The SOC con-
Fig. 5 Distribution of the SOC pools along the geomorphic gradient centrations and the fractions of fast C and intermediate C
as a fraction of the total SOC in % (a) and the absolute amount in g were higher at the depositional position; thus, it should be

SOC per kg soil (b ) .
per kg soll ) discussed separately on whether the lower respiration
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rates per unit SOC benefited from the effective physical
protection there.

Controls on potential soil respiration

We conducted incubation experiments to quantify the
potential soil respiration without the impacts of the
varied soil water and temperature conditions. Soil incu-
bation studies are advantageous for assessing the SOC
decomposition rates of different C fractions, as there is
usually no new input of organic material during the
course of an incubation study and the fast C pool is
depleted without being replaced (Schédel et al. 2013). Soil
incubation studies lasting longer than 100 days can reduce
the dominance of the fast C pool and will show the contri-
butions of the more recalcitrant pools in context of soil
CO, emissions (Von Liitzow and Kogelknabner 2009).
Thus, our long-term incubation experiment can better
reflect the potential respiration for the fast, intermediate,
and passive pools during the 182 days.

In recent years, newly emerging evidence has indicated
that molecular structure and/or chemical composition do
not solely predetermine the persistence of SOC and that
instead environmental factors can exert an additional
influence upon SOC mineralization (Han et al. 2016). In

both eroding and depositional landscapes, the C in soil
can be stabilized against decomposition by two major
mechanisms: (a) chemical association of the SOC with
mineral surfaces and (b) physical protection of the SOC,
either by spatial separation from decomposers or by
inaccessibility due to the encapsulation of SOC within soil
aggregates (Doetterl et al. 2016).

This study also focuses on the analysis of inner physical
protection mechanisms. Soil erosion slackens and breaks
down water stable aggregates, thus leading to encapsu-
lated C being prone to mineralization (Lal 2003). Accord-
ing to the method in this study, the intermediate pool can
mainly reflect the contribution of the microaggregate C.
Our result showed that the fractions of the intermediate C
and the microaggregate C were lowest at the eroding
position and highest at the depositional position (Table 1,
Fig. 6), providing a reasonable explanation for the ob-
served highest potential soil respiration at the eroding
position. In the uppermost topsoil (0-10 c¢m), the SOC
mineralization rates were higher at the depositional
position than at the non-eroding position, reflecting
the input of the labile organic matter fractions. Con-
versely, in the subsoil, the mineralization rates were
lowest at the depositional site (Fig. 4), because of
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effective stabilization by physical protection within
soil microaggregates. These findings indicate that
physical protection mechanisms play a dominant role
in the subsoil (i.e., below 10 cm) in stabilizing SOC against
decomposition. In the depositional topsoil, the input of
labile materials plays a major role in soil respiration.

Controls on soil surface respiration fluxes

Soil surface respiration fluxes can be used as an indi-
cator of the persistence of SOC (Wiaux et al. 2014b).
The temporal variability in Rs at a single point can be
reasonably described by changes in soil temperature and
moisture, while the spatial variability is much more diffi-
cult to determine. Relatively inconsistent views about
the effect of soil redistribution on the spatial variability
of CO, effluxes exist. Some studies reported higher
respiration rates at footslope positions relative to summit
and shoulder positions (Reicosky et al. 2005; Webster et
al. 2008; Wiaux et al. 2015), but opposite trends were also
observed in some regions (Epron et al. 2006; Wei et al.
2014; Zhang et al. 2016).

In our study, the respiration rates were highest at the
depositional position, while the Rs/SOC was lowest at
that position (Fig. 3). These results support that the
SOC at such a footslope is stored along the soil profile
and involved in a long-term stabilization process and
simultaneously support that the depositional profile
emits more CO, than the summit due to its high
amount and quality of SOC. Wiaux et al. (2015) reported
that in crop soils, approximately 90 to 95% of the fluxes
originated from the first 10 cm of the soil profile at the
footslope, while at the summit, the first 30 cm of the soil
profile significantly contributed to surface fluxes. These
results suggest that the depositional topsoil SOC is
prone to be mineralized, and the SOC in this depo-
sitional context is stabilized at subsoil depth.

The analysis of the results of the field experiments are
in agreement with those of the incubation experiments
preliminarily, suggesting that physical protection mecha-
nisms are vital in the processes of SOC decomposition.
In addition, a previous study showed that CO, efflux
was also regulated by a complex interplay of different
environmental factors, such as soil moisture, soil
temperature, and soil porosity (Van Hemelryck et al.
2011). In our study, the protective effects of soil de-
position on soil respiration per unit SOC were more
remarkable in field conditions than in indoor ones
(Fig. 3b and Fig. 4b), most likely due to the impacts of
the varied soil water conditions.

Soil moisture is identified as a major environmental
driver regulating the spatial variability of soil respiration
in many studies (Wei et al. 2014; Wiaux et al. 2014b;
Zhang et al. 2016). In general, soil water contents are
higher at lower altitudes because of gravity. Previous
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studies have suggested that excessive soil water can limit
SOC decomposition by altering the aeration status and
stressing soil microbial activity (Zhang et al. 2016). We
observed high water contents at the depositional position,
which can obstruct CO, fluxes, and anaerobic conditions
prevail, depressing the activity of aerobes, thus stabilizing
SOC as a result.

Conclusion

This study investigated the impacts of soil erosion on
the soil organic carbon and soil respiration in black-soil
sloping farmland in Northeast China. The results show
that the depositional profiles store 5.9 times more SOC
than the eroding profiles and 3.3 times more SOC than
the non-eroding profiles. The soils of the depositional
profiles were enriched in SOC at subsoil depth, and the
SOC contents at the footslope position first increased
and then decreased with the soil depth. A linear corre-
lation between the SOC and '*’Cs was observed in our
study, suggesting that the SOC decreased with increased
soil erosion. In the depositional topsoil, the input of
labile materials plays a promoting role in soil respiration.
By contrast, in the subsoil (i.e., below 10 cm), the potential
mineralization rates (per unit SOC) were lowest at the
depositional position because of effective stabilization by
physical protection within soil microaggregates. The field
results of the soil surface respiration per unit SOC also
suggest that the depositional topsoil SOC is prone to be
mineralized and the SOC in this depositional context is
stabilized at subsoil depth. These findings support that the
SOC at such a footslope is primarily stored along most of
the soil profile (i.e., below 10 cm) and is involved in long-
term stabilization and meanwhile support that the deposi-
tional profile emits more CO, than the summit due to its
high amount and quality of SOC. Furthermore, the high
water contents at the depositional position limit de-
composition rates and stabilize SOC at the same time.
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