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Abstract

Background: Wetland loss is a global concern due to its enormous ecosystem services. Marshland, a typical natural
wetland, which is concentrated in the Sanjiang Plain, has undergone dramatic loss in the last several decades. The
spatiotemporal changes in marshland were studied based on Landsat images of the Sanjiang Plain from 1980 to
2016 with the land use maps in 1980, 1995, 2000, 2005, 2010, and 2016 using land use dynamic degree and
landscape indices. The driving forces of marshland loss, including biophysical factors, socio-economic factors, and
land management, were analyzed with boosted regression trees (BRTs) methods.

Results: The area of marshland loss was 7372 km2, which accounted for 65.7% of the area of marshland in 1980;
however, the paddy field area was expanded by 22,313 km2. The lost marshland was mainly converted to dry
farmland (47.5%) and paddy field (47.2%) during 1980–2016. Both the landscape pattern of the study area and
marshland became increasingly fragmented. The relatively important factors responsible for marshland loss were
biophysical factors, socio-economic factors, and land management, which accounted for 65.2%, 25.5%, and 8.4%,
respectively. The most important driving forces with high “relative influence” were “distance to river,” which
accounted for 20.6% of the total variance explained. The “relative influence” of potential crop yield and ditch
density reached 20.2% and 8.4%, respectively.

Conclusion: Significant land use changes have occurred in the Sanjiang Plain over the past 37 years, with characteristics of
rapid paddy field expansion and drastic marshland loss. Meanwhile, marshland fragmentation continued to increase.
Reclamation was the main reason for the large-scale marshland loss. Biophysical factors influenced the decisions regarding
the locations of marshland loss. Moreover, climate factors (i.e., average annual precipitation and average annual temperature)
also played an important role in marshland loss. These results can provide helpful knowledge for understanding the patterns
and reasons for marshland loss and protecting and managing strategies for wetlands restoration.
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Introduction
Wetlands play an irreplaceable role in hydrologic regulation,
carbon storage, water purification, and biodiversity conserva-
tion (Bullock and Acreman 2003; Costanza et al. 2014). How-
ever, wetland loss has occurred worldwide due to increasing
human activity and global climate change (Junk et al. 2013;
Gardner et al. 2015). It has been reported that more than half
of the natural wetlands have been lost (Gardner et al. 2015;
Davidson et al. 2018). Furthermore, wetlands continue to
shrink as the increasing demands for land and climate change,
particularly in Asia and at mid-high latitudes zone (Davidson
2014; Dixon et al. 2016). Due to agricultural reclamation and
urbanization, 60% and 6% of the wetlands in China were lost
from 1990 to 2010, respectively (Mao et al. 2018a, 2018b).
Wetland loss can result in the decline in ecosystem services,
such as an increase in greenhouse gas emissions, and a reduc-
tion in the water supply (Finlayson et al. 1999). Wetland
restoration is necessary in places where wetlands have been
lost to enhance ecosystem services (Liu et al. 2013). Clarifying
the patterns and dynamics of wetland changes is a fundamen-
tal issue in wetland restoration. Furthermore, the underlying
forces of wetland loss must be identified to implement
sustainable management strategies for wetlands.
The reasons for wetland loss are complex and diverse.

Commonly, wetland loss can ascribed to human activity,
natural disturbances, or interaction effects (van Asselen
et al. 2013; Pekel et al. 2016; Thomas et al. 2017). Drain-
age to gain arable or built-up land, exhaustion for wet-
land sources, aquaculture, and water conservancy
projects (e.g., ditch regimes, reservoirs, polders), infra-
structure construction (e.g., roads), and biological inva-
sions are the most common human activities (Deegan
et al. 2012; van Asselen et al. 2013). Sea-level rise,
droughts, storms, burning, and subsidence are common
natural factors in ecologically fragile areas that cause
wetland changes (Turetsky et al. 2015; Feller et al. 2017;
Morris et al. 2018).
Analysis of the driving forces of land use and land cover

changes is one of the vital parts of land use change and land
cover research. A common method that used to explain the
relationship between land use change and driving forces of
land use change is the combination of a conceptual model
with a mathematical model (Zhang et al. 2017). Geist and
Lambin’s theoretical framework successfully identified the
underlying and proximate driving forces of tropical deforest-
ation (Geist and Lambin 2002). Statistical methods are com-
monly used to analyze the relationship between wetland loss
and explanatory variables, such as partial least squares regres-
sion, partial correlation analysis, linear correlation, logistic re-
gression, gray correlation, and multiple stepwise regression
(van Asselen et al. 2013; Meng et al. 2017). Meanwhile, ma-
chine learning (e.g., random forest method) methods have
gradually been applied in land use change studies (Zanella
et al. 2017).

The Sanjiang Plain has undergone significant changes
in land use, especially large-scale marshland loss, since
the 1950s. Many studies have evaluated the land use and
landscape pattern changes throughout the region or in
part of the region at different time scales (Li et al. 2002;
Liu et al. 2013; Yan et al. 2017; Liu et al. 2018). How-
ever, their land use classification systems were relatively
coarse (e.g., they did not separate marshland from wet-
land or the paddy field from farmland), and few studies
paid attention to combine the change of regional land-
scape pattern with marshland landscape pattern. Consid-
ering the Chinese government policy (e.g., the
Household Production Responsibility System) conducted
in 1978, it is necessary to assess the landscape pattern
change since 1980. Additionally, few studies have quanti-
tatively the driving forces of marshland loss by combin-
ing natural and socio-economic data, especially land
management. The marshland and paddy field were sepa-
rated to analyze the regional landscape pattern change
from 1980 to 2016. Additionally, the ditch regime was
regarded as one driving force to explain marshland loss.
The objectives of this study are as follows: (1) renew

the land use map of the study area to 2016 of the study
area and evaluate the land use and landscape changes
with the land use map since 1980 and (2) quantitatively
analyze the driving forces of marshland loss with natural
and socio-economic factors during 1980–2016, especially
regarded ditch density as one driving forces of marsh-
land loss.

Materials and methods
Study site
The Sanjiang Plain (130° 13′ − 135° 05′ E, 45° 01′ − 48° 27′
N) has an area of 10.8 × 104 km2 and is located in Northeast
China. The climate is a temperate continental monsoon cli-
mate, with an average annual precipitation of 500–650 mm
and an average annual temperature of 1.4–4.3 °C. As the
core of the wetlands in the area, the marshland in the
Sanjiang Plain has undergone significant shrinkage and frag-
mentation due to the high-intensity reclamation since the
1950s. Since the 1990s, a series of wetland restoration pro-
grams have been conducted by the government to conserve
and restore the natural wetlands. To date, five natural re-
serves have been listed as Ramsar wetlands (Fig. 1).

Data acquisition and collection
Landsat TM (Thematic Mapper) and OLI (Operational
Land Imager) cloudless images were obtained from the
United States Geological Survey Earth Resources Obser-
vation and Science Center (USGS, 2016) between April
and October in 1980, 1995, 2000, 2005, 2010, and 2016.
After radiation calibration and image enhancement, the
images were geometrically corrected with 1:100,000 topo-
graphic map in 1982. Uniform coordinates and projection,
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the images in different periods were rectified to the Beijing
1954 Krasovsky Albers project. After image mosaicking, a
supervised classification and visual interpretation ap-
proach was applied to interpret the land use map. Land
use types include paddy field, dry farmland, grassland, for-
estland, water area, built-up land, and marshland.
The driving forces, including the gross domestic product

(GDP), population density, elevation, slope, potential crop
yield, annual average precipitation, and annual average
temperature, were downloaded from the Data Center for Re-
sources and Environmental Sciences, Chinese Academy of
Sciences (RESDC) (http://www.resdc.cn). All driving forces
and map of marshland loss were resampled to 1 km × 1 km
in ARCGIS 10.3.

Methods
Single land use dynamic degree
This metric was used to quantify the land use changes.
The expression is as follows:

K ¼ Ub−Ua

Ua
� 1
T
� 100%

Notes: K is the single land use dynamic degree, Ua is
the initial area, Ub is the terminal area, and T is the
duration.

Landscape pattern analysis
Landscape indices are powerful methods for landscape
pattern change analysis. Based on previous studies (Xiao
et al. 1990; Li et al. 2005), six class-level metrics and
landscape-level metrics were applied to assess the land-
scape pattern changes considering their ecological mean-
ing (Table 1). The indices used to characterize the
landscape patterns from 1980 to 2016 are as follows:
landscape-level metrics, including number of patches
(NP), landscape shape index (LSI), contagion (CON-
TAG), patch cohesion index (COHESION), Shannon’s
diversity index (SHDI), and Shannon’s evenness index
(SHEI), and class-level metrics, besides NP, LSI, and

Fig. 1 Location map of the study area
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COHESION, as well as largest patch index (LPI), edge
density (ED), and splitting index (SPLIT).

Driving forces analysis
Based on land use maps of 1980 and 2016, marshland
loss map was extracted. A systematic grid method was
imposed to generate points, and each point spaced 1 km
apart to avoid potential spatial autocorrelation. The
points were intersected with marshland loss and all the
explanatory variables for BRTs analysis.
Boosted regression trees (BRTs) were selected to

analyze the driving forces, which is a machine learning
method, that is useful for identifying the driving forces
in land use conversion (Wendland et al. 2011; Müller
et al. 2013). Compared to the traditional statistical
approach, BRTs do not make any assumptions on the
distribution of land use changes and driving forces, do
not overfit, and have high predictive accuracy (Elith
et al. 2006; Dormann et al. 2013). Meanwhile, BRTs are
robust against collinearity of the driving forces. Never-
theless, Pearson’s correlation coefficient matrix was cal-
culated to assess the collinearity of the driving forces.
When the correlation between two driving forces was ≥
0.7, the driving forces that had less clear relationship
with the marshland loss would be removed. BRTs have
gradually received increasing attention in land use sci-
ence (Lara et al. 2016; Sica et al. 2016). The BRTs have
been used to adequately explain the drivers of

Table 1 Landscape metrics

Indices/
units

Metrics Description

NP (none) Class/
landscape

Number of patches

LPI (%) Class Percentage of the total area comprised by
area of the largest patch

SPLIT
(none)

Class Square of the total area divided by the sum
of square of each patch area

ED (m/km2) Class/
landscape

Sum of length of all edge segments divided
by the total area

LSI (none) Class/
landscape

The deviation between the patch and same
area of the circle

COHESION
(none)

Class/
landscape

The physical connectedness of the
corresponding patch type

CONTAG
(%)

Landscape It considers all types present on an image

SHDI (none) Landscape It is used to compare landscape diversification
and landscape heterogeneity of different
landscapes or same landscape at different
times

SHEI (none) Landscape It is used to expressed the maximum
evenness when an even distribution of area
among patch type

Table 2 Driving forces and possible effects

Driving forces Possible effects Sources and types

Biophysical factors

Distance to river (m) Marshland near river exhibited fewer loss River was from land use map in 2016 and then GIS analysis: Vector data

Elevation (m) Marshland in lower areas more prone to loss GIS analysis of data from RESDC: Raster, 30 m

Slope (°) Marshland loss is more likely to occur in flat
areas

GIS analysis based on the elevation: Raster

Average annual
precipitation (mm)

The marshland loss rate increase with
decrease precipitation

GIS analysis of data from RESDC: Raster

Average annual
temperature (°C)

Marshland are more likely to be converted at
warmer temperatures

GIS analysis of data from RESDC: Raster

Potential crop yield
(kg/km2)

Marshland are more likely to be converted
when potential crop yields are high

GIS analysis of data from RESDC: Raster

Socio-economic factors

Distance to settlement
(m)

Marshland tend to be vulnerable to losses
when adjacent to residents

Settlements was from land use map in 2016: Vector data

Distance to road (m) Marshland near roads tend to be prone to loss GIS analysis of data from RESDC: Vector data

Gross domestic product
(yuan/km2)

Marshland distributed in the poor areas are
more likely to be lost

GIS analysis of data from RESDC: Raster

Population density
(persons/km2)

Marshland loss is more likely to occur in high-
density population areas

GIS analysis of data from RESDC: Raster

Land management factors

Ditch density
(length/km2)

Marshland in the region with high ditch
density are more likely to be prone to loss

Ditch regime was digitized from the Atlas of Water Conservancy Projects
Present Situations in Heilongjiang Reclamation Area 2010: Vector data
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intensification in thermokarst rates intensify due to cli-
mate change and forest fragmentation in an Alaskan
boreal forest lowland (Lara et al. 2016), patterns of in-
tensified forest harvesting (Levers et al. 2014), agricul-
tural intensification (Levers et al. 2016), and wetland loss
(Sica et al. 2016).
The dismo package (Elith et al. 2008) in R3.4.1 was

used to perform all analyses. A systematic sensitivity
analysis was conducted to calibrate the model, and a de-
tailed description was available in Lara’s reference (Lara
et al. 2016). A total of 11 driving forces were selected
(Table 2), including biophysical factors, socio-economic
factors, and land management factors.
The first group of explanatory variables captured bio-

physical factors. As a majority of marshland was distrib-
uted near the river, we included (1) distance to river.
Marshland loss was related to topography because it

determines the water flow, so we included (2) elevation
and (3) slope. The precipitation and temperature can
cause fluctuations in the marshland area, so we included
(4) the average annual precipitation and (5) the average
annual temperature. Soil quality was another possible
variable that could explain marshland loss, so we in-
cluded (6) potential crop yield.
The second group of explanatory variables involved

socio-economic factors. Marshland located near roads or
settlements is easily accessible and more vulnerable to
loss (van Asselen et al. 2013), so we included (1) dis-
tance to settlement and (2) distance to road. The causes
of marshland loss were mainly associated with popula-
tion growth and increasing income levels, so we included
(3) GDP and (4) population density.
The last group of explanatory variables involved land

management. Large water conservancy facilities exist to

Fig. 2 Land cover maps of the study area from 1980 to 2016
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prevent the natural disasters (e.g., flood, drought) or irri-
gate paddy field, which altered the regional hydrological
process. Therefore, we included (1) ditch density.

Results
Land use change of the Sanjiang Plain
Classification accuracy was assessed with 216 field sur-
vey points in 2016, and historical land use information
was collected from local elderly residents. The accuracies
of interpretation were 89.6%, 88.6%, 84.2%, 86.4%, 88.6%,
and 91.2% for 1980, 1995, 2000, 2005, 2010, and 2016,
respectively.
The distributions and areas of the different land use

types in 1980, 1995, 2000, 2005, 2010, and 2016 are
shown in Fig. 2. The significant land use changes in
the study area were declining marshland and increas-
ing paddy field. In 1980, marshland accounted for ap-
proximately 11,862 km2, or 11.10% of the total area,
while at the end of the period, the marshland area

decreased by 65.7% to 4490 km2. However, the pro-
portion of paddy field increased by 19.5%. The area
of dry farmland witnessed an obvious increase from
1980 to 2005, and after 2005, the area of dry farm-
land severely decreased. The areas of forestland and
grassland decreased by 5597 km2 and 3785 km2 from
1980 to 2005, respectively. Then, the area of forest-
land increased by 195 km2, and the area of grassland
further decreased by 590 km2. Moreover, the area of
built-up land increased slowly, increasing by 309 km2.
Surprisingly, the water area decreased by 752 km2

(Fig. 3), which was caused by the water-drainage
construction.
The land use changed dramatically during 1980–2016

(Table 3). The single land use dynamic degrees of paddy
field, grassland, and marshland were 20.99%, − 1.82%,
and − 1.65%, respectively. This result revealed that
paddy field, grassland, and marshland changed signifi-
cantly during 1980–2016. However, the single land use

Fig. 3 Areas of different land use types in different years

Table 3 Single land use dynamic degree

Period Paddy field (%) Dry farmland (%) Forestland (%) Grassland (%) Water area (%) Built-up (%) Marshland (%)

1980–1995 2.63 0.51 − 0.01 − 2.61 − 0.38 0.29 − 0.73

1995–2000 36.50 − 0.53 − 1.97 0.70 1.15 − 1.00 − 0.53

2000–2005 6.01 0.50 − 1.07 − 6.28 − 2.78 0.80 − 2.38

2005–2010 7.69 − 2.01 0.09 − 3.14 0.14 1.53 − 3.93

2010–2016 3.42 − 1.57 0.02 − 0.96 − 0.15 0.51 − 1.43

1980–2016 20.99 − 0.34 − 0.40 − 1.82 − 0.40 0.40 − 1.65
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dynamic degrees of dry farmland, forestland, and built-
up land were all lower than 0.5%.
Figure 4 shows the marshland areas that were con-

verted to other land use types at different time intervals.
The area of marshland that were converted to dry farm-
land and paddy field was 3911 km2, and 3888 km2, which
accounted for 32.97% and 32.78% of the total marshland
area from 1980–2016, respectively. This finding indi-
cated that marshland loss was mainly caused by agricul-
tural reclamation. Temporal and spatial variation of
marshland loss was apparent. During the early stage
(e.g., 1980–1995, 1995–2000), marshland was mostly
converted to dry farmland. During the latter stage (e.g.,
2000–2005, 2010–2016), marshland was mostly reclam-
ation into paddy field. Marshland loss occurred from up-
stream to downstream of the river during 1980–2016.

Meanwhile, from 1980 to 2005, marshland loss mostly
occurred around large wetlands. During 2005–2016,
marshland loss was scattered.

Landscape pattern change analysis
The landscape-level pattern of the study area was de-
scribed by the NP, LSI, CONTAG, COHESION, SHDI,
and SHEI (Fig. 5). From 1980 to 2016, the NP showed a
slight decrease at the initial stage and then gradually sig-
nificantly increased (Fig. 6). At the last stage, NP in-
creased by 4363. From 1995 to 2016, the LSI exhibited
sustained growth. The CONTAG increased by 3.45 and
then gradually decreased. Compared to 1980, the CON-
TAG in 2016 still increased by 0.28. The COHESION
remained steady. The SHDI and SHEI presented the
same trend, which decreased at the initial stage and then

Fig. 4 Marshland transitions in the study area during 1980–2016. Notes: 71, marshland converted to paddy field; 72, marshland converted to dry
farmland; 73, marshland converted to forestland; 74, marshland converted to grassland; 75, marshland converted to water area; 76, marshland
converted to built-up land; and 77, steady marshland
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increased slowly. In summary, the landscape connectivity
was not compact, and fragmentation was aggravated. It
was because the dominant landscape (dry farmland)
gradually decreased. Moreover, the turning points for all
six landscape indices occurred in 1995. From 1980 to
1995, the NP, LSI, SHDI, and SHEI showed decreasing
trends of landscape fragment. From 1995 to 2016, the
trends of NP, LSI, SHDI, and SHDI gradually
rebounded, which was driven by paddy field expand
extremely.
The spatial configuration characteristics of marshland were

indicated by the NP, LPI, ED, LSI, SPLIT, and COHESION
(Fig. 6). The NP and LPI of marshland changed significantly,
decreasing by 740 and 2.49 during 1980–2016, respectively.
Distinctively, the largest change in NP occurred from 2005–
2010, and the largest change in LPI occurred from 1995–
2000. This result revealed that large patches tended to shrink
or disappear from 1995–2000, and small patches tended to
disappear from 2005–2010. The ED gradually decreased dur-
ing 1980–2016, the possible because (1) the intensity of

human activities became weaker and (2) natural wetland re-
serve boundaries were established to prevent the destruction
of large wetland. The LSI decreased by 22.35%. The SPLIT
changed remarkably, and the COHESION changed slightly.
During 2010–2016, all landscape metrics exhibited slower
changes than earlier periods. The marshland has undergone
remarkable shrinkage and fragmentation.

Driving forces of marshland change
The most important driving forces with “relative influ-
ence” were identified as the distance to river, potential
crop yield, average annual temperature, average annual
precipitation, population density, and ditch density, ac-
counting for 20.6%, 20.2%, 9.5%, 9.4%, 8.6%, and 8.4% of
the total variance explained (Fig. 7). The relatively im-
portant factors were responsible for the marshland loss
were the biophysical factors, socio-economic factors, and
land management, which accounted for 65.2%, 25.5%,
and 8.4%, respectively.

Fig. 5 Landscape indexes changes at the landscape level during 1980–2016
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The partial dependency plots can be used to easily
understand the relationship between marshland loss and
driving forces (Fig. 8).
The most important variable explaining marshland loss

in the Sanjiang Plain was distance to river, which indicated
that the distribution of marshland was closely related to
the distance to river. After an initial drastic increase in
predicted marshland loss, marshland loss slowly declined
beyond 5 km threshold value for the distance to river and
became saturated when the distance to river beyond 25
km. This indicated that when distance to river was less
than 5 km, reclamation by humans tended to increase with
an increase in the distance to river leading to the marsh-
land became vulnerable to loss. All the regions with dis-
tance to river greater than 5 km were predicted to be areas
with intensive marshland loss.
The second most important variable was potential crop

yield. The results showed that where the potential crop
yield continued to increase, marshland loss was predicted

to occur at high intensity. A possible explanation was that
the marshland loss in the Sanjiang Plain was mainly due
to agricultural reclamation, as marshland has high poten-
tial for production, and humans tended to reclamation
these areas.
The annual average temperature and annual average

precipitation were the most important variables follow-
ing the potential crop yield. These variables maintained
high level with several fluctuations. With an increase in
the mean temperature, rice planting became favorable
and stimulated reclamation, which indirectly caused
marshland loss (Yan et al. 2017; Yan et al. 2018). An in-
crease in paddy field aggravated the water shortages be-
tween marshland and cultivated land (Zou et al. 2018a,
2018b). Annual average precipitation was sensitive to
runoff, so the marshland area severely fluctuated.
The ditch density and GDP were also important in

explaining marshland loss. The ditch system promoted
agricultural development but also altered regional

Fig. 6 Landscape pattern changes in marshlands at category level during 1980–2016
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hydrology processes. With an increased in the GDP, the
demand for living area or land would increase, which
leaded to marshland loss.
In summary, human reclamation was responsible for

large-scale marshland loss. Human decisions were the
main driving force of marshland loss. The biophysical
factors also affected the decisions by people and pro-
moted marshland loss. Moreover, the climate factors
(e.g., average annual precipitation and average annual
temperature) also played a role in marshland loss.

Discussion
Comparison with land use change studies in the Sanjiang
Plain
Land use interpretation accuracy was vital to analysis
of land use change. To validate and improve the accur-
acies of land use data, great efforts have been made, in-
cluding: field survey data, statistical data, and Google
Earth image; historical land use information was collected
from local elderly residents, as well as others related stud-
ies (Yan et al. 2017; Yan et al. 2018). To guarantee rela-
tively high accuracy, visual interpretation was applied to
interpret the land use maps. To reduce individual classifi-
cation errors when land use change was detected, outlined
land use maps by comparing images to images of different
periods were applied. In general, interpretation accuracy
was all above 84% and met the requirement for land use
change detection. Paddy field expanded (increased
by 22312 km2) and marshland loss (declined by 6558 km2)
were predominated the long-term land use change from
1980 to 2016 in the study area. Rate of marshland loss was
30.37% higher, and other land use type change was

consistent with previous studies (Yan et al. 2017; Yan
et al. 2018). It was because the definition of marshland,
e.g., wet meadow, was classified into neither grassland nor
marshland in our study.
The marshland has undergone remarkable shrinkage

and fragmentation (Wang et al. 2011; Liu et al. 2013; Yan
et al. 2017; Liu et al. 2018). Compared with these studies,
we found that the NP, LPI, ED, LSI, and COHESION of
marshland decreased slowly at the initial period (1980–
1995), and then decreased sharply (1995–2000, 2000–
2005, 2005–2010), and became decreased gradually at the
final period (2010–2016). And the SPLIT experienced op-
posite change: increased slowly during 1980–1995 and
then increased considerably during 1995–2000, 2000–
2005, 2005–2010 and became increased gradually during
2010–2016. Marshland landscape pattern changed during
2010–2016 was greatly different with that from 1986 to
2016. More attention should pay to the future marshland
landscape pattern change, which was essential to scientific
support for marshland protection.

Driving forces of marshland loss
Many studies indicate that marshland was related to
population growth, technological progress, governmental
policies, and climate change (Wang et al. 2011; Liu et al.
2013; Song et al. 2014; Yan et al. 2017). The population
in the study area increased by 41% during 1982–2010
(Liu et al. 2013) and decreased by 6.96% between 2011
and 2016. Marshland loss was closely related to govern-
mental policy: “Agricultural Modernization” policy pro-
moted use of modern machinery from 1978 to 1985,
which led to construction of modernized farms. Though

Fig. 7 Relative important of explanatory variable for the model
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the national policy to stop development of the Sanjiang
Plain in the 1990s, large area of marshland was still cul-
tivated during 2000–2010. Marshland loss in a small
scatter area was between 2010 and 2016.
Climate change may play an important role in the fu-

ture. A marshland area-meteorological empirical model,
habitat distribution model, and a trajectory analysis indi-
cated that the contributions of climate change were 17–
30% during 1954–2005, 4.33% during 1981–2010, 30.9%
during 1980–2015 (Xue et al. 2015; Zhang et al. 2015;
Chen et al. 2018). Contributions of annual average
temperature and annual average precipitation were 9.5%
and 9.4%. Warm-dry change trends may be favorable for
agricultural activities in cold regions, particularly paddy
planting (Yan et al. 2017; Yan et al. 2018; Liu et al. 2018).
Meanwhile, drought results in conversion of marshland
into grassland (Sica et al. 2016). The area of conversion of
marshland into grassland was 110 km2, which accounted
for 25% of marshland loss during 2010–2016.

Advances in irrigation altered regional hydrological con-
dition and provided convenient conditions for paddy
planting. It was reported that with the length of ditches in-
creased 1 km, area of wetlands decreased by 0.23 km2

(Zou et al. 2018a, 2018b). It means that ditch regime not
only changed the driving force of “distance to river” but
also changed “ditch density”, which played a key role in
marshland loss. In return, paddy field expansion aggre-
gated water use conflict between marshland and farmland
(Zou et al. 2018a, 2018b). Additionally, irrigation regime
may improve landscape connectivity, especially small
patch marshland. Thus, it could alleviate marshland loss.

Future study
High spatial resolution remote sensing images are neces-
sary to investigate marshland loss and pattern change in
the Sanjiang Plain; more attention should pay on the
small patch marshland, especially outsides the wetland
nature reserves. By 2016, proportion of paddy field was

Fig. 8 The six most influential driving forces displayed on partial dependency plots
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approximate 25%; paddy field expansion and aggregation
occurred on the Sanjing plain need to pay continuous at-
tention, which may lead to landscape reshaped. Water
management infrastructure (e.g., ditch regimes, reser-
voirs, dam) is related to sustainable development of agri-
culture and marshland protection. It is vital to
strengthen water management.

Conclusions
Marshland was rapidly changed by human reclamation,
where 59.32% of marshland was lost over past 37 years in
the Sanjiang Plain. Area of marshland loss gradually de-
creased, especially during 2010–2016 (564 km2). The lost
areas were mainly converted to paddy field (40.07%), dry
farmland (24.82%), and grassland (19.50%). The landscape
connectivity was not compact, and fragmentation was ag-
gravated. With population dropping and crop yield rising,
hydrological condition (e.g., distance to river, ditch dens-
ity) and climate factors (e.g., average annual temperature,
average annual precipitation) would play a more import-
ant role in marshland loss. Thus, effective water manage-
ment was essential to implement for sustainable
development of agriculture and marshland.
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